Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20.685
Filter
1.
Recent Pat Nanotechnol ; 18(3): 350-360, 2024.
Article in English | MEDLINE | ID: mdl-38847137

ABSTRACT

BACKGROUND: Lepidium sativum (LS) seed extract has various pharmacological properties, such as antioxidant, hepatoprotective, and anticancer activities. However, the translation of L. sativum seed extract to the clinical phase is still tedious due to its bioavailability and stability issues. This problem can be solved by encapsulating it in a nanodelivery system to improve its therapeutic potency. METHODS: In this study, we have determined and compared the in vivo toxicity of ethanolic extracts of L. sativum seeds (EELS) and solid lipid nanoparticles (SLNs). To conduct toxicity (acute and subacute toxicity) assessments, EELS and SLNs were orally administered to Swiss albino mice. Animal survival, body weight, the weight of vital organs in relation to body weight, haematological profile, biochemistry profile, and histopathological alterations were examined. RESULTS: Animals administered with 2000 mg/kg and 5000 mg/kg in an acute toxicity study exhibited no toxicological symptoms regarding behaviour, gross pathology, and body weight. As per a study on acute toxicity, the LD50 (lethal dose) for SLNs and EELS was over 400 mg/kg and over 5000 mg/kg, respectively. When animals were given SLNs (50 and 100 mg/kg, orally) and EELS (250, 500, and 1000 mg/kg, orally) for 28 days, subacute toxicity study did not exhibit any clinical changes. There were no differences in weight gain, haematological parameters, or biochemical parameters compared to the control groups (p > 0.05). The organs of the treated animals showed no abnormalities in the histological analysis (liver, heart, kidney, and spleen). CONCLUSION: The result confirms ethanolic extracts of L. sativum seeds and their SLNs to not have harmful effects following acute and subacute administration to mice. For further studies, patents available on Lepidium may be referred for its preclinical and clinical applications.


Subject(s)
Lepidium sativum , Nanoparticles , Plant Extracts , Seeds , Animals , Mice , Plant Extracts/toxicity , Plant Extracts/chemistry , Plant Extracts/administration & dosage , Seeds/chemistry , Administration, Oral , Nanoparticles/chemistry , Nanoparticles/toxicity , Toxicity Tests, Acute , Male , Female , Lethal Dose 50 , Toxicity Tests, Subacute
2.
World J Microbiol Biotechnol ; 40(7): 211, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38777956

ABSTRACT

Human nutrition and health rely on edible oils. Global demand for edible oils is expanding, necessitating the discovery of new natural oil sources subjected to adequate quality and safety evaluation. However, in contrast to other agricultural products, India's edible oil supply is surprisingly dependent on imports. The microbial oil is generated by fermentation of oleaginous yeast Rhodotorula mucilaginosa IIPL32 MTCC 25056 using biodiesel plant byproduct crude glycerol as a fermentable carbon source. Enriched with monounsaturated fatty acid, nutritional indices mapping based on the fatty acid composition of the yeast SCO, suggested its plausible use as an edible oil blend. In the present study, acute toxicity evaluation of the yeast SCO in C57BL/6 mice has been performed by randomly dividing the animals into 5 groups with 50, 300, 2000, and 5000 mg/Kg yeast SCO dosage, respectively, and predicted the median lethal dose (LD50). Detailed blood biochemistry and kidney and liver histopathology analyses were also reported. The functions of the liver enzymes were also evaluated to check and confirm the anticipated toxicity. To determine cell viability and in vitro biocompatibility, the 3T3-L1 cell line and haemolysis tests were performed. The results suggested the plausible use of yeast SCO as an edible oil blend due to its non-toxic nature in mice models.


Subject(s)
Liver , Mice, Inbred C57BL , Rhodotorula , Animals , Mice , Liver/metabolism , Liver/drug effects , Rhodotorula/metabolism , Fermentation , Lethal Dose 50 , Cell Survival/drug effects , Plant Oils/toxicity , Plant Oils/metabolism , Fatty Acids/metabolism , Glycerol/metabolism , Biofuels , Kidney/drug effects , Toxicity Tests, Acute , Male , Administration, Oral , India
3.
Acta Trop ; 255: 107230, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38714240

ABSTRACT

The scorpion Aegaeobuthus nigrocinctus inhabits areas in Turkey and the Levant region of the Middle East where severe/lethal envenomings have been reported. Previous research indicated its extreme venom lethality to vertebrates and distinct envenomation syndrome. We report on the composition of A. nigrocinctus venom from Lebanese specimens using nESI-MS/MS, MALDI-TOF MS, SDS-PAGE and RP-HPLC. Venom lethality in mice was also assessed (LD50 = 1.05 (0.19-1.91) mg/kg, i.p), confirming A. nigrocinctus venom toxicity from Levantine populations. Forty-seven peaks were resolved using RP-HPLC, 25 of which eluted between 20 and 40 % acetonitrile. In reducing SDS-PAGE, most predominant components were <10 kDa, with minor components at higher molecular masses of 19.6, 26.1, 46.3 and 57.7 kDa. MALDI-TOF venom fingerprinting detected 20 components within the 1,000-12,000 m/z range. Whole venom 'shotgun' bottom-up nLC-MS/MS approach, combined with in-gel tryptic digestion of SDS-PAGE bands, identified at least 67 different components belonging to 15 venom families, with ion channel-active components (K+ toxins (23); Na+ toxins (20); Cl- toxins (2)) being predominant. The sequence of a peptide (named α-KTx9.13) ortholog to Leiurus hebraeus putative α-KTx9.3 toxin was fully determined, which exhibited 81-96 % identity to other members of the α-KTx9 subfamily targeting Kv1.x and Ca2+-activated K+ channels. Chlorotoxin-like peptides were also identified. Our study underscores the medical significance of A. nigrocinctus in the region and reveals the potential value of its venom components as lead templates for biomedical applications. Future work should address whether available antivenoms in the Middle East are effective against A. nigrocinctus envenoming in the Levant area.


Subject(s)
Electrophoresis, Polyacrylamide Gel , Scorpion Venoms , Scorpions , Animals , Scorpions/chemistry , Scorpion Venoms/chemistry , Scorpion Venoms/toxicity , Mice , Chromatography, High Pressure Liquid , Lethal Dose 50 , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry , Proteomics , Male , Proteome/analysis , Middle East , Survival Analysis , Molecular Weight
4.
Parasitol Res ; 123(5): 211, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748261

ABSTRACT

Ivermectin is one of the most widely used drugs for parasite control. Previous studies have shown a reduction in the abundance and diversity of "non-target" coprophilous organisms due to the presence of ivermectin (IVM) in bovine faecal matter (FM). Due to its breadth of behavioural habits, Calliphora vicina is a suitable dipteran species to evaluate the effects of IVM in FM. The aim of this work was to evaluate the effect of five concentrations of IVM in FM (3000, 300, 100, 30, and 3 ng/g) on the development of C. vicina. The following endpoints were evaluated: survival (between the first larval stage and emergence of new adults), larval development times to pupation and pupation times to adult, and adult emergence (% sex) and LC50. Sampling was performed from larval hatching at 60 and 120 min and at 3, 4, 5, and 12 h, and every 24 h specimens were weighed until pupae were observed. Data were analysed by ANOVA using a non-parametric Kruskal-Wallis test and as a function of elapsed development time and accumulated degree hours (ADH). Mortality at 3000 and 300 ng/g was 100% and 97%, respectively. There were statistically significant delays in adult emergence time (p = 0.0216) and in the ADH (p = 0.0431) between the control group (C) and 100 ng/g. The LC50 was determined at 5.6 ng/g. These results demonstrate the lethal and sub-lethal effects of IVM on C. vicina, while highlighting the usefulness of this species as a bioindicator for ecotoxicological studies.


Subject(s)
Calliphoridae , Feces , Ivermectin , Larva , Animals , Ivermectin/pharmacology , Calliphoridae/drug effects , Calliphoridae/growth & development , Larva/drug effects , Larva/growth & development , Feces/parasitology , Cattle , Survival Analysis , Pupa/drug effects , Pupa/growth & development , Female , Antiparasitic Agents/pharmacology , Male , Lethal Dose 50 , Diptera/drug effects , Diptera/growth & development
5.
PLoS One ; 19(5): e0302657, 2024.
Article in English | MEDLINE | ID: mdl-38787908

ABSTRACT

Ethnopharmacological relevance of Saussurea species for anti-cancer compounds instigated us to develop chemotherapeutic herbal tablets. This study was an ongoing part of our previous research based on the scientific evaluation of Saussurea heteromalla (S. heteromalla) for anti-cancer lead compounds. In the current study, S. heteromalla herbal tablets (500 /800 mg) were designed and evaluated for anti-cancer activity. Arctigenin was found as a bioactive lead molecule with anti-cancer potential for cervical cancer. The in vitro results on the HeLa cell line supported the ethnopharmacological relevance and traditional utilization of S. heteromalla and provided the scientific basis for the management of cervical cancer as proclaimed by traditional practitioners in China. LD50 of the crude extract was established trough oral acute toxicity profiling in mice, wherein the minimum lethal dose was noticed as higher than 1000 mg/kg body weight orally. Chromatographic fingerprint analysis ensured the identity and consistency of S. heteromalla in herbal tablets in terms of standardization of the herbal drug. About 99.15% of the drug (S. heteromalla crude extract) was recovered in herbal tablets (RSD: 0.45%). In vitro drug release profile was found to be more than 87% within 1 h, which was also correlated with different mathematical kinetic models of drug release (r2 = 0.992), indicating that drug release from matrix tablets into the blood is constant throughout the delivery. The dosage form was found stable after an accelerated stability parameters study which may be used for anti-cervical cancer therapy in the future, if it qualifies successful preclinical investigation parameters.


Subject(s)
Plant Extracts , Saussurea , Saussurea/chemistry , Animals , Humans , Mice , HeLa Cells , Plant Extracts/chemistry , Plant Extracts/toxicity , Plant Extracts/pharmacology , Lignans/pharmacology , Lignans/chemistry , Female , Furans/toxicity , Furans/chemistry , Furans/pharmacology , Tablets , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Male , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Lethal Dose 50 , Toxicity Tests, Acute , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/toxicity , Drugs, Chinese Herbal/pharmacology
6.
Microb Pathog ; 191: 106675, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705216

ABSTRACT

Bovine mastitis, caused by Streptococcus agalactiae (Group B Streptococcus; GBS), poses significant economic challenges to the global dairy industry. Mouse models serves as valuable tools for assessing GBS-induced infections as an alternative to large animals. This study aimed to investigate the LD50 dose, organ bacterial load, and quantification of peritoneal leukocyte populations for GBS serotypes Ia and II isolates from China and Pakistan. Additionally, we measured indicators such as lactoferrin, albumin, and myeloperoxidase (MPO) activity. Pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6, and IL-2) and anti-inflammatory cytokines (IL-10 and TGF-ß) in serum and tissue samples were evaluated using ELISA and qPCR, respectively. BALB/c mice (4 mice per group) received individual intraperitoneal injections of 100 µl containing specific bacterial inoculum concentrations (ranging from 105 to 109 CFU per mouse) of Chinese and Pakistani GBS isolates (serotypes Ia and II). Control groups received 100 µL of sterile PBS. Results revealed that the LD50 bacterial dose causing 50 % mortality in mice was 107 CFU. The highest bacterial load in all experimental groups was quantified in the peritoneum, followed by blood, mammary gland, liver, spleen, lungs, and brain. The most significant bacterial dissemination was observed in mice inoculated with Pakistani serotype Ia at 24 h, with a subsequent notable decline in bacterial counts at day 3. Notably, infection with Pakistani serotype Ia showed a trend of increased total leukocyte counts, significantly higher than Pakistani serotype II, Chinese Serotype Ia, and Chinese serotype II. A substantial influx of neutrophils and lymphocytes was observed in response to all tested serotypes, with Pakistani serotype Ia inducing a significantly higher influx compared to other groups (Pakistani serotype II, Chinese serotype Ia, and Chinese serotype II). Furthermore, TNF-α, IL-1ß, IL-2, and IL-6 expressions were significantly increased in mice one day after infection with the Pakistani serotype Ia. Compared to mice infected with the Pakistani serotype II, Chinese Serotype Ia, and Chinese serotype II, those infected with the Pakistani serotype Ia isolate exhibited the highest production of IL-10 and TGF-ß, along with significantly increased concentrations of lactoferrin, albumin, and MPO. These findings suggest that the persistence and severity of infection caused by the Pakistani serotype Ia may be linked to its ability to spread to deeper tissues. This study enhances our understanding of the clinical characteristics of bovine mastitis caused by S. agalactiae in China and Pakistan.


Subject(s)
Cytokines , Disease Models, Animal , Mice, Inbred BALB C , Serogroup , Streptococcal Infections , Streptococcus agalactiae , Animals , Streptococcus agalactiae/pathogenicity , Streptococcus agalactiae/classification , Streptococcus agalactiae/immunology , Streptococcus agalactiae/genetics , Mice , Streptococcal Infections/microbiology , Streptococcal Infections/immunology , China , Cytokines/metabolism , Cytokines/blood , Female , Pakistan , Bacterial Load , Cattle , Lethal Dose 50 , Mastitis, Bovine/microbiology
7.
J Helminthol ; 98: e43, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38800903

ABSTRACT

Entomopathogenic nematodes (EPNs) are closely associated with Popillia japonica and potentially used as their biological control agents, although field results proved inconsistent and evoked a continual pursuit of native EPNs more adapted to the environment. Therefore, we surveyed the Azorean Archipelago to isolate new strains of Heterorhabditis bacteriophora and to evaluate their virulence against the model organism Galleria mellonella under laboratory conditions. Six strains were obtained from pasture and coastal environments and both nematode and symbiont bacteria were molecularly identified. The bioassays revealed that Az172, Az186, and Az171 presented high virulence across the determination of a lethal dose (LD50) and short exposure time experiments with a comparable performance to Az29. After 72 hours, these virulent strains presented a mean determination of a lethal dose of 11 infective juveniles cm-2, a lethal time (LT50) of 34 hours, and achieved 40% mortality after an initial exposure time of only 60 minutes. Az170 exhibited an intermediate performance, whereas Az179 and Az180 were classified as low virulent strains. However, both strains presented the highest reproductive potential with means of 1700 infective juveniles/mg of larvae. The bioassays of the native EPNs obtained revealed that these strains hold the potential to be used in biological control initiatives targeting P. japonica because of their high virulence and locally adapted to environmental conditions.


Subject(s)
Pest Control, Biological , Rhabditoidea , Animals , Azores , Virulence , Rhabditoidea/microbiology , Rhabditoidea/physiology , Larva/microbiology , Moths/parasitology , Biological Control Agents , Biological Assay , Rhabditida/physiology , Lethal Dose 50
8.
Parasit Vectors ; 17(1): 194, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664829

ABSTRACT

BACKGROUND: Sarcoptic mange is a serious animal welfare concern in bare-nosed wombats (Vombatus ursinus). Fluralaner (Bravecto®) is a novel acaricide that has recently been utilised for treating mange in wombats. The topical 'spot-on' formulation of fluralaner can limit treatment delivery options in situ, but dilution to a volume for 'pour-on' delivery is one practicable solution. This study investigated the in vitro acaricidal activity of Bravecto, a proposed essential oil-based diluent (Orange Power®), and two of its active constituents, limonene and citral, against Sarcoptes scabiei. METHODS: Sarcoptes scabiei were sourced from experimentally infested pigs. In vitro assays were performed to determine the lethal concentration (LC50) and survival time of the mites when exposed to varying concentrations of the test solutions. RESULTS: All compounds were highly effective at killing mites in vitro. The LC50 values of Bravecto, Orange Power, limonene and citral at 1 h were 14.61 mg/ml, 4.50%, 26.53% and 0.76%, respectively. The median survival times of mites exposed to undiluted Bravecto, Orange Power and their combination were 15, 5 and 10 min, respectively. A pilot survival assay of mites collected from a mange-affected wombat showed survival times of < 10 min when exposed to Bravecto and Orange Power and 20 min when exposed to moxidectin. CONCLUSIONS: These results confirm the acaricidal properties of Bravecto, demonstrate acaricidal properties of Orange Power and support the potential suitability of Orange Power and its active constituents as a diluent for Bravecto. As well as killing mites via direct exposure, Orange Power could potentially enhance the topical delivery of Bravecto to wombats by increasing drug penetration in hyperkeratotic crusts. Further research evaluating the physiochemical properties and modes of action of Orange Power and its constituents as a formulation vehicle would be of value.


Subject(s)
Acaricides , Isoxazoles , Plant Oils , Sarcoptes scabiei , Scabies , Animals , Sarcoptes scabiei/drug effects , Acaricides/pharmacology , Isoxazoles/pharmacology , Scabies/drug therapy , Scabies/parasitology , Plant Oils/pharmacology , Plant Oils/chemistry , Acyclic Monoterpenes/pharmacology , Swine , Limonene/pharmacology , Limonene/chemistry , Terpenes/pharmacology , Terpenes/chemistry , Cyclohexenes/pharmacology , Cyclohexenes/chemistry , Lethal Dose 50
9.
J Ethnopharmacol ; 330: 118200, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38621467

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Malaria eradication has been a major goal of the Indonesian government since 2020. Medicinal plants, such as Strychnos lucida R. Br., are empirically used to treat malaria through traditional preparation methods. However, the safety and efficacy of these plants have not yet been confirmed. Therefore, further investigations are necessary to confirm the safety and efficacy of S. lucida as an antimalarial agent. AIMS OF THE STUDY: To quantify the concentration of brucine in the S. lucida extract, determine the acute oral toxicity of the standardized extract, and evaluate the in vivo antimalarial potency of S. lucida tablet (SLT). MATERIALS AND METHODS: Acute oral toxicity of S.lucida extract was determined using the Organization for Economic Co-operation and Development 420 procedure, and the analytical method for brucine quantification was validated using high-performance liquid chromatography. In addition, antimalarial activity was determined using the Peter's four-day suppressive method. RESULTS: Acute toxicity analysis revealed S. lucida as a low-toxicity compound with a cut-off median lethal dose of 2000-5000 mg/kg body weight [BW], which was supported by the hematological and biochemical profiles of the kidneys, liver, and pancreas (p > 0.05). Extract standardization revealed that S. lucida contained 3.91 ± 0.074% w/w brucine, adhering to the limit specified in the Indonesian Herbal Pharmacopeia. Antimalarial test revealed that SLT inhibited the growth of Plasmodium berghei by 27.74-45.27%. Moreover, SLT improved the hemoglobin and hematocrit levels. White blood cell and lymphocyte counts were lower in the SLT-treated group than in the K (+) group (p < 0.05). CONCLUSION: Histopathological and biochemical evaluations revealed that S. lucida extract was safe at a dose of 2000 mg/kg BW with low toxicity. SLT inhibited Plasmodium growth and improved the hemoglobin, hematocrit, and red blood cell profiles. Additionally, SLT reduced the lymphocyte and WBC counts and increased the monocyte and thrombocyte counts as part of the immune system response against Plasmodium infection.


Subject(s)
Antimalarials , Plant Extracts , Plasmodium berghei , Strychnos , Tablets , Antimalarials/toxicity , Antimalarials/pharmacology , Animals , Plant Extracts/pharmacology , Plant Extracts/toxicity , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Mice , Male , Strychnos/chemistry , Plasmodium berghei/drug effects , Administration, Oral , Strychnine/analogs & derivatives , Strychnine/toxicity , Strychnine/pharmacology , Female , Malaria/drug therapy , Toxicity Tests, Acute , Lethal Dose 50
10.
Article in English | MEDLINE | ID: mdl-38615808

ABSTRACT

Biomphalaria straminea is a freshwater gastropod native to South America and used in toxicological assessments. Our aim was to estimate 48 h-LC50 and sub-chronic effects after the exposure to low concentrations of chlorpyrifos as commercial formulation (CF) and active ingredient (AI) on B. straminea adult, embryos and juveniles. Concentrations between 1 and 5000 µg L-1 were chosen for acute exposures and 0.1 and 1 µg L-1 for the sub-chronic one. After 14 days biochemical parameters, viability and sub-populations of hemocytes, reproductive parameters, embryotoxicity and offspring' survival were studied. Egg masses laid between day 12 and 14 were separated to continue the exposure and the embryos were examined daily. Offspring' survival and morphological changes were registered for 14 days after hatching. 48 h-LC50, NOEC and LOEC were similar between CF and AI, however the CF caused more sub-lethal effects. CF but not the AI decreased carboxylesterases, catalase and the proportion of hyalinocytes with respect to the total hemocytes, and increased superoxide dismutase and the % of granulocytes with pseudopods. Also CF caused embryotoxicity probably due to the increase of embryos' membrane permeability. Acetylcholinesterase, superoxide dismutase, hemocytes sub-populations, the time and rate of hatching and juveniles' survival were the most sensitive biomarkers. We emphasize the importance of the assessment of a battery of biomarkers as a useful tool for toxicity studies including reproduction parameters and immunological responses. Also, we highlight the relevance of incorporating the evaluation of formulations in order to not underestimate the effects of pesticides on the environment.


Subject(s)
Biomarkers , Biomphalaria , Chlorpyrifos , Embryo, Nonmammalian , Insecticides , Water Pollutants, Chemical , Chlorpyrifos/toxicity , Animals , Biomphalaria/drug effects , Insecticides/toxicity , Biomarkers/metabolism , Water Pollutants, Chemical/toxicity , Embryo, Nonmammalian/drug effects , Hemocytes/drug effects , Lethal Dose 50 , Reproduction/drug effects , Superoxide Dismutase/metabolism , Catalase/metabolism
11.
Regul Toxicol Pharmacol ; 149: 105614, 2024 May.
Article in English | MEDLINE | ID: mdl-38574841

ABSTRACT

The United States Environmental Protection Agency (USEPA) uses the lethal dose 50% (LD50) value from in vivo rat acute oral toxicity studies for pesticide product label precautionary statements and environmental risk assessment (RA). The Collaborative Acute Toxicity Modeling Suite (CATMoS) is a quantitative structure-activity relationship (QSAR)-based in silico approach to predict rat acute oral toxicity that has the potential to reduce animal use when registering a new pesticide technical grade active ingredient (TGAI). This analysis compared LD50 values predicted by CATMoS to empirical values from in vivo studies for the TGAIs of 177 conventional pesticides. The accuracy and reliability of the model predictions were assessed relative to the empirical data in terms of USEPA acute oral toxicity categories and discrete LD50 values for each chemical. CATMoS was most reliable at placing pesticide TGAIs in acute toxicity categories III (>500-5000 mg/kg) and IV (>5000 mg/kg), with 88% categorical concordance for 165 chemicals with empirical in vivo LD50 values ≥ 500 mg/kg. When considering an LD50 for RA, CATMoS predictions of 2000 mg/kg and higher were found to agree with empirical values from limit tests (i.e., single, high-dose tests) or definitive results over 2000 mg/kg with few exceptions.


Subject(s)
Computer Simulation , Pesticides , Quantitative Structure-Activity Relationship , Toxicity Tests, Acute , United States Environmental Protection Agency , Animals , Risk Assessment , Pesticides/toxicity , Lethal Dose 50 , Rats , Administration, Oral , Toxicity Tests, Acute/methods , United States , Reproducibility of Results
12.
Toxicon ; 243: 107719, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38631492

ABSTRACT

African spitting cobra, Naja nigricincta nigricincta (Zebra snake), envenomation is an important cause of snakebite morbidity and mortality in Namibia. The snake is endemic to central and northern Namibia as well as southern Angola. The venom is mainly cytotoxic, resulting in aggressive dermo-necrosis and often accompanied by severe systemic complications. No specific antivenom exists. Rhabdomyolysis, systemic inflammatory response, haemostatic abnormalities, infective necrotising fasciitis as well as acute kidney failure have been documented. Based on murine models, this study assessed SAVP/SAIMR - and EchiTAb-Plus-ICP polyvalent antivenom neutralisation as well as subdermal necrosis. Additional muscle, cardiac, kidney and lung histology, creatine kinase measurements and post-mortems were performed. An intravenous median lethal dose (LD50) of Naja nigricincta nigricincta venom was determined at 18.4 (CI: 16.3; 20.52) µg and a subdermal lethal dose at 15.3(CI: 12.96; 17.74)µg. The SAIMR/SAVP polyvalent antivenom median effective dose (ED50) was 1.2 ml antivenom/1 mg venom equating to a potency (WHO) of 1 ml antivenom neutralising 0.63 mg venom and approximately 240 ml (24 vials) needed for initial treatment. The ED50 of the EchiTAb-Plus-ICP was 1 ml antivenom/1 mg venom and a potency of 65 mg venom/ml antivenom (3.3 x LD50), estimating 230 ml (23 vials) for treatment. Histology and serology (creatine kinase) evidenced venom induced skeletal myotoxicity, which was not prevented by the antivenoms tested. Cardiac myonecrosis, an inflammatory response, direct venom kidney tubular necrosis and cardio-pulmonary failure were documented.


Subject(s)
Antivenins , Elapid Venoms , Necrosis , Snake Bites , Animals , Antivenins/therapeutic use , Antivenins/pharmacology , Mice , Elapid Venoms/toxicity , Snake Bites/drug therapy , Disease Models, Animal , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Inflammation/drug therapy , Lethal Dose 50 , Naja , Male , Creatine Kinase/blood , Kidney/drug effects , Kidney/pathology
13.
Environ Toxicol Chem ; 43(6): 1431-1441, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38661474

ABSTRACT

Risk assessment for bees is mainly based on data for honey bees; however, risk assessment is intended to protect all bee species. This raises the question of whether data for honey bees are a good proxy for other bee species. This issue is not new and has resulted in several publications in which the sensitivity of bee species is compared based on the values of the 48-h median lethal dose (LD50) from acute test results. When this approach is used, observed differences in sensitivity may result both from differences in kinetics and from inherent differences in species sensitivity. In addition, the physiology of the bee, like its overall size, the size of the honey stomach (for acute oral tests), and the physical appearance (for acute contact tests) also influences the sensitivity of the bee. The recently introduced Toxicokinetic-Toxicodynamic (TKTD) model that was developed for the interpretation of honey bee tests (Bee General Uniform Threshold Model for Survival [BeeGUTS]) could integrate the results of acute oral tests, acute contact tests, and chronic tests within one consistent framework. We show that the BeeGUTS model can be calibrated and validated for other bee species and also that the honey bee is among the more sensitive bee species. In addition, we found that differences in sensitivity between species are smaller than previously published comparisons based on 48-h LD50 values. The time-dependency of the LD50 and the specifics of the bee physiology are the main causes of the wider variation found in the published literature. Environ Toxicol Chem 2024;43:1431-1441. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Pesticides , Bees/drug effects , Animals , Pesticides/toxicity , Lethal Dose 50 , Models, Biological , Species Specificity , Risk Assessment , Toxicokinetics
14.
Environ Toxicol Chem ; 43(6): 1312-1319, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38578198

ABSTRACT

Carbon dioxide (CO2) is gaining interest as a tool to combat aquatic invasive species, including zebra mussels (Dreissena polymorpha). However, the effects of water chemistry on CO2 efficacy are not well described. We conducted five trials in which we exposed adult zebra mussels to a range of CO2 in water with adjusted total hardness and specific conductance. We compared dose-responses and found differences in lethal concentration to 50% of organisms (LC50) estimates ranging from 108.3 to 179.3 mg/L CO2 and lethal concentration to 90% of organisms (LC90) estimates ranging from 163.7 to 216.6 mg/L CO2. We modeled LC50 and LC90 estimates with measured water chemistry variables from the trials. We found sodium (Na+) concentration to have the strongest correlation to changes in the LC50 and specific conductance to have the strongest correlation to changes in the LC90. Our results identify water chemistry as an important factor in considering efficacious CO2 concentrations for zebra mussel control. Additional research into the physiological responses of zebra mussels exposed to CO2 may be warranted to further explain mode of action and reported selectivity. Further study could likely develop a robust and relevant model to refine CO2 applications for a wider range of water chemistries. Environ Toxicol Chem 2024;43:1312-1319. Published 2024. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Carbon Dioxide , Dreissena , Animals , Dreissena/drug effects , Water Pollutants, Chemical/toxicity , Water/chemistry , Lethal Dose 50
15.
J Exp Zool A Ecol Integr Physiol ; 341(6): 658-671, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38594788

ABSTRACT

Florpyrauxifen-benzyl (FPB) is a new arylpicolinate systemic herbicide that has been used to control or suppress the majority of herbicide-resistant biotype weeds in rice. To our knowledge, the impact of FPB on the immune system remains undetected thus far. Hence, this work aimed to address the toxic effects of FPB and the possible related mechanisms on the spleen of exposed mice. Initially, an acute toxicological test was performed to ascertain the median lethal dose (LD50) of FPB for 24 h which was found to be 371.54 mg/kg b.wt. For mechanistic evaluation of FPB toxicity, three sublethal doses (1/20th, 1/10th, and 1/5th LD50) were orally administered to mice for 21 consecutive days. Changes in spleen relative weight, oxidative status, apoptotic and inflammatory markers, histopathological alterations were evaluated. Following the FPB exposure, significant (p < 0.05) decline in spleen index, apoptotic features, histolopathological changes were observed. Additionally, excessive oxidative stress in spleen tissues was monitored by downregulating antioxidant enzymes and upregulating the oxidant parameters. Furthermore, exposure to FPB resulted in notable activation of the NF-қB signaling pathway, accompanied by elevated levels of pro-inflammatory cytokines (namely, IL-1ß and TNF-α) as well as CD3 and CD19 levels have decreased significantly in spleen tissues. Collectively, FPB exposure exhibited apoptosis, oxidative stress, immunosuppression, and inflammatory response in a dose-dependent manner, leading to spleen tissue damage and immunotoxicity. Further studies on FPB is recommended to outstand its hazards on ecosystems.


Subject(s)
Herbicides , Spleen , Animals , Spleen/drug effects , Spleen/pathology , Herbicides/toxicity , Mice , Male , Oxidative Stress/drug effects , Apoptosis/drug effects , Lethal Dose 50 , Cytokines/metabolism
16.
Chemosphere ; 355: 141772, 2024 May.
Article in English | MEDLINE | ID: mdl-38548084

ABSTRACT

Carbamazepine (CBZ) is the most commonly used drug in epilepsy treatment, and its metabolites are commonly detected among persistent pharmaceuticals in the aquatic environment. This study aimed to investigate CBZ effects on early-life-stage zebrafish (Danio rerio) (from 2 to 168 hpf) by employing of an integrative approach linking endpoints from molecular to individual level: (i) development; (ii) locomotor activity; (iii) biochemical markers (lactate dehydrogenase, glutathione-S-transferase, acetylcholinesterase and catalase) and (iv) transcriptome analysis using microarray. A 168 h - LC50 of 73.4 mg L-1 and a 72 h - EC50 of 66.8 mg L-1 for hatching were calculated while developmental effects (oedemas and tail deformities) were observed at CBZ concentrations above 37.3 mg L-1. At the biochemical level, AChE activity proved to be the most sensitive parameter, as evidenced by its decrease across all concentrations tested (∼25% maximum reduction, LOEC (lowest observed effect concentration) < 0.6 µg L-1). Locomotor behaviour seemed to be depressed by CBZ although this effect was only evident at the highest concentration tested (50 mg L-1). Molecular analysis revealed a dose-dependent effect of CBZ on gene expression. Although only 25 genes were deregulated in organisms exposed to CBZ when compared to controls, both 0.6 and 2812 µg L-1 treatments impaired gene expression related to development (e.g. crygmxl1, org, klf2a, otos, stx16 and tob2) and the nervous system (e.g. Rtn3, Gdf10, Rtn3), while activated genes were associated with behavioural response (e.g. prlbr and taar). Altogether, our results indicate that environmentally relevant CBZ concentrations might affect biochemical and genetic traits of fish. Thus, the environmental risk of CBZ cannot be neglected, especially in a realistic scenario of constant input of domestic effluents into aquatic systems.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Zebrafish/metabolism , Acetylcholinesterase/metabolism , Carbamazepine/metabolism , Lethal Dose 50 , Water Pollutants, Chemical/metabolism , Embryo, Nonmammalian
17.
Chemosphere ; 354: 141652, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462182

ABSTRACT

The high diversity and distinctive characteristics of stingless bees pose challenges in utilizing toxicity test results for agrochemical registrations. Toxicity assessments were performed on 15 stingless bee species, along with the honey bee, using the insecticide dimethoate, following adapted OECD protocols. Median lethal doses over 24 h (24 h-LD50) were determined for exposure routes (acute oral or contact) and species. Species sensitivity distribution (SSD) curves were constructed and the 5% hazard doses (HD5) were estimated based on 24 h-LD50 values. The SSD curve was adjusted as the body weight and dimethoate response were correlated. Lighter bees (<10 mg) had lower 24 h-LD50 values. Contact exposure for adjusted HD5 suggested insufficient protection for Melipona mondury, whereas the oral exposure HD5 indicated no risks for the other 14 species. Comprehensive risk assessments are crucial for understanding the agrochemical impact on stingless bees, emphasizing the need for a broader species range in formulating conservation strategies.


Subject(s)
Dimethoate , Insecticides , Bees , Animals , Dimethoate/toxicity , Insecticides/toxicity , Lethal Dose 50 , Agrochemicals , Body Weight
18.
Chemosphere ; 356: 141736, 2024 May.
Article in English | MEDLINE | ID: mdl-38554873

ABSTRACT

Since ancient times, honey has been used for medical purposes and the treatment of various disorders. As a high-quality food product, the honey industry is prone to fraud and adulteration. Moreover, limited experimental studies have investigated the impact of adulterated honey consumption using zebrafish as the animal model. The aims of this study were: (1) to calculate the lethal concentration (LC50) of acid-adulterated Apis mellifera honey on embryos, (2) to investigate the effect of pure and acid-adulterated A. mellifera honey on hatching rate (%) and heart rate of zebrafish (embryos and larvae), (3) to elucidate toxicology of selected adulterated honey based on lethal dose (LD50) using adult zebrafish and (4) to screen the metabolites profile of adulterated honey from blood serum of adult zebrafish. The result indicated the LC50 of 31.10 ± 1.63 (mg/ml) for pure A. mellifera honey, while acetic acid demonstrates the lowest LC50 (4.98 ± 0.06 mg/ml) among acid adulterants with the highest mortality rate at 96 hpf. The treatment of zebrafish embryos with adulterated A. mellifera honey significantly (p ≤ 0.05) increased the hatching rate (%) and decreased the heartbeat rate. Acute, prolong-acute, and sub-acute toxicology tests on adult zebrafish were conducted at a concentration of 7% w/w of acid adulterants. Furthermore, the blood serum metabolite profile of adulterated-honey-treated zebrafish was screened by LC-MS/MS analysis and three endogenous metabolites have been revealed: (1) Xanthotoxol or 8-Hydroxypsoralen, (2) 16-Oxoandrostenediol, and (3) 3,5-Dicaffeoyl-4-succinoylquinic acid. These results prove that employed honey adulterants cause mortality that contributes to higher toxicity. Moreover, this study introduces the zebrafish toxicity test as a new promising standard technique for the potential toxicity assessment of acid-adulterated honey in this study and hazardous food adulterants for future studies.


Subject(s)
Honey , Zebrafish , Animals , Honey/analysis , Bees/drug effects , Lethal Dose 50 , Larva/drug effects , Food Contamination/analysis , Toxicity Tests/methods , Embryo, Nonmammalian/drug effects , Heart Rate/drug effects
19.
Arch Toxicol ; 98(6): 1809-1825, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493428

ABSTRACT

The idea of this study was the estimation of the theoretical acute toxicity (t-LD50, rat, oral dose) of organophosphorus-based chemical warfare agents from the G-series (n = 12) using different in silico methods. Initially identified in Germany, the G-type nerve agents include potent compounds such as tabun, sarin, and soman. Despite their historical significance, there is a noticeable gap in acute toxicity data for these agents. This study employs qualitative (STopTox and AdmetSAR) and quantitative (TEST; CATMoS; ProTox-II and QSAR Toolbox) in silico methods to predict LD50 values, offering an ethical alternative to animal testing. Additionally, we conducted quantitative extrapolation from animals, and the results of qualitative tests confirmed the acute toxicity potential of these substances and enabled the identification of toxicophoric groups. According to our estimations, the most lethal agents within this category were GV, soman (GD), sarin (GB), thiosarin (GBS), and chlorosarin (GC), with t-LD50 values (oral administration, extrapolated from rat to human) of 0.05 mg/kg bw, 0.08 mg/kg bw, 0.12 mg/kg bw, 0.15 mg/kg bw, and 0.17 mg/kg bw, respectively. On the contrary, compounds with a cycloalkane attached to the phospho-oxygen linkage, specifically methyl cyclosarin and cyclosarin, were found to be the least toxic, with values of 2.28 mg/kg bw and 3.03 mg/kg bw. The findings aim to fill the knowledge gap regarding the acute toxicity of these agents, highlighting the need for modern toxicological methods that align with ethical considerations, next-generation risk assessment (NGRA) and the 3Rs (replacement, reduction and refinement) principles.


Subject(s)
Chemical Warfare Agents , Computer Simulation , Organophosphorus Compounds , Quantitative Structure-Activity Relationship , Chemical Warfare Agents/toxicity , Animals , Lethal Dose 50 , Organophosphorus Compounds/toxicity , Rats , Administration, Oral , Sarin/toxicity , Toxicity Tests, Acute/methods , Soman/toxicity , Risk Assessment/methods
20.
Chem Biol Interact ; 393: 110951, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38484827

ABSTRACT

This article focusses on elucidating the toxicological profile of minoxidil, a widely used pharmacological agent for alopecia, through the application of in silico methods (Percepta ACD/Labs software). This research is driven by the need to understand key toxicological endpoints: acute toxicity, skin and eye irritation, genetic toxicity, cardiotoxicity, disruption of the endocrine system, and estimation of various health effects due to the lack of experimental data for this drug. These parameters are critically evaluated to meet the stringent requirements of the pharmaceutical industry's safety assessments. The results obtained for acute toxicity (LD50 for rats and mouse) indicate that minoxidil exhibits a species-dependent acute toxicity profile e.g. 51 mg/kg bw for intravenous administration in mice. The predicted health effects indicate a 93% risk to the gastrointestinal system, 54% for the kidneys, 52% for the liver, 42% for the blood and lungs, and 39% for the cardiovascular system. The prediction of genotoxicity suggests a moderate probability (48%) of inducing a positive Ames test result. Furthermore, moderate inhibition of the hERG channel indicates potential cardiac risks of Minoxidil. Based on the information obtained, we propose subjecting minoxidil to additional toxicological assessments. The successful adoption of these in silico methodologies aligns with the 3 R s principle (replacement, reduction, and refinement) in the field of modern toxicological studies of minoxidil, all without the use of laboratory animals for the novelty of our toxicity assessment.


Subject(s)
Cardiotoxicity , Minoxidil , Rats , Mice , Animals , Minoxidil/toxicity , Skin , Pharmaceutical Preparations , Lethal Dose 50
SELECTION OF CITATIONS
SEARCH DETAIL
...