Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 347: 123723, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38452838

ABSTRACT

Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disease in women of childbearing age, with an incidence of 5-10%. This study compared the traits of zebrafish with three diagnostic criteria for human PCOS, and the diagnostic criteria for zebrafish PCOS were proposed: decreased fecundity, elevated testosterone (T) or 11-ketotestosterone (11-KT) levels and increased cortical-alveolar oocyte (CO) ratio, enhancing the zebrafish PCOS model's accuracy. According to the mammalian PCOS classification, the type of zebrafsh PCOS is divided into four phenotypes (A, B, C and D), but the four phenotypes of zebrafish PCOS are not fully covered in the existing studies (A and D). In this study, we successfully induced phenotype B zebrafish PCOS model using the aromatase inhibitor, letrozole (LET). That is, wild-type female zebrafish were exposed to 1000 µg/L LET for 30 days. Reproductive tests showed decreased fecundity in female zebrafish exposed to LET (Control: 132.63, 146.00, 173.00; LET: 29.20, 90.00, 82.71). Hormone analysis showed that female zebrafish exposed to LET had significantly lower 17ß-estradiol/testosterone (E2/T) ratios, indicating elevated T levels. Meanwhile, levels of 11-KT in the ovaries exposed to LET were significantly up-regulated (Control: 0.0076 pg/µg; LET: 0.0138 pg/µg). Pathological sections of the ovary showed fewer CO in the LET-exposed group (Control: 16.27%; LET: 8.38%). In summary, the zebrafish PCOS model summarized and studied in this study provide a reliable and economical tool for the screening of therapeutic drugs, as well as for the etiology research and treatment strategies of PCOS.


Subject(s)
Polycystic Ovary Syndrome , Animals , Female , Humans , Letrozole/toxicity , Letrozole/therapeutic use , Polycystic Ovary Syndrome/chemically induced , Zebrafish , Hypothalamic-Pituitary-Gonadal Axis , Estradiol/toxicity , Testosterone , Mammals
2.
J Med Food ; 26(9): 683-691, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38084993

ABSTRACT

Polycystic ovarian syndrome (PCOS) is an endocrine disorder in women's reproductive age. Currently, the pathophysiology of PCOS is unclear, and the limited treatment options are unsatisfactory. Virgin coconut oil (VCO) is functional food oil associated with pharmacological effects in reproductive disorders. Therefore, we aimed to evaluate whether VCO could enhance clomiphene (CLO) therapy against PCOS in female rats. Rats were randomly divided: (1) Control, (2) PCOS model, (3) PCOS + CLO, (4) PCOS + VCO, and (5) PCOS + CLO + VCO. The PCOS was induced via daily letrozole (1 mg/kg, orally) administration for 21 days. After the PCOS induction, CLO, VCO, and CLO + VCO were administered from days 22 to 36. Serum levels of gonadotropin-releasing hormone (GnRH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone, estrogen, progesterone, and prolactin were estimated. Polymerase chain reaction gene expression for nuclear factor-erythroid-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), catalase (CAT), glutathione reductase (GSR), LH receptor (LHr), androgen receptor (AR), tumor necrosis factor-alpha (TNF-α), interleukin-1ß (IL-1ß), and caspase-3 were analyzed. The letrozole-induced PCOS caused considerable increases in GnRH, LH, prolactin, estrogen, and testosterone, whereas FSH decreased significantly compared to the control. The gene expression of Nrf2, HO-1, CAT, and GSR were markedly diminished, while IL-1ß, TNF-α, caspase-3, AR, and LHr prominently increased compared to control. Interestingly, the CLO and VCO separately exerted anti-inflammatory and endocrine balance effects. However, VCO-enhanced CLO effect in LH, prolactin and testosterone, Nrf2, HO-1, CAT, GSR, and AR. VCO may synergize with CLO to depress hyperandrogenism and oxidative inflammation in PCOS.


Subject(s)
Polycystic Ovary Syndrome , Animals , Female , Humans , Rats , Caspase 3 , Clomiphene/toxicity , Coconut Oil/toxicity , Estrogens , Follicle Stimulating Hormone , Gonadotropin-Releasing Hormone/pharmacology , Heme Oxygenase-1 , Letrozole/toxicity , Luteinizing Hormone , NF-E2-Related Factor 2/genetics , Polycystic Ovary Syndrome/drug therapy , Prolactin/adverse effects , Testosterone , Tumor Necrosis Factor-alpha
3.
Prostate ; 83(9): 823-830, 2023 06.
Article in English | MEDLINE | ID: mdl-36938936

ABSTRACT

BACKGROUND: Androgens are generally thought to cause prostate cancer, but the data from animal studies suggest that they must be aromatized to estrogen and act in concert with genotoxic estrogen metabolites. The objective of this study was to determine whether treatment with testosterone (T) combined with a nonestrogenic estrogen metabolite and a nongenotoxic estrogenic compound would all be necessary and sufficient for the induction of a high incidence of prostate cancer in the susceptible NBL rat strain. METHODS: NBL rats were treated with low-dose testosterone via slow-release Silastic implants and with the marginally estrogenic genotoxic catechol estrogen 4-hydroxyestradiol (4OH-E2) and the nongenotoxic estrogen 2-fluoroestradiol (2F-E2) and in one experiment the aromatase inhibitor letrozole via custom-made slow-release pellets. Animals were euthanized 52 weeks after implantation and their pituitaries and prostate complexes weighed and fixed in formalin. Hematoxylin and eosin (H&E)-stained step sections were prepared and examined microscopically for proliferative lesions. RESULTS: Animals treated with 2F-E2, with or without the other compounds, had enlarged pituitaries demonstrating its estrogenicity. Animals treated with T, with or without the other compounds, had enlarged prostates consistent with its androgenicity. Rats treated with T plus 2F-E2 and 4OH-E2 developed a high incidence of prostatic cancer (89%), while, surprisingly, rats treated with T plus only 2F-E2 also had a high incidence of prostate cancer (95%) contradicting our initial hypothesis. To test whether the formation of E2 from T by aromatase could lead to estrogen genotoxicity and prostate carcinogenesis we then rats treated with T and 2F-E2 also with letrozole and found that it reduced prostate cancer incidence by about 50%. CONCLUSIONS: These findings indicate that long-term treatment with a nongenotoxic estrogen (2F-E2) and T as well as uninhibited prostatic aromatase activity generating genotoxic E2 are all required for induction of a high incidence of prostatic adenocarcinomas in NBL rats. These and previous data indicate that androgen receptor-mediated action, estrogen receptor mediation, and estrogen genotoxicity are all required and sufficient for hormonal carcinogenesis in the NBL rat prostate. Interference with the estrogen genotoxicity is a potential approach to prostate cancer chemoprevention.


Subject(s)
Androgens , Prostatic Neoplasms , Male , Humans , Rats , Animals , Androgens/metabolism , Prostate/pathology , Estradiol/metabolism , Aromatase/genetics , Aromatase/metabolism , Letrozole/toxicity , Letrozole/metabolism , Estrogens/pharmacology , Prostatic Neoplasms/pathology , Testosterone/pharmacology , Testosterone/metabolism , Carcinogenesis/pathology , DNA Damage
4.
Drug Chem Toxicol ; 46(2): 357-368, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35176959

ABSTRACT

Letrozole (LTZ) is a non-steroidal aromatase inhibitor that is commonly used in breast cancer therapy. It has several side effects that might lead to the drug's cessation and data of LTZ's potential adverse effects on the hepatorenal microenvironment was conflicting. In addition, searching for therapeutic interventions that could modulate its adverse effects will be very beneficial. So, this study aims to determine the impact of LTZ on the hepatorenal microenvironment in cyclic female rats with a proposed regulatory role of L-Carnitine (LC) supplementation giving molecular insights into its possible mechanism of action. LTZ (1 mg/kg using 0.5% carboxy methyl cellulose as a vehicle for 21 consecutive days orally) to assess its impact on hepatorenal microenvironment. After treatment with LC (100 mg/kg orally) for 14 days, hepatorenal redox state (lipid peroxides (MDA), reduced glutathione (GSH) and catalase enzyme (CAT)), as well as relative gene expression of nuclear factor erythroid 2-related factor 2 (Nrf-2), cytochrome-c (Cyt c) and caspase-3 (CASP-3) were evaluated. Histopathological examination and immunohistochemical staining of CASP-3 in both liver and kidney were done. LTZ altered hepatic and renal functions. Relative gene expression of hepatorenal Nrf-2, Cyt c and CASP-3 as well as redox state revealed significant deterioration. Also, the liver and kidney tissues showed several micromorphological changes and intense reaction to CASP-3 upon immunohistochemical staining. It can be concluded that LC alleviates LTZ induced hepatorenal oxidative stress (OS) and mitochondrial-dependent apoptotic progression through modulation of Nrf-2, Cyt c, and CASP-3 signaling in female rats.


Subject(s)
Cytochromes c , Liver , Female , Animals , Rats , Letrozole/toxicity , Caspase 3 , Kidney , Carnitine/pharmacology , Oxidative Stress , Antioxidants
5.
J Tradit Chin Med ; 42(5): 741-748, 2022 10.
Article in English | MEDLINE | ID: mdl-36083481

ABSTRACT

OBJECTIVE: To assess the protective effect of dark chocolate (DC) on the letrozole-induced rat model of polycystic ovary syndrome (PCOS). METHODS: In this experimental study, 32 female Wistar rats, weighing (200 ± 20) g, were randomly categorized into 4 groups including control, letrozole (1 mg·kg·d), metformin (500 mg·kg·d) along with letrozole, and DC (500 mg·kg·d) along with letrozole for 28 d by oral gavage. Twenty-four hours after the last supplementation, direct blood sampling was taken from the heart to obtain blood serum for evaluation of sex hormones and gonadotropins, oxidative parameters, inflammatory cytokines, and ovarian tissue was examined for histology. RESULTS: The DC treatment significantly improved PCOS signs, as demonstrated by the significant restoration of ovarian morphology and physiological functions as compared with the letrozole group. DC treatment also decreased ovarian interleukin-1ß and tumor necrosis factor-α levels and improved total oxidative/antioxidative status as compared with the letrozole group. CONCLUSIONS: Treating the animals with DC could alleviate the PCOS symptoms and reduced the toxic effects of letrozole in the ovary. This effect may mediate through antioxidant and antiinflammatory properties.


Subject(s)
Chocolate , Letrozole , Polycystic Ovary Syndrome , Animals , Antioxidants , Disease Models, Animal , Female , Letrozole/toxicity , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/pathology , Rats , Rats, Wistar
6.
J Ethnopharmacol ; 291: 115161, 2022 Jun 12.
Article in English | MEDLINE | ID: mdl-35271948

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: In India, Kumaryasava, a popular Aloe barbadensis Mill. gel preparation has therapeutic value in treatment of female reproductive disorders like menstrual disturbances and menopausal problems. Despite their widespread use, only a limited number of studies have probed into the scientific evidence for their varied bioactivities. In this regard, studies have demonstrated that Aloe vera gel has the potential to modulate steroidogenic activity in letrozole induced polycystic ovary syndrome (PCOS) rat. However, isolation and identification of the bioactive molecule/s from Aloe vera gel and studying their molecular targets will underpin the treatment regime for PCOS. MATERIAL AND METHODS: The Partially Purified Non-Polar Phytocomponents (PPNPP)- LP1 and LP3 were isolated from the petroleum ether extract of Aloe vera gel by column chromatography. Based upon the GC-MS analysis, LP1 and LP3 comprised of n-Hexadecanoic acid and Campesterol acetate with an abundance of 97.07%, and 96.07% respectively. For evaluation of their bioactivities, eighty 3-4 months female Balb/c mice were classified as 10 groups with 8 animals in each group. Groups were control (C), PCOS (0.5 mg/kg/day Letrozole orally for 21days), PCOS treated orally for 60 days with Aloe vera gel (AVG) (10 mg/kg/day) (PCOS + AVG), PCOS treated orally for 60 days with petroleum ether extract (PE) of Aloe vera gel (25 µg/kg/day) (PCOS + PE), PCOS treated orally for 60 days with LP1 (0.5 µg/kg/day) (PCOS + LP1), PCOS treated orally for 60 days with commercially available pure compound-n-Hexadecanoic acid (HA) (0.5 µg/kg/day) (PCOS + HA), PCOS treated orally for 60 days with LP3 (0.01 µg/kg/day) (PCOS + LP3), PCOS treated orally for 60 days with commercially available pure compound- Campesterol acetate (CA) (0.01 µg/kg/day) (PCOS + CA), PCOS treated orally for 60 days with Metformin (100 mg/kg/day) (PCOS + Metformin) and PCOS treated orally for 60 days with DMSO (Vehicle) (PCOS + DMSO). Body weight, Oral glucose tolerance test, lipid profile, fasting glucose, insulin, estrus cycle, hormonal profile, gene expression of gonadotropin receptors (Fshr and Lhr), steroid receptors (Ar, Esr1, Esr2 and Pgr) and steroidogenic markers (Star, Hsd3b1, Cyp19a1 and Amh) were analysed in the ovaries. Polycystic ovarian morphology was assessed through histopathological changes of ovary. Toxicity markers- SGOT, SGPT and creatinine were also measured at the end of the study. RESULTS: Mice treated with letrozole demonstrated significant increase in body weight, glucose intolerance, fasting insulin levels, HOMA-IR, triglycerides levels as well as testosterone levels, and a significant decline in the progesterone levels as compared to the control animals. PCOS animals also exhibited arrested estrus cyclicity, disrupted ovarian histopathology with the presence of multiple peripheral cysts and abnormal gene expression of gonadotropin receptor, steroid receptor and steroid markers. Oral administration of AVG, PE extract of AVG, LP3 and metformin greatly alleviated these complications in PCOS animals. CONCLUSION: The above findings indicate the effectiveness of LP3, isolated from Aloe vera gel against letrozole induced PCOS in mice and may be used in the treatment of PCOS as an alternative to metformin.


Subject(s)
Aloe , Polycystic Ovary Syndrome , Animals , Disease Models, Animal , Female , Letrozole/toxicity , Mice , Plant Preparations , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/genetics , Rats , Rodentia
7.
Front Endocrinol (Lausanne) ; 12: 701590, 2021.
Article in English | MEDLINE | ID: mdl-34484117

ABSTRACT

The beneficial effects of metformin, especially its capacity to ameliorate insulin resistance (IR) in polycystic ovary syndrome (PCOS), explains why it is widely prescribed. However, its effect on the offspring of patients with PCOS remains uncertain. This study investigated the impact of metformin treatment on the first- and second-generation female offspring born to letrozole-induced PCOS-IR rats. Forty-five female Wistar rats were implanted with continuous-release letrozole pellets or placebo and treated with metformin or vehicle control. Rats exposed to letrozole showed PCOS-like reproductive, endocrine, and metabolic phenotypes in contrast to the controls. Metformin significantly decreased the risk of body weight gain and increased INSR expression in F1 female offspring in PCOS-IR rats, contributing to the improvement in obesity, hyperinsulinemia, and IR. Decreased FSHR expression and increased LHCGR expression were observed in F1 female rats of the PCOS-IR and PCOS-IR+Metformin groups, suggesting that FSHR and LHCGR dysfunction might promote the development of PCOS. Nevertheless, we found no significant differences in INSR, FSHR, and LHCGR expression or other PCOS phenotypes in F2 female offspring of PCOS-IR rats. These findings indicated widespread reproductive, endocrine, and metabolic changes in the PCOS-IR rat model, but the PCOS phenotypes could not be stably inherited by the next generations. Metformin might have contributed to the improvement in obesity, hyperinsulinemia, and IR in F1 female offspring. The results of this study could be used as a theoretical basis in support of using metformin in the treatment of PCOS-IR patients.


Subject(s)
Hyperinsulinism/prevention & control , Insulin Resistance , Letrozole/toxicity , Metabolic Syndrome/prevention & control , Metformin/pharmacology , Obesity/prevention & control , Polycystic Ovary Syndrome/drug therapy , Animals , Animals, Newborn , Antineoplastic Agents/toxicity , Female , Hypoglycemic Agents/pharmacology , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/pathology , Rats , Rats, Wistar
8.
Eur J Histochem ; 65(3)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34474552

ABSTRACT

The epididymis is an organ that plays a key role in sperm maturation. The aim of this study was to examine the association between the chronic treatment of mature male rats with letrozole and morphological evaluation and morphometric values of epididymis as well as changes in the number of apoptotic cells in epididymal epithelium. Adult rats were treated with letrozole for 6 months and the epididymis weight, morphology, morphometric values and the number of apoptotic cells in  the epithelium were examined. Long-term aromatase inhibition resulted in presence of intraepithelial clear vacuoles, hyperplasia of clear cells and a hyperplastic alteration in the epithelium known as a cribriform change. Moreover, changes in diameters of the epididymal duct and the epididymal lumen and changes in the epididymal epithelium height were observed. The number of apoptotic epithelial cells was increased in letrozole-treated group. It can be indicated that chronic treatment with letrozole can affect morphology, morphometric values and apoptosis in the epididymis of adult male rats. Observed changes are similar to that observed in the aging processes and may also be important for patients treated with aromatase inhibitors.


Subject(s)
Apoptosis/drug effects , Aromatase Inhibitors/toxicity , Epididymis/drug effects , Epithelium/drug effects , Letrozole/toxicity , Animals , Epididymis/metabolism , Epithelium/metabolism , Estradiol/metabolism , Male , Rats, Wistar
9.
J Steroid Biochem Mol Biol ; 213: 105954, 2021 10.
Article in English | MEDLINE | ID: mdl-34298098

ABSTRACT

BACKGROUND: The present study was conducted to investigate the therapeutic effects of a potent polyphenol, fisetin, on the letrozole-induced rat model of polycystic ovary syndrome (PCOS). METHODOLOGY: Twenty-four female Wistar rats (42 days old) were divided into four groups: control group (received carboxy methylcellulose (CMC 0.5 %)), PCOS group treated with letrozole (1 mg/kg), fisetin group received same dose of letrozole + fisetin (10 mg/kg), and metformin group received same dose of letrozole + metformin (300 mg/kg). At the end of the experiment, biochemical (glucose, lipid profile) and hormonal (insulin, testosterone, estradiol, and progesterone) parameters were analyzed. Histological examinations of ovaries were also conducted by hematoxylin and eosin (H&E) staining. Real-time polymerase chain reaction (PCR) and western blotting were carried out for cytochrome P450 17A1 (CYP17A1), sirtuin-1 (SIRT1), and 5' AMP-activated protein kinase (AMPK) gene expression in the ovaries. Furthermore, enzymatic activities of antioxidants including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) in the ovaries were analyzed by colorimetric method. RESULTS: Letrozole administration resulted in a remarkable abnormality in biochemical and hormonal parameters. Fisetin normalized levels of glucose, lipid profile, homeostatic model assessment for insulin resistance (HOMA-IR), testosterone, estradiol, and progesterone. Moreover, fisetin increased expression levels of SIRT1 and AMPK, and decreased expression level of CYP17A1 in the ovaries. Additionally, fisetin showed protective effect by enhancing antioxidant activities of CAT, SOD, and GPx depleted secondary to induction of PCOS. Fisetin effects were comparable to metformin, as the standard drug used for treatment of PCOS. CONCLUSION: Our results showed that, fisetin treatment caused significant alleviating effects by restoring PCOS-induced alterations in the key genes involved in energy homeostasis and antioxidant enzymes, suggesting that it may have a key role in combating with PCOS.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Flavonols/pharmacology , Letrozole/antagonists & inhibitors , Ovary/drug effects , Polycystic Ovary Syndrome/drug therapy , AMP-Activated Protein Kinases/blood , AMP-Activated Protein Kinases/genetics , Animals , Blood Glucose/metabolism , Carboxymethylcellulose Sodium/administration & dosage , Catalase/blood , Catalase/genetics , Disease Models, Animal , Estradiol/blood , Female , Gene Expression , Glutathione Peroxidase/blood , Glutathione Peroxidase/genetics , Humans , Insulin/blood , Letrozole/toxicity , Metformin/pharmacology , Ovary/metabolism , Ovary/pathology , Polycystic Ovary Syndrome/blood , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/pathology , Progesterone/blood , Rats , Rats, Wistar , Sirtuin 1/blood , Sirtuin 1/genetics , Steroid 17-alpha-Hydroxylase/antagonists & inhibitors , Steroid 17-alpha-Hydroxylase/blood , Steroid 17-alpha-Hydroxylase/genetics , Superoxide Dismutase/blood , Superoxide Dismutase/genetics , Testosterone/blood
10.
Toxicol Appl Pharmacol ; 425: 115600, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34081940

ABSTRACT

Among postmenopausal women with estrogen receptor-positive breast cancer, more than 80% receive hormone therapy including aromatase inhibitors (AIs). Half of them develop chronic arthralgia - characterized by symmetric articular pain, carpal tunnel syndrome, morning stiffness, myalgia and a decrease in grip strength - which is associated with treatment discontinuation. Only a few animal studies have linked AI treatment to nociception, and none to arthralgia. Thus, we developed a new chronic AI-induced nociceptive disorder model mimicking clinical symptoms induced by AIs, using subcutaneous letrozole pellets in ovariectomized (OVX) rats. Following plasma letrozole dosage at the end of the experiment (day 73), only rats with at least 90 ng/ml of letrozole were considered significantly exposed to letrozole (OVX + high LTZ group), whereas treated animals with less than 90 ng/ml were pooled in the OVX + low LTZ group. Chronic nociceptive disorder set in rapidly and was maintained for more than 70 days in the OVX + high LTZ group. Furthermore, OVX + high LTZ rats saw no alteration in locomotion, myalgia or experimental anxiety during this period. Bone parameters of the femora were significantly altered in all OVX rats compared to Sham+vehicle pellet. A mechanistic analysis focused on TRPA1, receptor suspected to mediate AI-evoked pain, and showed no modification in its expression in the DRG. This new long-lasting chronic rat model, efficiently reproduces the symptoms of AI-induced nociceptive disorder affecting patients' daily activities and quality-of-life. It should help to study the pathophysiology of this disorder and to promote the development of new therapeutic strategies.


Subject(s)
Aromatase Inhibitors/toxicity , Disease Models, Animal , Letrozole/toxicity , Nociception/drug effects , Animals , Body Weight/drug effects , Chronic Disease , Female , Ganglia, Spinal , Gene Expression Regulation/drug effects , Motor Activity/drug effects , Ovariectomy , Rats , Rats, Sprague-Dawley
11.
J Ethnopharmacol ; 278: 114318, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34111539

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Chickpea was used in both greek and indian traditional medicine for hormonal related conditions as menstrual induction, acceleration of parturation, treatment of retained placenta and stimulation of lactation. Chickpea (Cicer arietinum) sprout isoflavone isolates exhibited reasonable estrogenic activities. Isoflavones, a subtype of phytoestrogens, are plant derivatives with moderate estrogenic activity that tend to have protective effects on hormonal and metabolic abnormalities of women with polycystic ovary syndrome (PCOS). AIM OF THE STUDY: In this study, we investigated the effect of UPLC/ESI-MS characterized Cicer arietinum L. seeds ethanol extract (CSE) on ovarian hormones, oxidative response and ovarian histological changes on induced PCOS rat model. MATERIALS AND METHODS: Thirty-five rats were divided into five groups including negative control, PCOS, and treatment groups. PCOS was induced using letrozole (1 mg/kg) daily orally for 21 days. Each treatment group was treated with one of the following for 28 days after induction of PCOS: clomiphene citrate (1 mg/kg), and CSE at 250 and 500 mg/kg. Ovaries and uteri were excised, weighed and their sections were used for quantitative real-time reverse transcriptase polymerase chain reaction, antioxidant assays and histomorphometric study of the ovaries. The antioxidant assays, histopathological examination, hormonal and metabolic profiles, and Cyp11a1(steroidogenic enzyme) mRNA expression were measured. RESULTS: In all treatment groups, ovarian weight was significantly decreased despite having no significant effect on uterine weight. Histomorphometric study in the treatment groups revealed a significant decrease in the number and diameter of cystic follicles, a significant increase in granulosa cell thickness while, thickness of theca cells was significantly decreased when compared to PCOS. Hormone levels, metabolic profile and antioxidant status were improved in the treatment groups. Moreover, Cyp11a1 mRNA expression was significantly downregulated in the treatment groups compared to PCOS. CONCLUSIONS: In the current study, CSE enhanced the reproductive and metabolic disorders which were associated with PCOS induction. For the first time, we have highlighted the effect of CSE in treating PCOS and its associated manifestations.


Subject(s)
Cicer/chemistry , Letrozole/toxicity , Phytotherapy , Plant Extracts/therapeutic use , Polycystic Ovary Syndrome/drug therapy , Animals , Aromatase Inhibitors/toxicity , Cholesterol Side-Chain Cleavage Enzyme/genetics , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Clomiphene/therapeutic use , Dose-Response Relationship, Drug , Estrogen Antagonists/therapeutic use , Female , Gene Expression Regulation, Enzymologic/drug effects , Organ Size , Ovary/pathology , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Polycystic Ovary Syndrome/chemically induced , Random Allocation , Rats
12.
Ecotoxicol Environ Saf ; 217: 112255, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33915448

ABSTRACT

The aromatase inhibitor letrozole can be found in rivers, effluents, and even drinking water. Studies have demonstrated that letrozole affects various metabolic pathways and may cause reproductive toxicity, especially in fish exposed during development. However, studies on the effect of a low concentration of letrozole at the whole-gonad transcriptomic level in the early stage of fish sexual development have not been investigated. The aim of our study was to explore the potential effects of a low concentration of letrozole on the gonad transcriptome of Nile tilapia at an early stage of sexual development. In this study, 9 dpf (days postfertilization) Nile tilapia were exposed to trace letrozole for 12 days. Letrozole exposure from 9 dpf to 21 dpf persistently altered phenotypic sex development and induced the male-biased sex ratio. The transcriptome results showed that 1173 differentially expressed genes (DEGs) were present in the female control vs 1.5 µg/L letrozole-treated female comparison group and that 1576 DEGs were present in the 1.5 µg/L letrozole-treated female vs male control comparison group. Differentially expressed gene enrichment analysis revealed several crucial pathways, including the drug metabolism-cytochrome P450 pathway, the ErbB-PI3K/Akt/mTOR pathway, and the calcium signalling pathway. Further analysis of these identified DEGs indicated that some key genes correlated with metabolism and epigenetic regulation were significantly affected by letrozole, such as UDP-glucuronosyltransferase (Ugt), glutathione S-transferase omega-1 (Gsto1), lysine-specific demethylase 6bb (Kdm6bb, original name is Kdm6a), jumonji and AT-rich interaction domain containing 2 (Jarid2b, original name is Jarid2), growth arrest and DNA damage inducible gamma (Gadd45g), and chromobox protein 7 (Cbx7). The qRT-PCR validation results for twelve DEGs showed that the Pearson's correlation of the log10fold change values between the qPCR and RNA-Seq results was 0.90, indicating the accuracy and reliability of the RNA-Seq results. Our study is the first to report the effect of letrozole on the transcriptome of gonads from fish during early-stage sexual development. These findings will be useful for understanding the toxic effects and molecular mechanisms of letrozole exposure at the early stage of gonad development on the sexual development of aquatic organisms.


Subject(s)
Antineoplastic Agents/toxicity , Cichlids/physiology , Letrozole/toxicity , Water Pollutants, Chemical/toxicity , Animals , Cichlids/genetics , Cichlids/metabolism , Computational Biology , Epigenesis, Genetic , Female , Gonads/drug effects , Male , Phosphatidylinositol 3-Kinases/metabolism , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Sex Differentiation/drug effects , Sex Ratio , Transcriptome
13.
Life Sci ; 276: 119409, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33781825

ABSTRACT

Polycystic ovary syndrome is a common reproductive disorder in the female of reproductive age, which is characterized by hyperandrogenism, insulin resistance, cystic ovary and infertility. The level of pro-inflammatory adipokine, visfatin is elevated in PCOS conditions in human and animal. In this study, letrozole induced hyperandrogenised PCOS mice model have been used to unravel the effects of visfatin inhibition. The results showed that letrozole induced hyperandrogenisation significantly (p < 0.05) elevates ovarian visfatin concentration from 66.03 ± 1.77 to 112.08 ± 3.7 ng/ml, and visfatin expression to 2.5 fold (p < 0.05) compared to control. Visfatin inhibition in PCOS by FK866 has significantly (p < 0.05) suppressed the secretion of androgens, androstenedione (from 0.329 ± 0.07 to 0.097 ± 0.01 ng/ml) and testosterone levels (from 0.045 ± 0.003 to 0.014 ± 0.0009 ng/ml). Ovarian histology showed that visfatin inhibition suppressed cyst formation and promotes corpus luteum formation. Visfatin inhibition has suppressed apoptosis and increases the expression of BCL2 along with increase in the proliferation (GCNA expression elevated). Visfatin inhibition has increased ovarian glucose content (from 167.05 ± 8.5 to 210 ± 7 mg/dl), along with increase in ovarian GLUT8 expression. In vitro study has also supported the in vivo findings where FK866 treatment significantly (p < 0.05) suppressed testosterone (control-3.84 ± 0.44 ng/ml, 1 nM FK866-2.02 ± 0.048 ng/ml, 10 nM FK866-1.74 ± 0.20 ng/ml) and androstenedione (control-4.68 ± 0.91 ng/ml, 1 nM FK866-3.38 ± 0.27 ng/ml, 10 nM FK866-4.55 ± 0.83 ng/ml) production from PCOS ovary. In conclusion, this is first report, which showed that visfatin inhibition by FK866 in hyperandrogenised mice ameliorates pathogenesis of PCOS. Thus, it may be suggested that visfatin inhibition could have a therapeutic potential in PCOS management along with other intervention.


Subject(s)
Acrylamides/pharmacology , Cytokines/antagonists & inhibitors , Disease Models, Animal , Hyperandrogenism/drug therapy , Letrozole/toxicity , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Piperidines/pharmacology , Polycystic Ovary Syndrome/drug therapy , Androgens/metabolism , Animals , Blood Glucose/metabolism , Female , Hyperandrogenism/chemically induced , Hyperandrogenism/metabolism , Hyperandrogenism/pathology , Insulin Resistance , Mice , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/pathology
14.
J Ethnopharmacol ; 273: 113947, 2021 Jun 12.
Article in English | MEDLINE | ID: mdl-33617969

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Eucommia ulmoides Oliv. leaves are the dry leaves of Eucommia ulmoides Oliv. Modern studies have shown that Eucommia ulmoides Oliv. leaves and its extracts have many pharmacological effects, such as regulating hypothalamus pituitary ovary (HPO) axis function, estrogen like effects, correcting insulin resistance (IR), regulating lipids, and reducing weight, which are consistent with the clinical manifestations in polycystic ovary syndrome (PCOS) patients. PCOS patients often have HPO axis disorder, low estrogen, high androgen, high IR complication rate, and obesity. Previous preclinical studies have shown that total flavonoids from Eucommia ulmoides Oliv. leaves (TFEL) can improve the imbalance in sex hormone secretion in perimenopausal animal models by regulating the function of the HPO axis. Thus, it is important to understand if flavonoids are the active parts of Eucommia ulmoides Oliv. leaves that interfere with polycystic ovary syndrome with insulin resistance (PCOS-IR), and determine the regulatory role they play in sex hormones and IR? AIM OF THE STUDY: Investigate the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway in the ovary and kisspeptin/insulin like growth factor/leptin receptor1/androgen receptor (Kiss1/IGF-1/LEPR/AR) in the HPO axis to determine the mechanism of TFEL intervention in a rat model of PCOS-IR model rats. MATERIALS AND METHODS: A rat model of PCOS-IR was established using a high-fat diet (49 d) combined with letrozole (1 mg/kg·d, for 28 d). Then, metformin (300 mg/kg·d) and TFEL (220 mg/kg·d, 110 mg/kg·d, and 55 mg/kg·d) were administered continuously for 21 days. At the end of the experiment, samples were taken and the related indexes were measured. RESULTS: TFEL reduced the body weight, Lee's index, ovarian index, ovarian area and ovarian volume, increased serum E2, SHBG levels and ISI, decreased serum levels of T, LEP, INS, and FBG (whole blood), and reduced the HOMA-IR in rats with PCOS-IR. TFEL downregulate Kiss1, IGF-1, and AR in the arcuate nucleus of hypothalamus, and upregulate Kiss1, downregulate IGF-1 and AR in the pituitary gland, and upregulate Kiss1, downregulate IGF-1, LEPR, and AR in the ovary of rats with PCOS-IR. TFEL could downregulate p-IRS-1Ser307, upregulate IRS-1, p-IRS-1Tyr895, PI3Kp85α, p-PI3Kp85α, AKT, p-AKT, and GLUT4 in the ovary, and ameliorated histopathological changes in the ovary and pancreas of rats with PCOS-IR. CONCLUSION: TFEL can inhibit ovarian hyperplasia, regulate disorders of glucose and lipid metabolism and improve the secretion of sex hormones, by regulating the expression of PI3K/AKT signaling pathway-related proteins in the ovary and Kiss1/IGF-1/LEPR/AR in the HPO axis.


Subject(s)
Diet, High-Fat , Eucommiaceae/chemistry , Flavonoids/pharmacology , Insulin Resistance , Plant Extracts/pharmacology , Polycystic Ovary Syndrome/drug therapy , Animals , Body Weight/drug effects , Diet, High-Fat/adverse effects , Disease Models, Animal , Female , Flavonoids/chemistry , Flavonoids/therapeutic use , Gonadal Steroid Hormones/blood , Hypothalamus/drug effects , Insulin-Like Growth Factor I/metabolism , Kisspeptins/metabolism , Letrozole/toxicity , Metformin/pharmacology , Metformin/therapeutic use , Ovary/drug effects , Pancreas/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Pituitary Gland/drug effects , Plant Extracts/therapeutic use , Plant Leaves/chemistry , Polycystic Ovary Syndrome/blood , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/pathology , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Receptors, Androgen/metabolism , Receptors, Leptin/metabolism
15.
J Biochem Mol Toxicol ; 35(5): e22725, 2021 May.
Article in English | MEDLINE | ID: mdl-33491863

ABSTRACT

This study investigated the potential effect of adrenomedullin (ADM) on metabolic and endocrinal dysfunctions in experimentally induced polycystic ovary. Twenty-four female Wistar rats were allocated into three groups: control; polycystic ovary syndrome (PCOS) in which PCOS was induced by letrozole, orally in a dose of 1 mg/kg once daily for 3 weeks; and ADM group in which ADM was injected intraperitonally in a dose of 3.5/µg/twice daily for 4 weeks. At the end of the experimental period, the serum sex hormone profile, ADM, fasting glucose, insulin, homeostatic model assessment of insulin resistance, and lipid parameters were determined. Ovarian tissue homogenates were used to determine malondialdehyde, total antioxidant capacity, glutathione peroxidase activity, tumor necrosis factor α, interleukin 6, B cell lymphoma-2 (Bcl-2), and Bcl-2 associated X protein. The profibrotic growth factors, including transforming growth factor ß1 and connective tissue growth factor, were determined; and also, the relative gene expression of endoplasmic reticulum (ER) stress, including (Xbox-binding protein-1 [XBP-1], activating transcription factor 6 [ATF6], and homologous protein [CHOP]), serine/threonine kinase 1 (Akt1), phosphatidylinositol 3-kinase (PI3K), and peroxisome proliferator-activated receptor γ (PPAR-γ) were determined. Finally, histopathological analysis of the ovaries was evaluated. PCOS group exhibited increased ER stress, suppressing of PI3K/Akt1 and PPAR-γ pathways, imbalance of sex hormonal profile, hyperglycemia, insulin resistance, dyslipidemia, increased profibrotic factors, and abnormal ovarian histopathological picture, while ADM treatment alleviated these disturbances occurring in the PCOS model. We concluded that ADM mitigated PCOS via attenuating the ER stress, in addition to activation of PI3K/Akt1 and PPAR-γ pathways, its antioxidant, anti-inflammatory, antiapoptotic, and antifibrotic properties.


Subject(s)
Adrenomedullin/pharmacology , Endoplasmic Reticulum Stress/drug effects , Gene Expression Regulation/drug effects , Polycystic Ovary Syndrome/metabolism , Signal Transduction/drug effects , Animals , Disease Models, Animal , Female , Letrozole/toxicity , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/drug therapy , Rats , Rats, Wistar
16.
J Ethnopharmacol ; 268: 113587, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33212180

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: FuFang ZhenZhu TiaoZhi (FTZ) is a hospitalized traditional Chinese medicine herbal formula with documented metabolic benefits. Polycystic ovary syndrome (PCOS) characterized by ovarian dysfunction and insulin resistance represents one of the most common endocrine disorders in close association with metabolic dysfunction in premenopausal women. AIM OF THE STUDY: The present study aimed to investigate the preventive effect of FTZ on letrozole-induced experimental PCOS and its associated insulin resistance in mice. MATERIALS AND METHODS: Prepubertal female mice in the experimental groups (letrozole and FTZ) received continuous infusion of letrozole (50 µg/day) for 35 days. FTZ was administrated to mice by oral gavage daily at dosage of 2.892 g/kg body weight for 5 weeks. All groups of mice were fed a high-fat diet (HFD). Ovary and adipose tissue were collected from all mice after 5 weeks and adiponectin, testosterone, estradiol, and luteinizing hormone level determined. RESULTS: Letrozole-induced morphological changes in the ovary, including a decreased number of corpora lutea and antral follicles, and increased cystic follicles, were significantly attenuated in FTZ-treated mice. Additionally, FTZ treatment notably reversed PCOS-related disruption of estrous status. PCOS-related insulin resistance was markedly alleviated. Mechanistically, FTZ treatment notably enhanced circulating level and transcriptional abundance of adiponectin in adipose tissue, thereby orchestrating fat-ovary crosstalk. CONCLUSIONS: Our data collectively demonstrate that FTZ exerted preventive benefits in an experimental model of PCOS, at least partially by potentiating the production of adiponectin from adipose tissues. This suggests that FTZ is a promising treatment for PCOS.


Subject(s)
Adiponectin/metabolism , Diet, High-Fat/adverse effects , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional/methods , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/prevention & control , Animals , Antineoplastic Agents/toxicity , Female , Letrozole/toxicity , Mice , Mice, Inbred C57BL , Polycystic Ovary Syndrome/chemically induced
17.
Gynecol Endocrinol ; 37(4): 337-341, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32851887

ABSTRACT

AIMS: The effective treatment of polycystic ovary syndrome (PCOS)-related hormonal disorders necessitates the development of novel treatment strategies. Resveratrol is found in certain food products, and is known to exhibit phytoestrogen properties. The present study was to assess whether resveratrol exhibits beneficial phytoestrogenic effects and associated hormonal modulation in a rat model of PCOS. MATERIALS AND METHODS: This model was established by administering oral letrozole to female Sprague-Dawley (SD) rats prior to randomizing them into control, model and resveratrol treatment groups (40, 80, or 160 mg/kg). Animals were treated for 30 days, after which time ovarian tissues were collected and evaluated via hematoxylin and eosin staining. In addition, serum levels of estradiol and adiponectin were assessed via ELISA, and ovarian expression of nesfatin-1 and aromatase was assessed through RT-PCR and western blotting. RESULTS: We found that resveratrol administration was associated with increased levels of plasma adiponectin and estradiol levels and restoration of normal ovarian morphology in PCOS model animals. In addition, this treatment was linked to the increased ovarian expression of nesfatin-1 and aromatase at the RNA and protein levels. CONCLUSIONS: Together things findings suggest that resveratrol may represent an effective tool for treating PCOS owing to its phytoestrogenic properties.


Subject(s)
Ovary/drug effects , Phytoestrogens/pharmacology , Polycystic Ovary Syndrome/pathology , Resveratrol/pharmacology , Adiponectin/metabolism , Animals , Aromatase/drug effects , Aromatase/genetics , Aromatase Inhibitors/toxicity , Disease Models, Animal , Estradiol/metabolism , Female , Letrozole/toxicity , Nucleobindins/drug effects , Nucleobindins/genetics , Ovary/metabolism , Ovary/pathology , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism , Random Allocation , Rats
18.
Article in English | MEDLINE | ID: mdl-32670195

ABSTRACT

Polycystic ovary syndrome (PCOS) represents a common endocrine-metabolic disorder disease with chronic low-grade inflammation and alteration of intestinal flora. Serving as functional food, flaxseed oil (FO), which is rich in plant-derived α-linolenic acid of omega-3 polyunsaturated fatty acids, has been proven to benefit for chronic metabolic diseases. However, the exact role of dietary FO on PCOS remains largely unclear. In the present study, 6-week-old female Sprague-Dawley rats were randomly divided into four groups (eight rats/group), including (a) pair-fed (PF) control (CON) group (PF/CON), (b) FO-fed CON group (FO/CON), (c) PF with letrozole-induced PCOS model (MOD) group (PF/MOD), and (d) FO-fed MOD group (FO/MOD). All rats were fed a standard diet. After 3 weeks of modeling and subsequent 8 weeks of treatment, the rats in diverse groups were euthanized and associated indications were investigated. The results showed that dietary FO ameliorated the disorder of estrous cycle and ovarian morphology. In parallel, dietary FO improved the sex steroid hormone disturbance (luteinizing hormone/follicle-stimulating hormone, estrogen, testosterone, and progesterone), body weights, dyslipidemia, and insulin resistance. Moreover, FO treatment improved plasma and ovary inflammatory interleukin (IL)-1ß, IL-6, IL-10, and IL-17A, tumor necrosis factor-α, and monocyte chemoattractant protein-1. Additionally, FO intervention significantly modulated the composition of gut microbiota and vaginal microbiota by increasing the abundances of Allobaculum, Lactobacillus, Butyrivibrio, Desulfovibrio, Bifidobacterium, Faecalibacterium, Parabacteroides as well as decreasing the abundances of Actinobacteria, Bacteroides, Proteobacteria, and Streptococcus, the ratio of Firmicutes/Bacteroidetes. A decrease in plasma lipopolysaccharide level and an increase in short-chain fatty acids, including acetic acid, propionic acid, butyric acid and pentanoic acid, were determined after dietary FO supplementation. Correlation analysis revealed close relationships among sex steroid hormones, inflammation, and gut/vaginal microbiota. Collectively, this study demonstrated that dietary FO ameliorated PCOS through the sex steroid hormones-microbiota-inflammation axis in rats, which may contribute to the understanding of pathogenesis and potentially serve as an inexpensive intervention in the control of PCOS.


Subject(s)
Flax/chemistry , Gastrointestinal Microbiome , Gonadal Steroid Hormones/metabolism , Inflammation/prevention & control , Linseed Oil/pharmacology , Polycystic Ovary Syndrome/diet therapy , alpha-Linolenic Acid/pharmacology , Animals , Female , Letrozole/toxicity , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/pathology , Rats , Rats, Sprague-Dawley
19.
Naunyn Schmiedebergs Arch Pharmacol ; 393(6): 1055-1066, 2020 06.
Article in English | MEDLINE | ID: mdl-31925474

ABSTRACT

Polycystic ovarian syndrome (PCOS) is a complex endocrine disease among women of reproductive age and is one of the main causes of infertility. Non-alcoholic fatty liver disease (NAFLD), the most prominent chronic liver disease in adults, is characterized by excess hepatic triglyceride (TG) accumulation. PCOS women have increased risk of NAFLD and uric acid has been documented to have a positive correlation with subclinical tissue damage and might be the link in the cystic. Spironolactone (SPL) is a mineralocorticoid receptor (MR) blocker that has been in wide clinical use for some decades. In this research, we investigated the effects of SPL on ovarian and hepatic tissue damage in experimental PCOS rats induced by letrozole (LET). A total of eighteen adult female Wistar rats were used for this study and the animals divided into 3 groups are treated with vehicle, LET (1 mg/kg), and LET+SPL (SPL; 0.25 mg/kg), p.o. once daily respectively for 21 uninterrupted days. Results showed that LET treatment induced features of PCOS characterized by increased plasma testosterone (T) and luteinizing hormone (LH) together with increased body weight. Abnormal ovarian and hepatic histomorphological changes were also observed with elevated uric acid (UA) and TG accumulation in both tissues respectively. Treatment with SPL however attenuated the elevated testosterone in the LET-induced PCOS model accompanied with a reversal in the observed ovarian and hepatic UA, TG accumulation, and altered histomorphological changes. Taken together, spironolactone reversed the PCOS-induced ovarian and hepatic tissue damage by suppressing tissue UA and TG accumulation.


Subject(s)
Letrozole/toxicity , Liver/drug effects , Ovary/drug effects , Polycystic Ovary Syndrome/metabolism , Spironolactone/pharmacology , Triglycerides/metabolism , Uric Acid/metabolism , Animals , Female , Liver/metabolism , Liver/pathology , Ovary/metabolism , Ovary/pathology , Polycystic Ovary Syndrome/chemically induced , Rats , Rats, Wistar
20.
J Cell Physiol ; 234(6): 8426-8435, 2019 06.
Article in English | MEDLINE | ID: mdl-30443939

ABSTRACT

Polycystic ovary syndrome (PCOS), one of the important endocrine disorders affecting females in the reproductive age, is caused mainly by an abnormal oxidation status that subsequently causes inflammatory conditions. Thus, this study aims to examine the possible individual prophylactic effects of gasotransmitters, hemin, or L-arginine in letrozole-induced PCOS. Fifty adult female albino rats were used and separated into a control group, which received the vehicle; a letrozole-induced PCOS group (L), which received letrozole orally at a dose level of 1 mg/kg for 21 days; a letrozole+hemin (L+H) group, which received letrozole plus hemin at a dose level of 25 mg/kg injected IP twice per week for 21 days; and a letrozole+L-arginine (L+A) group, which received letrozole plus L-arginine at a dose level of 200 mg/kg orally for 21 days. During PCO induction, the body weight and Lee index were measured. Serum glucose, insulin, lipid profile, gonadotrophic hormones, testosterone, estrogen, and tumor necrosis factor alpha were assayed, while ovarian tissues were analyzed to measure the oxidative state and histopathological changes. Our results proved that either hemin or L-arginine administration could improve the oxidative state, the inflammatory reaction, the hormonal imbalance, and the metabolic disturbances in PCO rats, which was confirmed by a histopathological examination of the rats' ovaries. In conclusion, either hemin or L-arginine had protective effects against PCOS with better pathophysiological changes with hemin.


Subject(s)
Arginine/pharmacology , Hemin/pharmacology , Polycystic Ovary Syndrome/drug therapy , Animals , Aromatase Inhibitors/pharmacology , Body Weight/drug effects , Female , Gasotransmitters/pharmacology , Humans , Letrozole/toxicity , Oxidative Stress/drug effects , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/physiopathology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...