Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.344
Filter
1.
J Med Case Rep ; 18(1): 261, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38797854

ABSTRACT

BACKGROUND: All-trans retinoic acid (ATRA) is an indispensable part of the treatment of acute promyelocytic leukemia (APL). Although, mild cutaneous toxicities like mucocutaneous xerosis, rash, and pruritus are well reported, ATRA associated severe dermatological toxicities are extremely rare. ATRA is primary metabolized by cytochrome P450 (CYP450) enzyme system, and triazole antifungals are notorious for their strong inhibitory effect on CYP450. CASE PRESENTATION: Three Asian APL patients experienced rare ATRA-induced severe dermatological toxicities: exfoliative dermatitis (ED) in cases 1 and 2, and necrotic scrotal ulceration in case 3. Both case 1 (33-year-old female), and case 2 (28-year-old male) landed in emergency department with dehydration, generalized skin erythema and xerosis during their induction chemotherapy. Both of these patients also developed invasive aspergillosis and required concomitant triazole antifungals during their chemotherapy. For ED, intravenous fluids and broad-spectrum antibiotics were started along with application of local emollients to prevent transdermal water loss. Although their general condition improved but skin exfoliation continued with complete desquamation of palms and soles. Dermatology was consulted, and clinical diagnosis of ED was established. Discontinuation of ATRA resulted in complete resolution of ED. Case 3 (15-year-old boy) reported two blackish mildly tender scrotal lesions during induction chemotherapy. He also had mucocutaneous candidiasis at presentation and was kept on triazole antifungal. Local bacterial & fungal cultures, and serological testing for herpes simplex virus were reported negative. Despite adequate local care and optimal antibiotic support, his lesions persisted, and improved only after temporary discontinuation of ATRA. After a thorough literature review and considering the temporal association of cutaneous toxicities with triazole antifungals, we speculate that the concomitant use of triazole antifungals inhibited the hepatic metabolism of ATRA, resulting in higher serum ATRA concentration, and markedly accentuated cutaneous toxicities in our patients. CONCLUSION: By highlighting this crucial pharmacokinetic interaction, we want to caution the fellow oncologists to be mindful of the inhibitory effect of triazole antifungals on CYP450. We propose using a non-myelosuppressive combination of ATRA and arsenic trioxide for management of APL hence, obliterating the need of prophylactic antifungals. However, in the event of invasive fungal infection (IFI), we suggest using alternative class of antifungals.


Subject(s)
Antifungal Agents , Leukemia, Promyelocytic, Acute , Tretinoin , Triazoles , Humans , Leukemia, Promyelocytic, Acute/drug therapy , Male , Antifungal Agents/adverse effects , Antifungal Agents/therapeutic use , Female , Tretinoin/adverse effects , Adult , Triazoles/adverse effects , Triazoles/therapeutic use , Antineoplastic Agents/adverse effects , Aspergillosis/drug therapy , Drug Eruptions/etiology
2.
PLoS One ; 19(5): e0303428, 2024.
Article in English | MEDLINE | ID: mdl-38743735

ABSTRACT

Differentiation therapy using all-trans retinoic acid (ATRA) for acute promyelocytic leukemia (APL) is well established. However, because the narrow application and tolerance development of ATRA need to be improved, we searched for another efficient myeloid differentiation inducer. Kinase activation is involved in leukemia biology and differentiation block. To identify novel myeloid differentiation inducers, we used a Kinase Inhibitor Screening Library. Using a nitroblue tetrazolium dye reduction assay and real-time quantitative PCR using NB4 APL cells, we revealed that, PD169316, SB203580, SB202190 (p38 MAPK inhibitor), and triciribine (TCN) (Akt inhibitor) potently increased the expression of CD11b. We focused on TCN because it was reported to be well tolerated by patients with advanced hematological malignancies. Nuclear/cytoplasmic (N/C) ratio was significantly decreased, and myelomonocytic markers (CD11b and CD11c) were potently induced by TCN in both NB4 and acute myeloid leukemia (AML) M2 derived HL-60 cells. Western blot analysis using NB4 cells demonstrated that TCN promoted ERK1/2 phosphorylation, whereas p38 MAPK phosphorylation was not affected, suggesting that activation of the ERK pathway is involved in TCN-induced differentiation. We further examined that whether ATRA may affect phosphorylation of ERK and p38, and found that there was no obvious effect, suggesting that ATRA induced differentiation is different from TCN effect. To reveal the molecular mechanisms involved in TCN-induced differentiation, we performed microarray analysis. Pathway analysis using DAVID software indicated that "hematopoietic cell lineage" and "cytokine-cytokine receptor interaction" pathways were enriched with high significance. Real-time PCR analysis demonstrated that components of these pathways including IL1ß, CD3D, IL5RA, ITGA6, CD44, ITGA2B, CD37, CD9, CSF2RA, and IL3RA, were upregulated by TCN-induced differentiation. Collectively, we identified TCN as a novel myeloid cell differentiation inducer, and trials of TCN for APL and non-APL leukemia are worthy of exploration in the future.


Subject(s)
Cell Differentiation , Leukemia, Promyelocytic, Acute , Myeloid Cells , Humans , Cell Differentiation/drug effects , Leukemia, Promyelocytic, Acute/pathology , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/metabolism , Myeloid Cells/drug effects , Myeloid Cells/metabolism , CD11b Antigen/metabolism , CD11b Antigen/genetics , Cell Line, Tumor , HL-60 Cells , p38 Mitogen-Activated Protein Kinases/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/genetics , Imidazoles/pharmacology , Tretinoin/pharmacology , Pyridines/pharmacology , Proto-Oncogene Proteins c-akt/metabolism
3.
J Cell Mol Med ; 28(10): e18252, 2024 May.
Article in English | MEDLINE | ID: mdl-38766688

ABSTRACT

In order to explore the risk factors of relapse and potential optimized therapeutic regimen of low-risk acute promyelocytic leukaemia (APL), here we retrospectively analysed 282 patients who were diagnosed between February 2014 and September 2021. The median follow-up was 59 (9-102) months. The 5-year overall survival and cumulative relapse incidence were 97.9% and 5.9%, respectively. In terms of different cytoreductive therapies, 86 patients were administered with hydroxycarbamide (30.5%), 113 with anthracyclines or cytarabine (40.1%), 31 with etoposide (11.0%) and 52 with no cytoreductive therapy (18.4%) during the induction therapy. The hydroxycarbamide treatment group did not decrease the relapse rate compared to the no cytoreduction group (11.4% vs. 5.9%, p = 0.289). Compared with the hydroxycarbamide group, the anthracyclines/cytarabine treatment group showed improved 5-year RFS (88.145% vs. 98.113%, p = 0.008). Multivariate Cox regression analysis revealed that myeloblasts in bone marrow at diagnosis, and PML-RARA transcript level of 6.5% or more after induction therapy were associated with a subsequent risk of relapse. The only factor positively reducing the relapse rate was anthracyclines/cytarabine cytoreductive treatment. In conclusion, cytoreductive chemotherapy in induction therapy plays a potential key role in the prognosis of low-risk APL.


Subject(s)
Induction Chemotherapy , Leukemia, Promyelocytic, Acute , Humans , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/mortality , Leukemia, Promyelocytic, Acute/genetics , Female , Male , Adult , Middle Aged , Prognosis , Young Adult , Adolescent , Retrospective Studies , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Risk Factors , Recurrence
4.
Eur J Pharmacol ; 975: 176656, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38754536

ABSTRACT

Cancer stem cells (CSCs) drive malignant tumor progression, recurrence, and metastasis with unique characteristics, including self-renewal and resistance to conventional treatments. Conventional differentiation inducers, although promising, have limited cytotoxicity and may inadvertently enhance CSC stemness. To address these challenges, ongoing efforts are dedicated to developing strategies that can effectively combine both cytotoxicity and differentiation-inducing effects. In this study, we introduce oridonin (Ori), a small molecule with dual differentiation-inducing and cytotoxicity properties capable of eliminating tumor CSCs. We isolated CSCs in B16F10 cells using the Hoechst side population method and assessed the differentiation effect of Ori. Ori's differentiation-inducing effect was further evaluated using human acute promyelocytic leukemia. The cytotoxic potential of Ori against MCF-7 and B16F10 cell lines was assessed through various methods. In vivo anti-tumor and anti-CSC efficacy of Ori was investigated using mouse melanoma and CSCs melanoma models. Safety evaluation included zebrafish embryotoxicity and mouse acute toxicity experiments. As a result, Ori effectively dismantles tumorspheres, inhibits proliferation, and reduces the expression of CSC-specific markers. It induces significant differentiation, especially in the case of NB4. Additionally, Ori upregulates TP53 expression, mitigates the hypoxic tumor microenvironment, suppresses stemness, and inhibits PD-L1 expression, prompting a robust anti-cancer immune response. Ori demonstrates pronounced cytotoxicity, inducing notable pro-apoptotic effects on B16F10 and MCF-7 cells, with specific triggering of mitochondrial apoptosis. Importantly, Ori maintains a commendable biosafety record. The dual-action prowess of Ori not only induces the differentiation of CSCs but also dispatches differentiated and residual tumor cells, effectively thwarting the relentless march of tumor progression.


Subject(s)
Cell Differentiation , Diterpenes, Kaurane , Neoplastic Stem Cells , Zebrafish , Diterpenes, Kaurane/pharmacology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Animals , Humans , Cell Differentiation/drug effects , Mice , Cell Line, Tumor , Cell Proliferation/drug effects , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Tumor Suppressor Protein p53/metabolism , MCF-7 Cells , Melanoma, Experimental/pathology , Melanoma, Experimental/drug therapy , Leukemia, Promyelocytic, Acute/pathology , Leukemia, Promyelocytic, Acute/drug therapy , Female
5.
J Med Chem ; 67(7): 5458-5472, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38556750

ABSTRACT

The success of arsenic in acute promyelocytic leukemia (APL) treatment is hardly transferred to non-APL cancers, mainly due to the low selectivity and weak binding affinity of traditional arsenicals to oncoproteins critical for cancer survival. We present herein the reinvention of aliphatic trivalent arsenicals (As) as reversible covalent warheads of As-based targeting inhibitors toward Bruton's tyrosine kinase (BTK). The effects of As warheads' valency, thiol protection, methylation, spacer length, and size on inhibitors' activity were studied. We found that, in contrast to the bulky and rigid aromatic As warhead, the flexible aliphatic As warheads were well compatible with the well-optimized guiding group to achieve nanomolar inhibition against BTK. The optimized As inhibitors effectively blocked the BTK-mediated oncogenic signaling pathway, leading to elevated antiproliferative activities toward lymphoma cells and xenograft tumor. Our study provides a promising strategy enabling rational design of new aliphatic arsenic-based reversible covalent inhibitors toward non-APL cancer treatment.


Subject(s)
Arsenic , Arsenicals , Leukemia, Promyelocytic, Acute , Humans , Leukemia, Promyelocytic, Acute/drug therapy , Arsenicals/pharmacology , Arsenicals/therapeutic use , Arsenic/pharmacology , Agammaglobulinaemia Tyrosine Kinase , Signal Transduction , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
6.
Biochem Biophys Res Commun ; 710: 149541, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38608490

ABSTRACT

For acute promyelocytic leukemia (APL), differentiation therapy with all-trans retinoic acid (ATRA) is well established. However, the narrow application and tolerance development of ATRA remain to be improved. In this study, we investigated the effects of combinations of glycosylation inhibitors with ATRA to achieve better efficiency than ATRA alone. We found that the combination of fucosylation inhibitor 6-alkynylfucose (6AF) and ATRA had an additional effect on cell differentiation, as revealed by expression changes in two differentiation markers, CD11b and CD11c, and significant morphological changes in NB4 APL and HL-60 acute myeloid leukemia (AML) cells. In AAL lectin blot analyses, ATRA or 6AF alone could decrease fucosylation, while their combination decreased fucosylation more efficiently. To clarify the molecular mechanism for the 6AF effect on ATRA-induced differentiation, we performed microarray analyses using NB4 cells. In a pathway analysis using DAVID software, we found that the C-type lectin receptor (CLR) signaling pathway was enriched with high significance. In real-time PCR analyses using NB4 and HL-60 cells, FcεRIγ, CLEC6A, CLEC7A, CASP1, IL-1ß, and EGR3, as components of the CLR pathway, as well as CD45 and AKT3 were upregulated by 6AF in ATRA-induced differentiation. Taken together, the present findings suggest that the CLR signaling pathway is involved in the 6AF effect on ATRA-induced differentiation.


Subject(s)
Leukemia, Promyelocytic, Acute , Humans , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/metabolism , Glycosylation , Tretinoin/pharmacology , Tretinoin/metabolism , Cell Differentiation , HL-60 Cells , Cell Line, Tumor
8.
Acta Med Indones ; 56(1): 76-83, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38561886

ABSTRACT

Incidents of leukemia in pregnancy are infrequent with only one case found from 75,000 to 100,000 pregnancies. The pathophysiological mechanism of leukemia during pregnancy is still unclear. Leukemia which occurs in pregnancy is usually acute and predominantly the myeloid type.A 35-year-old woman in her fourth pregnancy with a gestational age of 38-39 weeks, came to the emergency department (ED) with complaints of contractions since 4.5 hours before admission. The contraction was not accompanied by discharge, mucus, or blood, and fetal movements was still active. She denied complaints of fever, nausea, vomiting, dizziness, shortness of breath, weakness, fatigue, lethargy, and bleeding. Physical examination results, both palpebral conjunctiva were pale. Laboratory examination results of a complete blood count, white blood cell count were 2,930/uL, hemoglobin 8.3 g/dL, Hct 24.10%, erythrocytes 2.78x106/µL, platelets 62,000/µL. Bone Marrow Aspiration (BMA) revealed Acute Promyelocytic Leukemia (APL).APL is a subtype of Acute Myelogenous Leukemia (AML). Persistent fatigue, recurrent infections, and bleeding are common manifestations of APL. The diagnosis of APL is made by bone marrow aspiration examination, and it is safe for pregnancy. APL therapy in pregnancy uses All-Trans Retinoic Acid (ATRA) and Arsenic Trioxide (ATO). ATRA and ATO are highly teratogenic, but recent studies have reported no fetal abnormalities.Accuracy and speed in diagnosing and initiating APL therapy in pregnancy are essential in preventing serious complications.


Subject(s)
Leukemia, Promyelocytic, Acute , Adult , Female , Humans , Pregnancy , Antineoplastic Combined Chemotherapy Protocols , Arsenic Trioxide/therapeutic use , Leukemia, Promyelocytic, Acute/complications , Leukemia, Promyelocytic, Acute/diagnosis , Leukemia, Promyelocytic, Acute/drug therapy , Tretinoin/therapeutic use
9.
Ann Hematol ; 103(5): 1577-1586, 2024 May.
Article in English | MEDLINE | ID: mdl-38532122

ABSTRACT

Acute promyelocytic leukemia (APL) is a highly curable hematologic malignancy in the era of all-trans retinoic acid (ATRA) combination treatment. However, only a modest change in early mortality rate has been observed despite the wide availability of ATRA. In addition to the clinical characteristics of APL patients, studies on the hospital volume-outcome relationship and the physician volume-outcome relationship remained limited. We aim to evaluate the association between hospital and physician volume and the early mortality rate among APL patients. The patients were collected from Taiwan's National Health Insurance Research Database (NHIRD). Early mortality is defined as death within 30 days of diagnosis. Patients were categorized into four groups according to individual cumulative hospital and physician volume. The risk of all-cause mortality in APL patients with different cumulative volume groups was compared using a Cox proportional hazard model. The probability of overall survival was estimated using the Kaplan-Meier method. All 741 patients were divided into four quartile volume groups. In the multivariate analysis, only physician volume was significantly associated with early mortality rate. The physician volume of the highest quartile was a protective factor for early mortality compared with the physician volume of the lowest quartile (HR 0.10, 95% CI 0.02-0.65). Hospital characteristics were not associated with early mortality. In the sensitivity analyses, the results remained consistent using two other different definitions of early mortality. Higher physician volume was independently associated with lower early mortality, while hospital volume was not. Enhancing the clinical expertise of low-volume physicians may ensure better outcomes.


Subject(s)
Leukemia, Promyelocytic, Acute , Humans , Leukemia, Promyelocytic, Acute/diagnosis , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/complications , Tretinoin/therapeutic use , Proportional Hazards Models , Combined Modality Therapy , Treatment Outcome
10.
Gan To Kagaku Ryoho ; 51(3): 291-297, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38494811

ABSTRACT

An 84-year-old woman was diagnosed as having acute promyelocytic leukemia(APL)in July Year X-3. The test for promyelocytic leukemia- retinoic acid receptor alpha(PML-RARA)mRNA was positive, while that for CD56 was negative. Since her white blood cell( WBC) count was <3,000/µL, with a count of APL cells of <1,000/µL, she was started on monotherapy with all-trans retinoic acid(ATRA). In September Year X-3, complete hematological remission(CHR)was confirmed. she refused to provide consent for receiving consolidation therapy. In February Year X-2, hematological relapse occurred. She was started on re-induction therapy with arsenite(ATO), and in June Year X-2, complete molecular remission(CMR)was achieved. She was started on post-remission therapy with ATO. In August Year X-1, she developed molecular relapse and was started on tamibarotene(Am80). In October Year X-1, hematological relapse was detected, and the test for CD56 was positive. She was started on combined venetoclax(VEN)+azacitidine(AZA)(VEN+AZA). After completion of 1 course of treatment, CMR was achieved, but she developed hematological relapse after 5 courses of treatment. She died of gastrointestinal hemorrhage. This is considered a valuable case for accumulating information on the treatment of CD56-positive APL resistant to ATRA and ATO.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Leukemia, Promyelocytic, Acute , Sulfonamides , Humans , Female , Aged, 80 and over , Leukemia, Promyelocytic, Acute/drug therapy , Arsenic Trioxide/therapeutic use , Azacitidine/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Tretinoin/therapeutic use , Recurrence
11.
Cancer Rep (Hoboken) ; 7(3): e2035, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38507294

ABSTRACT

BACKGROUND: Recent advances in the treatment of acute promyelocytic leukemia (APML) have seen unprecedented improvements in patient outcomes. However, such rapid growth in understanding often leads to uncertainty regarding superiority among candidate treatment regimens, especially when further scrutinized from an epidemiological perspective. AIMS: The aim of this systematic review with epidemiological analysis was to identify and compare commonly utilized protocols for standard-risk APML with a particular focus on complete remission (CR), overall/disease-free survival (DFS), and reported adverse events. METHODS AND RESULTS: Medline, Scopus, and CINAHL were interrogated to identify studies utilizing all-trans retinoic acid (ATRA) in addition to arsenic trioxide (ATO) and/or anthracyclines such as idarubicin (IDA) in the treatment of de-novo APML. After collation of studies, an epidemiological analysis was subsequently performed to compare protocols with regards to outcomes of interest using number needed to benefit (NNB) and number needed to harm (NNH) measures. Seventeen articles, describing 12 distinct trials, were included in the analysis. These trials made use of three unique protocols; CR rates were 94%-100% for ATO/ATRA regimens, 95%-96% for ATO/ATRA/anthracycline regimens, and 89%-94% for ATRA/anthracycline regimens. Epidemiological analysis demonstrated NNB for CR was 9.09 (ATO/ATRA vs. ATRA/IDA) and 20.00 (ATO/ATRA vs. ATO/ATRA/IDA), NNH for neutropenia was -3.45 (ATO/ATRA vs. ATRA/IDA), and NNH for infection was -3.13 (ATO/ATRA vs. ATRA/IDA) and -1.89 (ATO/ATRA vs. ATO/ATRA/IDA). CONCLUSION: The ATO/ATRA regimen is superior to chemotherapy-containing protocols at inducing remission and promoting survival in patients with APML. The regimen is better tolerated than the proposed alternatives with fewer adverse events. Future research opportunities include quantifying APML epidemiology and pursuing oral arsenic as an option for simplification of therapeutic protocols.


Subject(s)
Arsenicals , Leukemia, Promyelocytic, Acute , Humans , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/epidemiology , Leukemia, Promyelocytic, Acute/chemically induced , Anthracyclines/adverse effects , Arsenicals/adverse effects , Oxides/adverse effects , Treatment Outcome , Tretinoin/adverse effects , Antibiotics, Antineoplastic , Pathologic Complete Response
12.
Clin Lymphoma Myeloma Leuk ; 24(6): 375-381, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38431521

ABSTRACT

BACKGROUND: The outcome of patients with acute promyelocytic leukemia (APL) has improved significantly since the introduction of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) as APL therapies. The optimal therapy for APL relapse is believed to require autologous or allogeneic stem cell transplantation (SCT) based on historical experience. STUDY AIMS: To evaluate the outcome of patients with relapsed APL before and after the era of ATRA-ATO. PATIENTS AND METHODS: We reviewed 61 patients with relapsed APL treated from November 1991 to June 2023; 31 patients (51%) received modern therapy with the combination of ATRA and ATO with and without idarubicin and gemtuzumab ozogamicin (GO). RESULTS: Overall, 56 patients (92%) achieved CR after the first salvage therapy; 20 patients received SCT (10 autologous SCT;10 allogeneic SCT). With a median follow-up time of 138 months, the median survival durations were 32 months and 164 months with historical therapy vs. modern (ATRA-ATO) therapy (P = .035); the 5-year survival rates were 44% vs. 71%. With a 10-month landmark analysis, the median survival durations were 102 months vs. not reached, and the 5-year survival rates were 57% and 70% without SCT vs. with SCT (P = .193). The survival benefit with SCT was more prominent in the historical therapy era. However, patients who received the modern combination therapy of ATRA-ATO with and without idarubicin and GO had similar outcomes without vs. with SCT (P = .848). CONCLUSION: The combination of ATRA-ATO (+/- GO and idarubicin) is a highly effective salvage therapy in relapsed APL. The use of SCT may not be needed after first relapse-second remission but may be considered in subsequent relapses.


Subject(s)
Leukemia, Promyelocytic, Acute , Tretinoin , Humans , Leukemia, Promyelocytic, Acute/therapy , Leukemia, Promyelocytic, Acute/mortality , Leukemia, Promyelocytic, Acute/drug therapy , Male , Female , Middle Aged , Adult , Aged , Tretinoin/therapeutic use , Young Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Treatment Outcome , Adolescent , Arsenic Trioxide/therapeutic use , Recurrence , Salvage Therapy/methods , Retrospective Studies , Idarubicin/therapeutic use , Idarubicin/administration & dosage
13.
Transplant Cell Ther ; 30(6): 599.e1-599.e10, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38554737

ABSTRACT

Despite therapeutic advances for acute promyelocytic leukemia (APL) with the emergence of all-trans retinoic acid, arsenic trioxide, and gemtuzumab-ozogamycin, approximately 10% of patients still experience disease relapse, typically occurring within 24 to 36 months following completion of front-line treatment. Traditionally, both allogeneic (allo) and autologous (auto) hematopoietic cell transplantation (HCT) have been considered reasonable treatment options for relapsed APL; however, no randomized controlled studies have been conducted comparing allo-HCT and auto-HCT in patients with relapsed APL. We performed a systematic review/meta-analysis to assess the totality of evidence pertaining to allo-HCT or auto-HCT in relapsed APL. Our search identified 1158 references, of which 23 met our inclusion criteria. While acknowledging the limitations of comparing these 2 treatment modalities indirectly, based on results from separate meta-analyses, it appears that pooled rates of event-free survival (71% versus 54%), progression-free survival (63% versus 43%), and overall survival (82% versus 58%) are higher after auto-HCT. This difference can be explained in part by the higher risk of pooled nonrelapse mortality (NRM) in patients undergoing allo-HCT (29% versus 5%), owing to inherent risks associated with this modality. In the absence of a randomized prospective clinical trial comparing allo-HCT and auto-HCT, our results show that both modalities are acceptable in patients with relapsed APL. The higher pooled NRM rate with allo-HCT is an important consideration when choosing this option. Additionally, the comparable pooled relapse rate for auto-HCT and allo-HCT (24% versus 23%) provides a rationale for evaluating post-HCT consolidative strategies to mitigate this risk.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Promyelocytic, Acute , Transplantation, Autologous , Humans , Leukemia, Promyelocytic, Acute/therapy , Leukemia, Promyelocytic, Acute/mortality , Leukemia, Promyelocytic, Acute/drug therapy , Transplantation, Homologous , Adult , Treatment Outcome
15.
Eur J Haematol ; 112(5): 840-844, 2024 May.
Article in English | MEDLINE | ID: mdl-38305491

ABSTRACT

INTRODUCTION: Early death (ED) is the unsolved issue of acute promyelocytic leukemia (APL). The disseminated intravascular coagulation (DIC) score has been proposed as a marker of bleeding and death in APL; whether its temporal evolution predicts outcomes in APL is unknown. We evaluated whether an increasing score 48 h after diagnosis associates with ED. METHODS: Retrospective, single-center study, including patients with newly diagnosed APL between 2000 and 2023, treated with all-transretinoic acid (ATRA) plus anthracycline or arsenic trioxide (ATO). "DIC score worsening" was defined as ≥1 point increase in the score after 48 h, and ED as death within 30 days of diagnosis. RESULTS: Eighty-six patients were included, with median age of 46 years (17-82). ED patients (26.7%) more frequently had age >60 years and worsening DIC score after 48 h. These were also the only predictors of ED identified in both univariate and multivariate (OR 4.18, p = .011; OR 7.8, p = .005, respectively) logistic regression analysis. CONCLUSION: This is the first study on DIC score evolution in APL-a worsening DIC score 48 h after diagnosis is a strong independent predictive factor of ED. We propose a reduction of the DIC score from diagnosis as a new treatment goal in APL care.


Subject(s)
Disseminated Intravascular Coagulation , Leukemia, Promyelocytic, Acute , Humans , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Leukemia, Promyelocytic, Acute/complications , Leukemia, Promyelocytic, Acute/diagnosis , Leukemia, Promyelocytic, Acute/drug therapy , Disseminated Intravascular Coagulation/etiology , Disseminated Intravascular Coagulation/complications , Retrospective Studies , Tretinoin/therapeutic use , Arsenic Trioxide/adverse effects
16.
Cell Commun Signal ; 22(1): 127, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38360674

ABSTRACT

All-trans retinoic acid (ATRA) is the most relevant and functionally active metabolite of Vitamin-A. From a therapeutic standpoint, ATRA is the first example of pharmacological agent exerting its anti-tumor activity via a cell differentiating action. In the clinics, ATRA is used in the treatment of Acute Promyelocytic Leukemia, a rare form of myeloid leukemia with unprecedented therapeutic results. The extraordinary effectiveness of ATRA in the treatment of Acute Promyelocytic Leukemia patients has raised interest in evaluating the potential of this natural retinoid in the treatment of other types of neoplasias, with particular reference to solid tumors.The present article provides an overview of the available pre-clinical and clinical studies focussing on ATRA as a therapeutic agent in the context of breast cancer from a holistic point of view. In detail, we focus on the direct effects of ATRA in breast cancer cells as well as the underlying molecular mechanisms of action. In addition, we summarize the available information on the action exerted by ATRA on the breast cancer micro-environment, an emerging determinant of the progression and invasive behaviour of solid tumors. In particular we discuss the recent evidences of ATRA activity on the immune system. Finally, we analyse and discuss the results obtained with the few ATRA-based clinical trials conducted in the context of breast cancer.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Leukemia, Promyelocytic, Acute , Humans , Female , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/metabolism , Leukemia, Promyelocytic, Acute/pathology , Breast Neoplasms/pathology , Tretinoin/pharmacology , Tretinoin/metabolism , Cell Line, Tumor , Cell Differentiation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Tumor Microenvironment
17.
J Ethnopharmacol ; 326: 117778, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38310990

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: In China, the Chinese patent drug Realgar-Indigo naturalis Formula (RIF) is utilized for the therapy of acute promyelocytic leukemia (APL). Comprising four traditional Chinese herb-Realgar, Indigo naturalis, Salvia miltiorrhiza, and Pseudostellaria heterophylla-it notably includes tetra-arsenic tetra-sulfide, indirubin, tanshinone IIa, and total saponins of Radix Pseudostellariae as its primary active components. Due to its arsenic content, RIF distinctly contributes to the therapy for APL. However, the challenge of arsenic resistance in APL patients complicates the clinical use of arsenic agents. Interestingly, RIF demonstrates a high remission rate in APL patients, suggesting that its efficacy is not significantly compromised by arsenic resistance. Yet, the current state of research on RIF's ability to reverse arsenic resistance remains unclear. AIM OF THE STUDY: To investigate the mechanism of different combinations of the compound of RIF in reversing arsenic resistance in APL. MATERIALS AND METHODS: The present study utilized the arsenic-resistant HL60-PMLA216V-RARα cell line to investigate the effects of various RIF compounds, namely tetra-arsenic tetra-sulfide (A), indirubin (I), tanshinone IIa (T), and total saponins of Radix Pseudostellariae (S). The assessment of cell viability, observation of cell morphology, and evaluation of cell apoptosis were performed. Furthermore, the mitochondrial membrane potential, changes in the levels of PMLA216V-RARα, apoptosis-related factors, and the PI3K/AKT/mTOR pathway were examined, along with autophagy in all experimental groups. Meanwhile, we observed the changes about autophagy after blocking the PI3K or mTOR pathway. RESULTS: Tanshinone IIa, indirubin and total saponins of Radix Pseudostellariae could enhance the effect of tetra-arsenic tetra-sulfide down-regulating PMLA216V-RARα, and the mechanism was suggested to be related to inhibiting mTOR pathway to activate autophagy. CONCLUSIONS: We illustrated that the synergistic effect of different compound combinations of RIF can regulate autophagy through the mTOR pathway, enhance cell apoptosis, and degrade arsenic-resistant PMLA216V-RARα.


Subject(s)
Abietanes , Arsenic , Arsenicals , Drugs, Chinese Herbal , Leukemia, Promyelocytic, Acute , Saponins , Humans , Arsenic/adverse effects , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/chemically induced , Phosphatidylinositol 3-Kinases , Arsenicals/pharmacology , Arsenicals/therapeutic use , Sulfides/pharmacology , Sulfides/therapeutic use , Saponins/therapeutic use
18.
Nucleus ; 15(1): 2321265, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38411156

ABSTRACT

Promyelocytic leukemia (PML) nuclear bodies, membrane-less organelles in the nucleus, play a crucial role in cellular homeostasis. These dynamic structures result from the assembly of scaffolding PML proteins and various partners. Recent crystal structure analyses revealed essential self-interacting domains, while liquid-liquid phase separation contributes to their formation. PML bodies orchestrate post-translational modifications, particularly stress-induced SUMOylation, impacting target protein functions. Serving as hubs in multiple signaling pathways, they influence cellular processes like senescence. Dysregulation of PML expression contributes to diseases, including cancer, highlighting their significance. Therapeutically, PML bodies are promising targets, exemplified by successful acute promyelocytic leukemia treatment with arsenic trioxide and retinoic acid restoring PML bodies. Understanding their functions illuminates both normal and pathological cellular physiology, guiding potential therapies. This review explores recent advancements in PML body biogenesis, biochemical activity, and their evolving biological roles.


Subject(s)
Leukemia, Promyelocytic, Acute , Promyelocytic Leukemia Nuclear Bodies , Humans , Nuclear Proteins/metabolism , Promyelocytic Leukemia Protein/genetics , Promyelocytic Leukemia Protein/metabolism , Transcription Factors/chemistry , Transcription Factors/metabolism , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/metabolism , Leukemia, Promyelocytic, Acute/pathology
20.
Ann Hematol ; 103(4): 1181-1185, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38294534

ABSTRACT

Acute promyelocytic leukemia (APL) is a specific subtype of acute myeloid leukemia that is distinguished by the chromosomal translocation t(15;17)(q24;q21), which leads to the fusion of the promyelocytic leukemia (PML) gene with the retinoic acid receptor alpha (RARA). Recently, we identified a novel fusion gene in APL, RARA::ankyrin repeat domain 34C (ANKRD34C), identified its functions by morphological, cytogenetic, molecular biological and multiplex fluorescence in situ hybridization analyses, and demonstrated the potential therapeutic effect clinically and experimentally of all-trans retinoic acid (ATRA); the findings have important implications for the diagnosis and treatment of atypical APL.


Subject(s)
Leukemia, Promyelocytic, Acute , Humans , Leukemia, Promyelocytic, Acute/diagnosis , Leukemia, Promyelocytic, Acute/genetics , Leukemia, Promyelocytic, Acute/drug therapy , In Situ Hybridization, Fluorescence , Tretinoin/therapeutic use , Retinoic Acid Receptor alpha/genetics , Carrier Proteins/genetics , Translocation, Genetic , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...