Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.443
Filter
1.
Rom J Morphol Embryol ; 65(2): 203-208, 2024.
Article in English | MEDLINE | ID: mdl-39020534

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most common type of leukemia in childhood and rare in adults, while acute myeloid leukemia (AML) is less common in children and more common in older adults. The aim of the study was to present our experience for the diagnostic of leukemia by using the classic and molecular cytogenetic methods. The study was conducted between 2009 and 2019 within the Classic and Molecular Genetic Laboratory of the Oncohematology Department from the Louis Turcanu Emergency Hospital for Children, Timisoara, Romania. The study group included 337 children and adults, evaluated between 2009 and 2019. By using the conventional and molecular cytogenetic technique, the cytogenetic anomalies found were 35 numerical chromosomal abnormalities, 10 (9;22)(q34;q11) [four ALL, one AML, five chronic myeloid leukemia (CML)] translocations, nine (15;17)(q24;q21) translocations, three (14;14)(q11;q32) translocations, two (4;11)(q21;q23) translocations, one (1;14)(p32;q11) translocation, one (7;14)(qter;q11) translocation, one (8;21)(q22;q22) translocation, one (9;14)(p12;q32) translocation, seven rearrangements of the MLL gene and two rearrangements of the core-binding factor subunit beta∕myosin heavy chain 11 (CBFB∕MYH11) gene. The use of conventional and molecular cytogenetic analysis is one of the most important prognostic indicators in acute leukemia patients, allowing the identification of biologically distinct subtypes of disease and selection of appropriate treatment approaches.


Subject(s)
Leukemia , Humans , Romania , Female , Male , Adult , Child , Adolescent , Child, Preschool , Leukemia/genetics , Leukemia/pathology , Leukemia/diagnosis , Cytogenetic Analysis/methods , Middle Aged , Young Adult , Aged , Chromosome Aberrations , Infant
2.
Adv Exp Med Biol ; 1459: 405-430, 2024.
Article in English | MEDLINE | ID: mdl-39017854

ABSTRACT

HOXA9, an important transcription factor (TF) in hematopoiesis, is aberrantly expressed in numerous cases of both acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) and is a strong indicator of poor prognosis in patients. HOXA9 is a proto-oncogene which is both sufficient and necessary for leukemia transformation. HOXA9 expression in leukemia correlates with patient survival outcomes and response to therapy. Chromosomal transformations (such as NUP98-HOXA9), mutations, epigenetic dysregulation (e.g., MLL- MENIN -LEDGF complex or DOT1L/KMT4), transcription factors (such as USF1/USF2), and noncoding RNA (such as HOTTIP and HOTAIR) regulate HOXA9 mRNA and protein during leukemia. HOXA9 regulates survival, self-renewal, and progenitor cell cycle through several of its downstream target TFs including LMO2, antiapoptotic BCL2, SOX4, and receptor tyrosine kinase FLT3 and STAT5. This dynamic and multilayered HOXA9 regulome provides new therapeutic opportunities, including inhibitors targeting DOT1L/KMT4, MENIN, NPM1, and ENL proteins. Recent findings also suggest that HOXA9 maintains leukemia by actively repressing myeloid differentiation genes. This chapter summarizes the recent advances understanding biochemical mechanisms underlying HOXA9-mediated leukemogenesis, the clinical significance of its abnormal expression, and pharmacological approaches to treat HOXA9-driven leukemia.


Subject(s)
Gene Expression Regulation, Leukemic , Homeodomain Proteins , Nucleophosmin , Proto-Oncogene Mas , Humans , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Gene Expression Regulation, Leukemic/drug effects , Animals , Leukemia/genetics , Leukemia/metabolism , Leukemia/drug therapy , Leukemia/pathology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
3.
Adv Exp Med Biol ; 1459: 359-378, 2024.
Article in English | MEDLINE | ID: mdl-39017852

ABSTRACT

ETS proto-oncogene 1 (ETS1) is a transcription factor (TF) critically involved in lymphoid cell development and function. ETS1 expression is tightly regulated throughout differentiation and activation in T-cells, natural killer (NK) cells, and B-cells. It has also been described as an oncogene in a range of solid and hematologic cancer types. Among hematologic malignancies, its role has been best studied in T-cell acute lymphoblastic leukemia (T-ALL), adult T-cell leukemia/lymphoma (ATLL), and diffuse large B-cell lymphoma (DLBCL). Aberrant expression of ETS1 in these malignancies is driven primarily by chromosomal amplification and enhancer-driven transcriptional regulation, promoting the ETS1 transcriptional program. ETS1 also facilitates aberrantly expressed or activated transcriptional complexes to drive oncogenic pathways. Collectively, ETS1 functions to regulate cell growth, differentiation, signaling, response to stimuli, and viral interactions in these malignancies. A tumor suppressor role has also been indicated for ETS1 in select lymphoma types, emphasizing the importance of cellular context in ETS1 function. Research is ongoing to further characterize the clinical implications of ETS1 dysregulation in hematologic malignancies, to further resolve binding complexes and transcriptional targets, and to identify effective therapeutic targeting approaches.


Subject(s)
Proto-Oncogene Mas , Proto-Oncogene Protein c-ets-1 , Humans , Proto-Oncogene Protein c-ets-1/metabolism , Proto-Oncogene Protein c-ets-1/genetics , Animals , Lymphoma/genetics , Lymphoma/metabolism , Lymphoma/pathology , Signal Transduction , Gene Expression Regulation, Leukemic , Gene Expression Regulation, Neoplastic , Leukemia/genetics , Leukemia/metabolism , Leukemia/pathology
4.
Sci Rep ; 14(1): 15625, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972881

ABSTRACT

Blood cancer has emerged as a growing concern over the past decade, necessitating early diagnosis for timely and effective treatment. The present diagnostic method, which involves a battery of tests and medical experts, is costly and time-consuming. For this reason, it is crucial to establish an automated diagnostic system for accurate predictions. A particular field of focus in medical research is the use of machine learning and leukemia microarray gene data for blood cancer diagnosis. Even with a great deal of research, more improvements are needed to reach the appropriate levels of accuracy and efficacy. This work presents a supervised machine-learning algorithm for blood cancer prediction. This work makes use of the 22,283-gene leukemia microarray gene data. Chi-squared (Chi2) feature selection methods and the synthetic minority oversampling technique (SMOTE)-Tomek resampling is used to overcome issues with imbalanced and high-dimensional datasets. To balance the dataset for each target class, SMOTE-Tomek creates synthetic data, and Chi2 chooses the most important features to train the learning models from 22,283 genes. A novel weighted convolutional neural network (CNN) model is proposed for classification, utilizing the support of three separate CNN models. To determine the importance of the proposed approach, extensive experiments are carried out on the datasets, including a performance comparison with the most advanced techniques. Weighted CNN demonstrates superior performance over other models when coupled with SMOTE-Tomek and Chi2 techniques, achieving a remarkable 99.9% accuracy. Results from k-fold cross-validation further affirm the supremacy of the proposed model.


Subject(s)
Leukemia , Neural Networks, Computer , Humans , Leukemia/genetics , Algorithms , Hematologic Neoplasms/genetics , Supervised Machine Learning , Oligonucleotide Array Sequence Analysis/methods , Machine Learning , Gene Expression Profiling/methods
5.
Zhonghua Yi Xue Za Zhi ; 104(27): 2521-2528, 2024 Jul 16.
Article in Chinese | MEDLINE | ID: mdl-38978376

ABSTRACT

Objective: The aim of the study was to investigate the impact of the sites of high-resolution human leukocyte antigen (HLA) mismatch on the prognosis of children with leukemia undergoing umbilical cord blood transplantation (UCBT). Methods: Clinical data and high-resolution HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1 locus gene information were collected in the children who underwent the UCBT for the first time at Children's Hospital of Soochow University between January 2016 and June 2023. In each locus, according to whether the two genes were compatible, they were divided into a compatible group (two genes were perfectly matched) and a non-compatible group (one gene was not matched). In different loci, the differences in occurrence, recurrence, non-recurrence death and survival of acute graft versus host disease (aGVHD) were compared between the two groups. Multivariate Cox regression was employed to analyzed the influencing factors for overall survival rate, and Fine-Gray proportional hazards model was employed to analyze the influencing factors of other outcome events. Results: A total of 100 patients were enrolled (55 males and 45 females), whose age [M (Q1, Q3)] at the time of transplantation was 3.9 (2.0, 6.5) years. There were 55 cases in the HLA-A matched group and 45 cases in the mismatched group. The 5-year non-recurrence mortality (NRM) in the HLA-A matched group was lower than that in the mismatched group (P=0.024). The cumulative incidence of aGVHD within 100 days after transplantation in the HLA-A matched group was lower than that in the mismatched group (P=0.017), and there were no statistically significant differences in other outcome events between the groups (all P>0.05). There were 70 cases in the HLA-B matched group and 30 cases in the mismatched group. The 5-year cumulative recurrence rate in the HLA-B matched group was higher than that in the mismatched group (P=0.027). There were 79 cases in the HLA-C matched group and 21 cases in the mismatched group, and there were no statistically difference in the outcome events between the groups (P>0.05). There were 73 cases in HLA-DRB1 matched group and 27 cases in mismatched group. The 5-year overall survival rate in HLA-DRB1 matched group was higher than that in mismatched group (P=0.036), the 5-year cumulative recurrence rate in HLA-DRB1 matched group was higher than that in mismatched group (P=0.028), and the 5-year NRM in HLA-DRB1 matched group was lower than that in mismatched group (P=0.008). The cumulative incidence of aGVHD within 100 days after transplantation in the matched group was lower than that in the mismatched group (P=0.010), and and there were no statistically significant difference in other outcome events between the groups (P>0.05). There were 68 cases in HLA-DQB1 matched group and 32 cases in mismatched group. There was no statistical difference in outcome events between the two groups (all P>0.05). The risk of aGVHD in HLA-A mismatched group was higher than that in HLA-A matched group (HR=1.25, 95%CI: 1.12-1.38). The risk of recurrence in HLA-B mismatched group was lower than that in HLA-B matched group (HR=0.77, 95%CI: 0.63-0.91). Mismatched group at HLA-DRB1 compared with matched group at HLA-DRB1, had a higher risk of aGVHD (HR=1.37, 95%CI: 1.26-1.48), a higher risk of non-recurrence death (HR=1.39, 95%CI: 1.28-1.50), and a higher risk of death (HR=1.27, 95%CI: 1.18-1.36). No association was found between HLA-C and HLA-DQB1 locus with the risk of aGVHD, recurrence, non-recurrence death, and survival (all P>0.05). Conclusions: In UCBT, the risk of aGVHD in children with matching HLA-A sites of donor and recipient is lower than that in children with incompatible HLA-A sites. Compared with children with incompatible HLA-DRB1 sites, children with HLA-DRB1 matched sites has a lower risk of acute GVHD, a lower 5-year NRM, and a higher risk of death. The recurrence rate of children with matching HLA-B loci is higher than that of children without matching HLA-B loci.


Subject(s)
Cord Blood Stem Cell Transplantation , Graft vs Host Disease , HLA Antigens , Leukemia , Humans , Female , Male , Cord Blood Stem Cell Transplantation/adverse effects , Prognosis , Retrospective Studies , Child, Preschool , Child , Leukemia/genetics , Leukemia/therapy , HLA Antigens/genetics , Graft vs Host Disease/etiology , Tissue Donors , Histocompatibility Testing , Hematopoietic Stem Cell Transplantation/adverse effects
6.
Int J Mol Sci ; 25(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38928344

ABSTRACT

The association between leukemic stem cells (LSCs) and leukemia development has been widely established in the context of genetic alterations, epigenetic pathways, and signaling pathway regulation. Hematopoietic stem cells are at the top of the bone marrow hierarchy and can self-renew and progressively generate blood and immune cells. The microenvironment, niche cells, and complex signaling pathways that regulate them acquire genetic mutations and epigenetic alterations due to aging, a chronic inflammatory environment, stress, and cancer, resulting in hematopoietic stem cell dysregulation and the production of abnormal blood and immune cells, leading to hematological malignancies and blood cancer. Cells that acquire these mutations grow at a faster rate than other cells and induce clone expansion. Excessive growth leads to the development of blood cancers. Standard therapy targets blast cells, which proliferate rapidly; however, LSCs that can induce disease recurrence remain after treatment, leading to recurrence and poor prognosis. To overcome these limitations, researchers have focused on the characteristics and signaling systems of LSCs and therapies that target them to block LSCs. This review aims to provide a comprehensive understanding of the types of hematopoietic malignancies, the characteristics of leukemic stem cells that cause them, the mechanisms by which these cells acquire chemotherapy resistance, and the therapies targeting these mechanisms.


Subject(s)
Hematologic Neoplasms , Neoplastic Stem Cells , Humans , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Hematologic Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Hematopoietic Stem Cells/metabolism , Leukemia/pathology , Leukemia/genetics , Leukemia/metabolism , Signal Transduction , Animals , Tumor Microenvironment/genetics , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic , Mutation
7.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928414

ABSTRACT

Application of laser-generated electron beams in radiotherapy is a recent development. Accordingly, mechanisms of biological response to radiation damage need to be investigated. In this study, telomere length (TL) as endpoint of genetic damage was analyzed in human blood cells (leukocytes) and K562 leukemic cells irradiated with laser-generated ultrashort electron beam. Metaphases and interphases were analyzed in quantitative fluorescence in situ hybridization (Q-FISH) to assess TL. TLs were shortened compared to non-irradiated controls in both settings (metaphase and interphase) after irradiation with 0.5, 1.5, and 3.0 Gy in blood leukocytes. Radiation also caused a significant TL shortening detectable in the interphase of K562 cells. Overall, a negative correlation between TL and radiation doses was observed in normal and leukemic cells in a dose-dependent manner. K562 cells were more sensitive than normal blood cells to increasing doses of ultrashort electron beam radiation. As telomere shortening leads to genome instability and cell death, the results obtained confirm the suitability of this biomarker for assessing genotoxic effects of accelerated electrons for their further use in radiation therapy. Observed differences in TL shortening between normal and K562 cells provide an opportunity for further development of optimal radiation parameters to reduce side effects in normal cells during radiotherapy.


Subject(s)
Electrons , Leukocytes , Telomere , Humans , K562 Cells , Leukocytes/radiation effects , Leukocytes/metabolism , Telomere/radiation effects , Telomere/genetics , Telomere/metabolism , Leukemia/genetics , Leukemia/pathology , Leukemia/radiotherapy , Telomere Homeostasis/radiation effects , In Situ Hybridization, Fluorescence , Telomere Shortening/radiation effects , DNA Damage/radiation effects , Dose-Response Relationship, Radiation
8.
Nature ; 631(8019): 134-141, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38867047

ABSTRACT

Mosaic loss of the X chromosome (mLOX) is the most common clonal somatic alteration in leukocytes of female individuals1,2, but little is known about its genetic determinants or phenotypic consequences. Here, to address this, we used data from 883,574 female participants across 8 biobanks; 12% of participants exhibited detectable mLOX in approximately 2% of leukocytes. Female participants with mLOX had an increased risk of myeloid and lymphoid leukaemias. Genetic analyses identified 56 common variants associated with mLOX, implicating genes with roles in chromosomal missegregation, cancer predisposition and autoimmune diseases. Exome-sequence analyses identified rare missense variants in FBXO10 that confer a twofold increased risk of mLOX. Only a small fraction of associations was shared with mosaic Y chromosome loss, suggesting that distinct biological processes drive formation and clonal expansion of sex chromosome missegregation. Allelic shift analyses identified X chromosome alleles that are preferentially retained in mLOX, demonstrating variation at many loci under cellular selection. A polygenic score including 44 allelic shift loci correctly inferred the retained X chromosomes in 80.7% of mLOX cases in the top decile. Our results support a model in which germline variants predispose female individuals to acquiring mLOX, with the allelic content of the X chromosome possibly shaping the magnitude of clonal expansion.


Subject(s)
Aneuploidy , Chromosomes, Human, X , Clone Cells , Leukocytes , Mosaicism , Adult , Female , Humans , Male , Middle Aged , Alleles , Autoimmune Diseases/genetics , Biological Specimen Banks , Chromosome Segregation/genetics , Chromosomes, Human, X/genetics , Chromosomes, Human, Y/genetics , Clone Cells/metabolism , Clone Cells/pathology , Exome/genetics , F-Box Proteins/genetics , Genetic Predisposition to Disease/genetics , Germ-Line Mutation , Leukemia/genetics , Leukocytes/metabolism , Models, Genetic , Multifactorial Inheritance/genetics , Mutation, Missense/genetics
9.
Biochem Biophys Res Commun ; 725: 150257, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-38901226

ABSTRACT

Leukemia is a complex disease shaped by the intricate interplay of genetic and environmental factors. Given our preliminary data showing different leukemia incidence in genetically homogenous AKR mice harboring the spontaneous leukemia-inducing mutation Rmcfs, we sought to unravel the role of metabolites and gut microbiota in the leukemia penetrance. Our metabolomic analysis revealed distinct serum metabolite profiles between mice that developed leukemia and those that did not. We discovered that linoleic acid (LA), an essential ω-6 polyunsaturated fatty acid, was significantly decreased in the leukemia group, with the lower levels observed starting from 25 weeks before the onset. A predictive model based on LA levels demonstrated high accuracy in predicting leukemia development (area under curve 0.82). In vitro experiment confirmed LA's cytotoxic effects against leukemia cells, and in vivo study showed that a diet enriched with LA prolonged survival in AKR mice. Furthermore, gut microbiome analysis identified specific Lachnospiraceae species, that affect host lipid metabolism, are exclusively present in the leukemia group, suggesting their potential influence on LA metabolism and leukemia development. These findings shed light on the complex relationship between metabolites, gut microbiota, and leukemia development, providing valuable insights into the role of non-genetic factors in leukemia penetrance and potential strategies for leukemia prevention.


Subject(s)
Gastrointestinal Microbiome , Leukemia , Linoleic Acid , Mice, Inbred AKR , Animals , Gastrointestinal Microbiome/genetics , Leukemia/genetics , Leukemia/metabolism , Mice , Linoleic Acid/metabolism , Metabolomics/methods , Male
10.
Proc Natl Acad Sci U S A ; 121(25): e2312499121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38857395

ABSTRACT

Ex vivo expansion of human CD34+ hematopoietic stem and progenitor cells remains a challenge due to rapid differentiation after detachment from the bone marrow niche. In this study, we assessed the capacity of an inducible fusion protein to enable sustained ex vivo proliferation of hematopoietic precursors and their capacity to differentiate into functional phagocytes. We fused the coding sequences of an FK506-Binding Protein 12 (FKBP12)-derived destabilization domain (DD) to the myeloid/lymphoid lineage leukemia/eleven nineteen leukemia (MLL-ENL) fusion gene to generate the fusion protein DD-MLL-ENL and retrovirally expressed the protein switch in human CD34+ progenitors. Using Shield1, a chemical inhibitor of DD fusion protein degradation, we established large-scale and long-term expansion of late monocytic precursors. Upon Shield1 removal, the cells lost self-renewal capacity and spontaneously differentiated, even after 2.5 y of continuous ex vivo expansion. In the absence of Shield1, stimulation with IFN-γ, LPS, and GM-CSF triggered terminal differentiation. Gene expression analysis of the obtained phagocytes revealed marked similarity with naïve monocytes. In functional assays, the novel phagocytes migrated toward CCL2, attached to VCAM-1 under shear stress, produced reactive oxygen species, and engulfed bacterial particles, cellular particles, and apoptotic cells. Finally, we demonstrated Fcγ receptor recognition and phagocytosis of opsonized lymphoma cells in an antibody-dependent manner. Overall, we have established an engineered protein that, as a single factor, is useful for large-scale ex vivo production of human phagocytes. Such adjustable proteins have the potential to be applied as molecular tools to produce functional immune cells for experimental cell-based approaches.


Subject(s)
Cell Differentiation , Phagocytes , Humans , Phagocytes/metabolism , Hematopoietic Stem Cells/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Leukemia/genetics , Leukemia/pathology , Leukemia/metabolism , Protein Engineering/methods , Phagocytosis
11.
Elife ; 122024 Jun 18.
Article in English | MEDLINE | ID: mdl-38896450

ABSTRACT

The DNA damage response is critical for maintaining genome integrity and is commonly disrupted in the development of cancer. PPM1D (protein phosphatase Mg2+/Mn2+-dependent 1D) is a master negative regulator of the response; gain-of-function mutations and amplifications of PPM1D are found across several human cancers making it a relevant pharmacological target. Here, we used CRISPR/Cas9 screening to identify synthetic-lethal dependencies of PPM1D, uncovering superoxide dismutase-1 (SOD1) as a potential target for PPM1D-mutant cells. We revealed a dysregulated redox landscape characterized by elevated levels of reactive oxygen species and a compromised response to oxidative stress in PPM1D-mutant cells. Altogether, our results demonstrate a role for SOD1 in the survival of PPM1D-mutant leukemia cells and highlight a new potential therapeutic strategy against PPM1D-mutant cancers.


Subject(s)
Protein Phosphatase 2C , Superoxide Dismutase-1 , Protein Phosphatase 2C/metabolism , Protein Phosphatase 2C/genetics , Humans , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Cell Line, Tumor , Leukemia/genetics , CRISPR-Cas Systems , Oxidative Stress , Reactive Oxygen Species/metabolism , Synthetic Lethal Mutations , Mutation
12.
Biochem Biophys Res Commun ; 724: 150221, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38865811

ABSTRACT

MYB is a key regulator of hematopoiesis and erythropoiesis, and dysregulation of MYB is closely involved in the development of leukemia, however the mechanism of MYB regulation remains still unclear so far. Our previous study identified a long noncoding RNA (lncRNA) derived from the -34 kb enhancer of the MYB locus, which can promote MYB expression, the proliferation and migration of human leukemia cells, and is therefore termed MY34UE-AS. Then the interacting partner proteins of MY34UE-AS were identified and studied in the present study. hnRNPA0 was identified as a binding partner of MY34UE-AS through RNA pulldown assay, which was further validated through RNA immunoprecipitation (RIP). hnRNPA0 interacted with MY34UE-AS mainly through its RRM2 domain. hnRNPA0 overexpression upregulated MYB and increased the proliferation and migration of K562 cells, whereas hnRNPA0 knockdown showed opposite effects. Rescue experiments showed MY34UE-AS was required for above mentioned functions of hnRNPA0. These results reveal that hnRNPA0 is involved in leukemia through upregulating MYB expression by interacting with MY34UE-AS, suggesting that the hnRNPA0/MY34UE-AS axis could serve as a potential target for leukemia treatment.


Subject(s)
Cell Proliferation , Leukemia , Proto-Oncogene Proteins c-myb , RNA, Long Noncoding , Humans , Cell Line, Tumor , Cell Movement/genetics , Enhancer Elements, Genetic , Gene Expression Regulation, Leukemic , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , K562 Cells , Leukemia/genetics , Leukemia/metabolism , Leukemia/pathology , Protein Binding , Proto-Oncogene Proteins c-myb/metabolism , Proto-Oncogene Proteins c-myb/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
15.
Cell Rep ; 43(6): 114261, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38776224

ABSTRACT

Thymocyte development requires precise control of PI3K-Akt signaling to promote proliferation and prevent leukemia and autoimmune disorders. Here, we show that ablating individual clusters of the miR-17∼92 family has a negligible effect on thymocyte development, while deleting the entire family severely impairs thymocyte proliferation and reduces thymic cellularity, phenocopying genetic deletion of Dicer. Mechanistically, miR-17∼92 expression is induced by Myc-mediated pre-T cell receptor (TCR) signaling, and miR-17∼92 promotes thymocyte proliferation by suppressing the translation of Pten. Retroviral expression of miR-17∼92 restores the proliferation and differentiation of Myc-deficient thymocytes. Conversely, partial deletion of the miR-17∼92 family significantly delays Myc-driven leukemogenesis. Intriguingly, thymocyte-specific transgenic miR-17∼92 expression does not cause leukemia or lymphoma but instead aggravates skin inflammation, while ablation of the miR-17∼92 family ameliorates skin inflammation. This study reveals intricate roles of the miR-17∼92 family in balancing thymocyte development, leukemogenesis, and autoimmunity and identifies those microRNAs (miRNAs) as potential therapeutic targets for leukemia and autoimmune diseases.


Subject(s)
Autoimmunity , Leukemia , MicroRNAs , Thymocytes , MicroRNAs/metabolism , MicroRNAs/genetics , Animals , Thymocytes/metabolism , Thymocytes/pathology , Autoimmunity/genetics , Mice , Leukemia/pathology , Leukemia/genetics , Cell Proliferation , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Cell Differentiation/genetics , Signal Transduction , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Mice, Inbred C57BL , Receptors, Antigen, T-Cell/metabolism , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinogenesis/metabolism
17.
Nature ; 630(8015): 198-205, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38720074

ABSTRACT

Phosphoinositide-3-kinase-γ (PI3Kγ) is implicated as a target to repolarize tumour-associated macrophages and promote antitumour immune responses in solid cancers1-4. However, cancer cell-intrinsic roles of PI3Kγ are unclear. Here, by integrating unbiased genome-wide CRISPR interference screening with functional analyses across acute leukaemias, we define a selective dependency on the PI3Kγ complex in a high-risk subset that includes myeloid, lymphoid and dendritic lineages. This dependency is characterized by innate inflammatory signalling and activation of phosphoinositide 3-kinase regulatory subunit 5 (PIK3R5), which encodes a regulatory subunit of PI3Kγ5 and stabilizes the active enzymatic complex. We identify p21 (RAC1)-activated kinase 1 (PAK1) as a noncanonical substrate of PI3Kγ that mediates this cell-intrinsic dependency and find that dephosphorylation of PAK1 by PI3Kγ inhibition impairs mitochondrial oxidative phosphorylation. Treatment with the selective PI3Kγ inhibitor eganelisib is effective in leukaemias with activated PIK3R5. In addition, the combination of eganelisib and cytarabine prolongs survival over either agent alone, even in patient-derived leukaemia xenografts with low baseline PIK3R5 expression, as residual leukaemia cells after cytarabine treatment have elevated G protein-coupled purinergic receptor activity and PAK1 phosphorylation. Together, our study reveals a targetable dependency on PI3Kγ-PAK1 signalling that is amenable to near-term evaluation in patients with acute leukaemia.


Subject(s)
Class Ib Phosphatidylinositol 3-Kinase , Leukemia , Signal Transduction , p21-Activated Kinases , Animals , Humans , Mice , Cell Line , Class Ib Phosphatidylinositol 3-Kinase/genetics , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Cytarabine/pharmacology , Cytarabine/therapeutic use , Leukemia/drug therapy , Leukemia/enzymology , Leukemia/genetics , Leukemia/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Phosphorylation/drug effects , p21-Activated Kinases/antagonists & inhibitors , p21-Activated Kinases/metabolism , Phosphorylation , Xenograft Model Antitumor Assays
18.
Sci Rep ; 14(1): 9619, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671192

ABSTRACT

K-562 is a well-known in vitro cellular model that represents human leukemia cell lines. Although the K-562 cells have been extensively characterized, there are inconsistencies in the data across publications, showing the presence of multiple K-562 cell lines. This suggests that analyzing a single K-562 cell line is insufficient to provide reliable reference data. In this study, we compared three K-562 cell lines with different IDs (RCB0027, RCB1635, and RCB1897) to investigate the fundamental characteristics of K-562 cells. Amplifications of the BCR-ABL1 fusion gene and at 13q31 were detected in all three cell lines, whereas each genome exhibited distinctive features of sequence variants and loss of heterozygosity. This implies that each K-562 cell line can be characterized by common and unique features through a comparison of multiple K-562 cell lines. Variations in transcriptome profiles and hemoglobin synthesis were also observed among the three cell lines, indicating that they should be considered sublines that have diverged from the common ancestral K-562 despite no changes from the original cell name. This leads to unintentional differences in genotypes and/or phenotypes among cell lines that share the same name. These data show that characterizing a single K-562 cell line does not necessarily provide data that are applicable to other K-562 cells. In this context, it is essential to modify cell names in accordance with changes in characteristics during cell culture. Furthermore, our data could serve as a reference for evaluating other K-562 sublines, facilitating the discovery of new K-562 sublines with distinct characteristics. This approach results in the accumulation of K-562 sublines with diverged characteristics and expands the options available, which may help in selecting the most suitable K-562 subline for each experiment.


Subject(s)
Fusion Proteins, bcr-abl , Humans , Fusion Proteins, bcr-abl/genetics , K562 Cells , Cell Line, Tumor , Leukemia/genetics , Leukemia/pathology , Transcriptome , Loss of Heterozygosity
19.
Mol Biol Rep ; 51(1): 526, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632160

ABSTRACT

BACKGROUND: Vitamin D deficiency is prevalent among the Indonesian population, particularly in individuals diagnosed with leukemia-lymphoma. The regulation of vitamin D metabolism is influenced by the expression of several enzymes, such as CYP2R1, CYP24A1, and the vitamin D receptor (VDR). This study aimed to scrutinize the gene expression profiles in both mRNA and protein levels of VDR, CYP2R1, and CYP24A1 in leukemia and lymphoma patients. METHOD: The research was a cross-sectional study conducted at Cipto Mangunkusumo Hospital (RSCM) in Jakarta, Indonesia. The study included a total of 45 patients aged over 18 years old who have received a diagnosis of lymphoma or leukemia. Vitamin D status was measured by examining serum 25 (OH) D levels. The analysis of VDR, CYP2R1, and CYP24A1 mRNA expression utilized the qRT-PCR method, while protein levels were measured through the ELISA method. CONCLUSION: The study revealed a noteworthy difference in VDR protein levels between men and women. The highest mean CYP24A1 protein levels were observed in the age group > 60 years. This study found a significant, moderately positive correlation between VDR protein levels and CYP24A1 protein levels in the male and vitamin D sufficiency groups. In addition, a significant positive correlation was found between VDR mRNA levels and CYP2R1 mRNA levels, VDR mRNA levels and CYP2R1 mRNA levels, and CYP2R1 mRNA levels and CYP24A1 mRNA levels. However, the expression of these genes does not correlate with the protein levels of its mRNA translation products in blood circulation.


Subject(s)
Cholestanetriol 26-Monooxygenase , Cytochrome P450 Family 2 , Leukemia , Lymphoma , Receptors, Calcitriol , Adult , Female , Humans , Male , Middle Aged , Cholestanetriol 26-Monooxygenase/genetics , Cross-Sectional Studies , Cytochrome P-450 Enzyme System/genetics , Cytochrome P450 Family 2/genetics , Gene Expression Profiling , Leukemia/genetics , Leukemia/metabolism , Lymphoma/genetics , Lymphoma/metabolism , Receptors, Calcitriol/genetics , RNA, Messenger/metabolism , Vitamin D , Vitamin D3 24-Hydroxylase/genetics , Southeast Asian People/genetics
20.
EMBO J ; 43(12): 2337-2367, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38649537

ABSTRACT

Mitochondria are cellular powerhouses that generate energy through the electron transport chain (ETC). The mitochondrial genome (mtDNA) encodes essential ETC proteins in a compartmentalized manner, however, the mechanism underlying metabolic regulation of mtDNA function remains unknown. Here, we report that expression of tricarboxylic acid cycle enzyme succinate-CoA ligase SUCLG1 strongly correlates with ETC genes across various TCGA cancer transcriptomes. Mechanistically, SUCLG1 restricts succinyl-CoA levels to suppress the succinylation of mitochondrial RNA polymerase (POLRMT). Lysine 622 succinylation disrupts the interaction of POLRMT with mtDNA and mitochondrial transcription factors. SUCLG1-mediated POLRMT hyposuccinylation maintains mtDNA transcription, mitochondrial biogenesis, and leukemia cell proliferation. Specifically, leukemia-promoting FMS-like tyrosine kinase 3 (FLT3) mutations modulate nuclear transcription and upregulate SUCLG1 expression to reduce succinyl-CoA and POLRMT succinylation, resulting in enhanced mitobiogenesis. In line, genetic depletion of POLRMT or SUCLG1 significantly delays disease progression in mouse and humanized leukemia models. Importantly, succinyl-CoA level and POLRMT succinylation are downregulated in FLT3-mutated clinical leukemia samples, linking enhanced mitobiogenesis to cancer progression. Together, SUCLG1 connects succinyl-CoA with POLRMT succinylation to modulate mitochondrial function and cancer development.


Subject(s)
Organelle Biogenesis , Succinate-CoA Ligases , Animals , Humans , Mice , Acyl Coenzyme A/metabolism , Acyl Coenzyme A/genetics , Cell Line, Tumor , Cell Proliferation , Disease Progression , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/genetics , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/genetics , Leukemia/metabolism , Leukemia/genetics , Leukemia/pathology , Mitochondria/metabolism , Mitochondria/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Succinate-CoA Ligases/metabolism , Succinate-CoA Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...