Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51.932
Filter
1.
Mol Cancer ; 23(1): 116, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822351

ABSTRACT

BACKGROUND: Elevated evidence suggests that the SENPs family plays an important role in tumor progression. However, the role of SENPs in AML remains unclear. METHODS: We evaluated the expression pattern of SENP1 based on RNA sequencing data obtained from OHSU, TCGA, TARGET, and MILE datasets. Clinical samples were used to verify the expression of SENP1 in the AML cells. Lentiviral vectors shRNA and sgRNA were used to intervene in SENP1 expression in AML cells, and the effects of SENP1 on AML proliferation and anti-apoptosis were detected using in vitro and in vivo models. Chip-qPCR, MERIP-qPCR, CO-IP, RNA pulldown, and dual-luciferase reporter gene assays were used to explore the regulatory mechanisms of SNEP1 in AML. RESULTS: SENP1 was significantly upregulated in high-risk AML patients and closely related to poor prognosis. The AKT/mTOR signaling pathway is a key downstream pathway that mediates SENP1's regulation of AML proliferation and anti-apoptosis. Mechanistically, the CO-IP assay revealed binding between SENP1 and HDAC2. SUMO and Chip-qPCR assays suggested that SENP1 can desumoylate HDAC2, which enhances EGFR transcription and activates the AKT pathway. In addition, we found that IGF2BP3 expression was upregulated in high-risk AML patients and was positively correlated with SENP1 expression. MERIP-qPCR and RIP-qPCR showed that IGF2BP3 binds SENP1 3-UTR in an m6A manner, enhances SENP1 expression, and promotes AKT pathway conduction. CONCLUSIONS: Our findings reveal a distinct mechanism of SENP1-mediated HDAC2-AKT activation and establish the critical role of the IGF2BP3/SENP1signaling axis in AML development.


Subject(s)
Adenosine , Cell Proliferation , Cysteine Endopeptidases , Histone Deacetylase 2 , Leukemia, Myeloid, Acute , Proto-Oncogene Proteins c-akt , RNA-Binding Proteins , Sumoylation , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Histone Deacetylase 2/metabolism , Histone Deacetylase 2/genetics , Mice , Animals , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Signal Transduction , Disease Progression , Cell Line, Tumor , Apoptosis , Prognosis , Female , Male , Gene Expression Regulation, Leukemic , Xenograft Model Antitumor Assays
2.
Rinsho Ketsueki ; 65(5): 330-334, 2024.
Article in Japanese | MEDLINE | ID: mdl-38825509

ABSTRACT

A 53-year-old woman presented with shortness of breath and hyperleukocytosis and was admitted to our hospital. Shortly after, she went into cardiopulmonary arrest and was resuscitated. Her white blood cell count was 566,000/µl, with 94.5% cup-like blasts positive for MPO staining and FLT3-ITD positive, so she was diagnosed with acute myeloid leukemia (AML) M1. She also had disseminated intravascular coagulation and tumor lysis syndrome. Extracorporeal membrane oxygenation (ECMO) was started to manage bilateral pulmonary thromboembolism that had developed due to deep vein thrombosis, and induction therapy was performed under ECMO. On the third day of illness, the patient developed cerebral hemorrhage. Hematological remission was confirmed on the 39th day of illness. After consolidation therapy with chemotherapy and an FLT3 inhibitor, she underwent allogeneic hematopoietic stem cell transplantation, and remains alive. Case reports suggest strong evidence of mortality benefit from ECMO in patients with hematologic malignancies, particularly when ECMO served as a bridge through chemotherapy. Our patient suffered from cardiopulmonary arrest due to hyperleukocytosis and pulmonary thromboembolism, but was saved by induction of remission under ECMO. Improvements in supportive care should lead to reduction in early deaths during induction therapy.


Subject(s)
Extracorporeal Membrane Oxygenation , Leukemia, Myeloid, Acute , Humans , Female , Middle Aged , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/complications , Remission Induction , Treatment Outcome , Induction Chemotherapy , Hematopoietic Stem Cell Transplantation , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
3.
Rinsho Ketsueki ; 65(5): 343-352, 2024.
Article in Japanese | MEDLINE | ID: mdl-38825513

ABSTRACT

The blood cancer field has played a pioneering role in advancing precision medicine, with milestones such as development of ABL1 inhibitors for chronic myeloid leukemia. The significance of gene mutation information in AML treatment has increased, evident in classifications and guidelines from organizations such as WHO and ELN. This article examines the anticipated roles of cancer genome panels (CGPs) in AML treatment from three perspectives: diagnosis, risk stratification, and treatment selection. Use of CGPs enables more accurate diagnosis and risk stratification. In treatment selection, CGPs not only complements but also substitutes existing companion diagnostics, and is expected to be a crucial information source for future drug adoption and investigation of tumor-agnostic therapies. However, various challenges remain to be addressed, including the purpose and timing of CGPs, the time required for the tests, and how to utilize expert panels.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/diagnosis , Mutation , Genome, Human , Precision Medicine
4.
Rinsho Ketsueki ; 65(5): 353-361, 2024.
Article in Japanese | MEDLINE | ID: mdl-38825514

ABSTRACT

For nearly 40 years, combination therapy with cytarabine and anthracycline has been the standard of care for acute myeloid leukemia (AML). The cytogenetics and molecular biology of AML are now understood, and the treatment of AML has undergone dramatic changes in Japan with the launch of drugs such as FLT3 inhibitors, Bcl2 inhibitors, and hypomethylating agents since 2018. However, AML remains very difficult to cure, with a high relapse rate. Here, we review novel agents that have not yet been approved in Japan (CPX-351, IDH inhibitors, menin inhibitors, and oral azacitidine) as potential treatments for AML, as well as therapeutic antibodies (BiTEs, DARTs, immune checkpoint inhibitors) currently under investigation in clinical trials or in development. These novel agents are being investigated not only as monotherapy but also as combination therapy with intensive chemotherapy or azacitidine/venetoclax. The new era of AML treatment is expected to support a variety of goals, including leukemic cell elimination, long-term remission, and improved quality of life.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/drug therapy , Antineoplastic Agents/therapeutic use , Drug Development , Molecular Targeted Therapy
5.
Mol Cancer ; 23(1): 120, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831402

ABSTRACT

The efficacy of anthracycline-based chemotherapeutics, which include doxorubicin and its structural relatives daunorubicin and idarubicin, remains almost unmatched in oncology, despite a side effect profile including cumulative dose-dependent cardiotoxicity, therapy-related malignancies and infertility. Detoxifying anthracyclines while preserving their anti-neoplastic effects is arguably a major unmet need in modern oncology, as cardiovascular complications that limit anti-cancer treatment are a leading cause of morbidity and mortality among the 17 million cancer survivors in the U.S. In this study, we examined different clinically relevant anthracycline drugs for a series of features including mode of action (chromatin and DNA damage), bio-distribution, anti-tumor efficacy and cardiotoxicity in pre-clinical models and patients. The different anthracycline drugs have surprisingly individual efficacy and toxicity profiles. In particular, aclarubicin stands out in pre-clinical models and clinical studies, as it potently kills cancer cells, lacks cardiotoxicity, and can be safely administered even after the maximum cumulative dose of either doxorubicin or idarubicin has been reached. Retrospective analysis of aclarubicin used as second-line treatment for relapsed/refractory AML patients showed survival effects similar to its use in first line, leading to a notable 23% increase in 5-year overall survival compared to other intensive chemotherapies. Considering individual anthracyclines as distinct entities unveils new treatment options, such as the identification of aclarubicin, which significantly improves the survival outcomes of AML patients while mitigating the treatment-limiting side-effects. Building upon these findings, an international multicenter Phase III prospective study is prepared, to integrate aclarubicin into the treatment of relapsed/refractory AML patients.


Subject(s)
Aclarubicin , Anthracyclines , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/mortality , Aclarubicin/pharmacology , Aclarubicin/therapeutic use , Anthracyclines/therapeutic use , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/adverse effects , Animals , Female , Male , Treatment Outcome
7.
Haematologica ; 109(6): 1656-1667, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38832421

ABSTRACT

Recurrent and/or refractory (R/R) pediatric acute myeloid leukemia (AML) remains a recalcitrant disease with poor outcomes. Cell therapy with genetically modified immune effector cells holds the promise to improve outcomes for R/R AML since it relies on cytotoxic mechanisms that are distinct from chemotherapeutic agents. While T cells expressing chimeric antigen receptors (CAR T cells) showed significant anti-AML activity in preclinical models, early phase clinical studies have demonstrated limited activity, irrespective of the targeted AML antigen. Lack of efficacy is most likely multifactorial, including: (i) a limited array of AML-specific targets and target antigen heterogeneity; (ii) the aggressive nature of R/R AML and heavy pretreatment of patients; (iii) T-cell product manufacturing, and (iv) limited expansion and persistence of the CAR T cells, which is in part driven by the immunosuppressive AML microenvironment. Here we review the results of early phase clinical studies with AML-specific CAR T cells, and avenues investigators are exploring to improve their effector function.


Subject(s)
Immunotherapy, Adoptive , Leukemia, Myeloid, Acute , Receptors, Chimeric Antigen , Humans , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/immunology , Receptors, Chimeric Antigen/immunology , Immunotherapy, Adoptive/methods , Child , Clinical Trials as Topic , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Treatment Outcome , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Tumor Microenvironment/immunology , Animals
8.
Blood Cancer J ; 14(1): 76, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697960

ABSTRACT

Second allogeneic stem cell transplantation (alloSCT2) is among the most effective treatments for acute myeloid leukemia (AML) relapse after first alloSCT (alloSCT1). Long-term EBMT registry data were used to provide large scale, up-to-date outcome results and to identify factors for improved outcome. Among 1540 recipients of alloSCT2, increasing age, better disease control and performance status before alloSCT2, more use of alternative donors and higher conditioning intensity represented important trends over time. Between the first (2000-2004) and last (2015-2019) period, two-year overall and leukemia-free survival (OS/LFS) increased considerably (OS: 22.5-35%, LFS: 14.5-24.5%). Cumulative relapse incidence (RI) decreased from 64% to 50.7%, whereas graft-versus-host disease and non-relapse mortality (NRM) remained unchanged. In multivariable analysis, later period of alloSCT2 was associated with improved OS/LFS (HR = 0.47/0.53) and reduced RI (HR = 0.44). Beyond, remission duration, disease stage and patient performance score were factors for OS, LFS, RI, and NRM. Myeloablative conditioning for alloSCT2 decreased RI without increasing NRM, leading to improved OS/LFS. Haploidentical or unrelated donors and older age were associated with higher NRM and inferior OS. In summary, outcome after alloSCT2 has continuously improved over the last two decades despite increasing patient age. The identified factors provide clues for the optimized implementation of alloSCT2.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Registries , Humans , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/mortality , Middle Aged , Male , Female , Adult , Hematopoietic Stem Cell Transplantation/methods , Aged , Young Adult , Adolescent , Transplantation, Homologous , Recurrence , Transplantation Conditioning/methods , Treatment Outcome , Graft vs Host Disease/etiology , Graft vs Host Disease/epidemiology
9.
Hematology ; 29(1): 2343604, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38703055

ABSTRACT

PURPOSE: To explore the efficacy and safety of venetoclax-based combination therapy for older patients with newly diagnosed acute myeloid leukemia (AML). METHODS: We performed a systematic review and meta-analysis of clinical trials comparing venetoclax plus hypomethylating agents (HMAs) or low-dose cytarabine (LDAC) with mono-HMAs or LDAC. The random or fixed effects model was applied to the studies based on heterogeneity. Dichotomous data were summarized using the risk ratio (RR) and 95% confidence interval (CI). Continuous variable data were reported as weighted mean differences (WMDs). RESULTS: Nine studies, including a total of 1232 patients, were included in this meta-analysis. Thec complete remission (CR)/complete remission with incomplete hematological recovery (CRi) rate of the venetoclax (Ven) + azacytidine (Aza) group was significantly greater than that of the Aza monotherapy group (RR: 2.42; 95% CI: 1.85-3.15; P < 0.001). Similarly, the CR/CRi rate of the Ven + LDAC group was also significantly greater than that of the LDAC monotherapy group (RR: 2.57; 95% CI: 1.58-4.17; P = 0.00). The same results were observed for OS among these groups. However, the incidence of febrile neutropenia was greater in the Ven + Aza group than in the Ven + Decitabine (Dec) or monotherapy Aza group (RR: 0.69; 95% CI: 0.53-0.90; P = 0.006 and RR: 2.19; 95% CI: 1.58-3.03; P < 0.001, respectively). In addition, the Ven + LDAC group had significantly greater rates of constipation, diarrhea, nausea, and vomiting than the LDAC monotherapy group, with RRs and CIs of 0.61 (95% CI 0.44-0.83, P = 0.002), 1.81 (95% CI 1.22-2.67, P = 0.003), 1.39 (95% CI 1.06-1.82, P = 0.016), and 1.80 (95% CI 1.19-2.72, P = 0.005), respectively. CONCLUSION: Venetoclax combined with azacitidine, decitabine, or LDAC significantly improved the CR/CRi and OS of patients with previously untreated AML. However, venetoclax plus azacitidine or LDAC was more likely to lead to increased febrile neutropenia and gastrointestinal toxicity.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Bridged Bicyclo Compounds, Heterocyclic , Leukemia, Myeloid, Acute , Sulfonamides , Humans , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/adverse effects , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Sulfonamides/therapeutic use , Sulfonamides/administration & dosage , Sulfonamides/adverse effects , Leukemia, Myeloid, Acute/drug therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Azacitidine/administration & dosage , Azacitidine/adverse effects , Azacitidine/therapeutic use , Treatment Outcome , Aged , Cytarabine/administration & dosage , Cytarabine/therapeutic use , Cytarabine/adverse effects
11.
Methods Cell Biol ; 186: 233-247, 2024.
Article in English | MEDLINE | ID: mdl-38705601

ABSTRACT

Multiple technologies have been used to monitor response to therapy in acute myeloid leukemia (AML) to improve detection of leukemia over the standard of practice, morphologic counting of blasts. The two techniques most frequently used in a routine clinical setting, flow cytometry and RQ-PCR, differ in their targets, sensitivity, and ability to detect residual disease. Both flow cytometry and RQ-PCR detect the expression of abnormal gene products, at the protein level or RNA level, respectively. Flow cytometry can be applied to a broad range of AML cases while RQ-PCR is limited to specific genetic abnormalities identified in subsets of AML. This article compares the results when both techniques were used in a reference laboratory to monitor AML over the course of treatment, comparing quantitative and qualitative results.


Subject(s)
Flow Cytometry , Leukemia, Myeloid, Acute , Flow Cytometry/methods , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Real-Time Polymerase Chain Reaction/methods , Neoplasm, Residual/genetics
12.
J Cancer Res Clin Oncol ; 150(5): 231, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703241

ABSTRACT

PURPOSE: Acute myeloid leukemia (AML) is a refractory hematologic malignancy that poses a serious threat to human health. Exploring alternative therapeutic strategies capable of inducing alternative modes of cell death, such as ferroptosis, holds great promise as a viable and effective intervention. METHODS: We analyzed online database data and collected clinical samples to verify the expression and function of BMAL1 in AML. We conducted experiments on AML cell proliferation, cell cycle, ferroptosis, and chemotherapy resistance by overexpressing/knocking down BMAL1 and using assays such as MDA detection and BODIPY 581/591 C11 staining. We validated the transcriptional regulation of HMGB1 by BMAL1 through ChIP assay, luciferase assay, RNA level detection, and western blotting. Finally, we confirmed the results of our cell experiments at the animal level. RESULTS: BMAL1 up-regulation is an observed phenomenon in AML patients. Furthermore, there existed a strong correlation between elevated levels of BMAL1 expression and inferior prognosis in individuals with AML. We found that knocking down BMAL1 inhibited AML cell growth by blocking the cell cycle. Conversely, overexpressing BMAL1 promoted AML cell proliferation. Moreover, our research results revealed that BMAL1 inhibited ferroptosis in AML cells through BMAL1-HMGB1-GPX4 pathway. Finally, knocking down BMAL1 can enhance the efficacy of certain first-line cancer therapeutic drugs, including venetoclax, dasatinib, and sorafenib. CONCLUSION: Our research results suggest that BMAL1 plays a crucial regulatory role in AML cell proliferation, drug resistance, and ferroptosis. BMAL1 could be a potential important therapeutic target for AML.


Subject(s)
ARNTL Transcription Factors , Drug Resistance, Neoplasm , Ferroptosis , HMGB1 Protein , Leukemia, Myeloid, Acute , Phospholipid Hydroperoxide Glutathione Peroxidase , Signal Transduction , Animals , Female , Humans , Male , Mice , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Ferroptosis/drug effects , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/genetics , Mice, Nude , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Prognosis , Sulfonamides/pharmacology , Xenograft Model Antitumor Assays
13.
Signal Transduct Target Ther ; 9(1): 108, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38705885

ABSTRACT

Coinfusion of unrelated cord blood (UCB) units in haploidentical hematopoietic cell transplantation (haplo-HCT) (haplo-cord HCT) for hematopoietic malignancies showed promising results in previous reports, but the efficiency of haplo-cord HCT in acute myeloid leukemia (AML) still lacks sufficient evidence. This multicenter, randomized, phase 3 trial (ClinicalTrials.gov NCT03719534) aimed to assess the efficacy and safety of haplo-cord HCT in AML patients. A total of 268 eligible patients aged 18-60 years, diagnosed with measurable residual disease in AML (excluding acute promyelocytic leukemia), with available haploidentical donors and suitable for allotransplantation, were randomly allocated (1:1) to receive haplo-cord HCT (n = 134) or haplo-HCT (n = 134). The 3-year overall survival (OS) was the primary endpoint in this study. Overall median follow-up was 36.50 months (IQR 24.75-46.50). The 3-year OS of Haplo-cord HCT group was better than haplo-HCT group (80.5%, 95% confidence interval [CI]: 73.7-87.9 vs. 67.8% 95% CI 60.0-76.5, p = 0.013). Favorable progression-free survival (70.3%, 95% CI 62.6-78.8 vs. 57.6%, 95% CI 49.6-67.0, p = 0.012) and cumulative incidence of relapse (12.1%, 95% CI 12.0-12.2 vs. 30.3%, 95% CI 30.1-30.4, p = 0.024) were observed in haplo-cord HCT group. Grade 3-4 adverse events (AEs) within two years posttransplantation in the two groups were similar. Haplo-cord HCT patients exhibited a faster cumulative incidence of neutrophil recovery (p = 0.026) and increased T-cell reconstitution in the early period posttransplantation. Haplo-cord HCT can improve OS in AML patients without excessive AEs, which may exert additional benefits for recipients of haplo-HCT.


Subject(s)
Cord Blood Stem Cell Transplantation , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Humans , Adult , Leukemia, Myeloid, Acute/therapy , Male , Female , Middle Aged , Adolescent , Transplantation, Haploidentical/adverse effects , Young Adult
14.
Clin Epigenetics ; 16(1): 63, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725010

ABSTRACT

BACKGROUND: Decitabine (DAC), a DNA methyltransferase inhibitor, has shown efficacy combined with chemotherapy for relapsed or refractory (R/R) acute myeloid leukemia (AML) in adults, but less is known about its efficacy in children. Accordingly, we conducted a study which involved a priming regimen consisting of DAC with cladribine, cytarabine, and granulocyte-stimulating factor (DAC-CLAG) and compared the efficacy and safety of this regimen with CLAG alone. METHODS: A total of 39 R/R AML children who received the CLAG or DAC-CLAG regimen in Shanghai Children's Hospital were retrospectively enrolled in this non-randomized study. These regimens were studied sequentially over time. Twenty-two patients received CLAG from 2015, while 17 patients were administered epigenetic priming with DAC before CLAG from 2020. Patients were subsequently bridged to stem cell transplantation (SCT) or consolidation chemotherapy. Complete remission (CR) and adverse effects were analyzed by Fisher's exact test, and survival was analyzed by the Kaplan-Meier method. RESULTS: DAC-CLAG conferred a numerically higher CR compared to CLAG (70.59% vs 63.64%; P = 0.740). High CR rates occurred in patients with good cytogenetics (P = 0.029) and prior induction without cladribine (P = 0.099). The 1-year event-free survival (EFS) was 64.71% ± 11.59% and 63.31% ± 10.35% in the DAC-CLAG and CLAG group (P = 0.595), and 1-year overall survival (OS) was 81.45% ± 9.72% and 77.01% ± 9.04%, respectively (P = 0.265). The 1-year OS and EFS after SCT were higher in the DAC-CLAG than in the CLAG cohort (100% vs 92.31% ± 7.39%, P = 0.072; 92.31% ± 7.39% vs 85.71% ± 9.35%, P = 0.158). Univariate analysis revealed that a good prognosis included good cytogenetics (P = 0.002), non-complex karyotype (P = 0.056), CR on reinduction (P < 0.0001), and bridging to SCT (P = 0.0007). Use of a hypomethylating agent (P = 0.049) and bridging to SCT (P = 0.011) were independent prognostic factors. Grade 3/4 hematologic toxicity and infection were the main adverse events. CONCLUSIONS: DAC prior to the CLAG regimen improved remission in pediatric R/R AML, and was feasible and well tolerated. CLAG ± DAC as a salvage therapy prior to SCT induced improved survival.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Cladribine , Cytarabine , Decitabine , Epigenesis, Genetic , Leukemia, Myeloid, Acute , Humans , Decitabine/therapeutic use , Decitabine/administration & dosage , Decitabine/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Male , Female , Child , Child, Preschool , Cladribine/therapeutic use , Cladribine/administration & dosage , Retrospective Studies , Cytarabine/therapeutic use , Cytarabine/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Adolescent , Epigenesis, Genetic/drug effects , Granulocyte Colony-Stimulating Factor/administration & dosage , Granulocyte Colony-Stimulating Factor/therapeutic use , Infant , Treatment Outcome , Remission Induction/methods
16.
Crit Rev Toxicol ; 54(4): 252-289, 2024 04.
Article in English | MEDLINE | ID: mdl-38753561

ABSTRACT

INTRODUCTION: Causal epidemiology for regulatory risk analysis seeks to evaluate how removing or reducing exposures would change disease occurrence rates. We define interventional probability of causation (IPoC) as the change in probability of a disease (or other harm) occurring over a lifetime or other specified time interval that would be caused by a specified change in exposure, as predicted by a fully specified causal model. We define the closely related concept of causal assigned share (CAS) as the predicted fraction of disease risk that would be removed or prevented by a specified reduction in exposure, holding other variables fixed. Traditional approaches used to evaluate the preventable risk implications of epidemiological associations, including population attributable fraction (PAF) and the Bradford Hill considerations, cannot reveal whether removing a risk factor would reduce disease incidence. We argue that modern formal causal models coupled with causal artificial intelligence (CAI) and realistically partial and imperfect knowledge of underlying disease mechanisms, show great promise for determining and quantifying IPoC and CAS for exposures and diseases of practical interest. METHODS: We briefly review key CAI concepts and terms and then apply them to define IPoC and CAS. We present steps to quantify IPoC using a fully specified causal Bayesian network (BN) model. Useful bounds for quantitative IPoC and CAS calculations are derived for a two-stage clonal expansion (TSCE) model for carcinogenesis and illustrated by applying them to benzene and formaldehyde based on available epidemiological and partial mechanistic evidence. RESULTS: Causal BN models for benzene and risk of acute myeloid leukemia (AML) incorporating mechanistic, toxicological and epidemiological findings show that prolonged high-intensity exposure to benzene can increase risk of AML (IPoC of up to 7e-5, CAS of up to 54%). By contrast, no causal pathway leading from formaldehyde exposure to increased risk of AML was identified, consistent with much previous mechanistic, toxicological and epidemiological evidence; therefore, the IPoC and CAS for formaldehyde-induced AML are likely to be zero. CONCLUSION: We conclude that the IPoC approach can differentiate between likely and unlikely causal factors and can provide useful upper bounds for IPoC and CAS for some exposures and diseases of practical importance. For causal factors, IPoC can help to estimate the quantitative impacts on health risks of reducing exposures, even in situations where mechanistic evidence is realistically incomplete and individual-level exposure-response parameters are uncertain. This illustrates the strength that can be gained for causal inference by using causal models to generate testable hypotheses and then obtaining toxicological data to test the hypotheses implied by the models-and, where necessary, refine the models. This virtuous cycle provides additional insight into causal determinations that may not be available from weight-of-evidence considerations alone.


Subject(s)
Benzene , Formaldehyde , Leukemia, Myeloid, Acute , Humans , Benzene/toxicity , Leukemia, Myeloid, Acute/epidemiology , Leukemia, Myeloid, Acute/chemically induced , Formaldehyde/toxicity , Causality , Probability , Risk Assessment , Environmental Exposure , Risk Factors
17.
Hematol Oncol ; 42(3): e3274, 2024 May.
Article in English | MEDLINE | ID: mdl-38711253

ABSTRACT

Venetoclax, a highly selective BCL-2 inhibitor, combined with hypomethylating agents (HMAs) azacitidine or decitabine, is approved for the treatment of newly diagnosed acute myeloid leukemia (ND AML) in patients who are ineligible to receive intensive chemotherapy. Previous clinical studies initiated venetoclax plus HMA in an inpatient setting owing to concerns of tumor lysis syndrome (TLS). This study (NCT03941964) evaluated the efficacy and safety of venetoclax plus HMA in a United States community-based outpatient setting in patients with ND AML (N = 60) who were treatment naïve for AML, ineligible to receive intensive chemotherapy, had no evidence of spontaneous TLS at screening, and were deemed as appropriate candidates for outpatient initiation of venetoclax plus HMA by the investigator. Patients received venetoclax in combination with azacitidine (75 mg/m2) or decitabine (20 mg/m2) for up to 6 cycles during the study. With a median time on study of 18.3 weeks, the best response rate of composite complete remission was 66.7%, and the overall post-baseline red blood cell (RBC) and platelet transfusion independence rate was 55.0%, consistent with results of studies in which treatment was initiated in an inpatient setting. Key adverse events included nausea, anemia, thrombocytopenia, neutropenia, and white blood cell count decrease of any grade (≥50% of patients). The observed safety profile was generally consistent with that of venetoclax plus HMA observed in inpatient AML studies. With close monitoring, 2 cases of TLS were identified, appropriately managed, and the patients were able to continue study treatment. CLINICAL TRIALS REGISTRATION: This study is registered at ClinicalTrials.gov. The registration identification number is NCT03941964.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Azacitidine , Bridged Bicyclo Compounds, Heterocyclic , Decitabine , Leukemia, Myeloid, Acute , Sulfonamides , Humans , Sulfonamides/administration & dosage , Sulfonamides/therapeutic use , Sulfonamides/adverse effects , Azacitidine/administration & dosage , Azacitidine/therapeutic use , Azacitidine/adverse effects , Leukemia, Myeloid, Acute/drug therapy , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Bridged Bicyclo Compounds, Heterocyclic/adverse effects , Decitabine/administration & dosage , Decitabine/therapeutic use , Decitabine/adverse effects , Female , Male , Aged , Middle Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Aged, 80 and over , Adult , Outpatients
18.
Cell Death Dis ; 15(5): 328, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734740

ABSTRACT

We created valrubicin-loaded immunoliposomes (Val-ILs) using the antitumor prodrug valrubicin, a hydrophobic analog of daunorubicin. Being lipophilic, valrubicin readily incorporated Val-lLs that were loaded with specific antibodies. Val-ILs injected intravenously rapidly reached the bone marrow and spleen, indicating their potential to effectively target cancer cells in these areas. Following the transplantation of human pediatric B-cell acute lymphoblastic leukemia (B-ALL), T-cell acute lymphoblastic leukemia (T-ALL), or acute myeloid leukemia (AML) in immunodeficient NSG mice, we generated patient-derived xenograft (PDX) models, which were treated with Val-ILs loaded with antibodies to target CD19, CD7 or CD33. Only a small amount of valrubicin incorporated into Val-ILs was needed to induce leukemia cell death in vivo, suggesting that this approach could be used to efficiently treat acute leukemia cells. We also demonstrated that Val-ILs could reduce the risk of contamination of CD34+ hematopoietic stem cells by acute leukemia cells during autologous peripheral blood stem cell transplantation, which is a significant advantage for clinical applications. Using EL4 lymphoma cells on immunocompetent C57BL/6 mice, we also highlighted the potential of Val-ILs to target immunosuppressive cell populations in the spleen, which could be valuable in impairing cancer cell expansion, particularly in lymphoma cases. The most efficient Val-ILs were found to be those loaded with CD11b or CD223 antibodies, which, respectively, target the myeloid-derived suppressor cells (MDSC) or the lymphocyte-activation gene 3 (LAG-3 or CD223) on T4 lymphocytes. This study provides a promising preclinical demonstration of the effectiveness and ease of preparation of Val-ILs as a novel nanoparticle technology. In the context of hematological cancers, Val-ILs have the potential to be used as a precise and effective therapy based on targeted vesicle-mediated cell death.


Subject(s)
Liposomes , Animals , Humans , Mice , Xenograft Model Antitumor Assays , Cell Death/drug effects , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/pathology , Hematologic Neoplasms/therapy , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/immunology , Cell Line, Tumor , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology
20.
Hematology ; 29(1): 2350319, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38748459

ABSTRACT

OBJECTIVES: The purpose of this study was to compare the effectiveness of the combination of venetoclax and hypomethylating agents with the HAG regimen. METHODS: We studied 52 cases of newly diagnosed AML and 26 cases of relapsed refractory AML, (including AML patients with treatment-related and ELN-adverse risk disease (n = 50)). These patients were treated with venetoclax and hypomethylating agents and HAG regimens, respectively. RESULTS: Twenty-nine patients newly diagnosed with acute myeloid leukemia were treated with VEN-HMA (venetoclax-hypomethylating agent), while 23 patients were treated with HAG. The median age of the VEN-HMA group was 70 years, while the HAG group had a median age of 69 years. The VEN-HMA group achieved a significantly higher rate of complete remission (82.7%) compared to the cohort treated with the HAG regimen (21.7%) (P < 0.001). At the same time, the VEN-HMA group exhibited a significant survival advantage compared to the HAG treatment group(HR = 0.328, 95%CI: 0.158-0.683, P = 0.003).In patients with relapsed and refractory acute myeloid leukaemia, 43.8% of patients in the VEN-HMA treatment group achieved complete remission, which was similar to the 50% in the HAG treatment group (P > 0.99). The median overall survival was similar between the VEN-HMA and HAG groups, with 4 and 3.67 months, respectively (P = 0.290). CONCLUSIONS: In conclusion, our analyses indicated that VEN-HMA resulted in better therapeutic outcomes compared to HAG for newly diagnosed AML patients, with higher rates of complete remission and overall survival. In relapsed/refractory AML patients, there was no significant difference in the efficacy of the two treatments and further studies with larger sample sizes are warranted.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Bridged Bicyclo Compounds, Heterocyclic , Leukemia, Myeloid, Acute , Sulfonamides , Humans , Sulfonamides/therapeutic use , Sulfonamides/administration & dosage , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/mortality , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Male , Aged , Female , Middle Aged , Retrospective Studies , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Aged, 80 and over , Adult , Treatment Outcome , Azacitidine/therapeutic use , Azacitidine/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...