Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46.345
Filter
1.
Mol Biol Rep ; 51(1): 712, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824221

ABSTRACT

INTRODUCTION: Coronary artery disease (CAD) in young adults can have devastating consequences. The cardiac developmental gene MEIS1 plays important roles in vascular networks and heart development. This gene effects on the regeneration capacity of the heart. Considering role of MEIS1 in cardiac tissue development and the progression of myocardial infarction this study investigated the expression levels of the MEIS1, HIRA, and Myocardin genes in premature CAD patients compared to healthy subjects and evaluated the relationships between these genes and possible inflammatory factors. METHODS AND RESULTS: The study conducted a case-control design involving 35 CAD patients and 35 healthy individuals. Peripheral blood mononuclear cells (PBMCs) were collected, and gene expression analysis was performed using real-time PCR. Compared with control group, the number of PBMCs in the CAD group exhibited greater MEIS1 and HIRA gene expression, with fold changes of 2.45 and 3.6. The expression of MEIS1 exhibited a negative correlation with IL-10 (r= -0.312) expression and positive correlation with Interleukin (IL)-6 (r = 0.415) and tumor necrosis factor (TNF)-α (r = 0.534) gene expression. Moreover, there was an inverse correlation between the gene expression of HIRA and that of IL-10 (r= -0.326), and a positive correlation was revealed between the expression of this gene and that of the IL-6 (r = 0.453) and TNF-α (r = 0.572) genes. CONCLUSION: This research demonstrated a disparity in expression levels of MEIS1, HIRA, and Myocardin, between CAD and healthy subjects. The results showed that, MEIS1 and HIRA play significant roles in regulating the synthesis of proinflammatory cytokines, namely, TNF-α and IL-6.


Subject(s)
Coronary Artery Disease , Myeloid Ecotropic Viral Integration Site 1 Protein , Nuclear Proteins , Trans-Activators , Humans , Coronary Artery Disease/genetics , Female , Male , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Case-Control Studies , Adult , Middle Aged , Interleukin-6/genetics , Interleukin-6/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Leukocytes, Mononuclear/metabolism , Interleukin-10/genetics , Gene Expression Regulation/genetics , Gene Expression/genetics
2.
Cell Transplant ; 33: 9636897241256462, 2024.
Article in English | MEDLINE | ID: mdl-38808671

ABSTRACT

Regulatory cell therapies have shown promise in tolerance-induction protocols in living donor organ transplantation. These protocols should be pursued in deceased donor transplantation. Donor peripheral mononuclear cells (PBMCs) are an optimal source of donor antigens for the induction of donor-specific regulatory cells. During the development of a regulatory cell tolerance-induction protocol with organs from deceased donors, we compared 3 methods of obtaining PBMCs from deceased donors focusing on cell yield, viability, and contamination of unwanted cell types. PBMC procurement methods: 1. During organ procurement at the time of cold perfusion, blood was collected from the vena cava and placed into a 10-liter blood collection bag, and thereafter transported to Karolinska University Hospital, where leukapheresis was performed (BCL). 2. Blood was collected via the vena cava into blood donation bags before cold perfusion. The bags underwent buffy coat separation and thereafter automated leukocyte isolation system (BCS). 3. To collect PBMCs, leukapheresis was performed via a central dialysis catheter on deceased donors in the intensive care unit (ICU) prior to the organ procurement procedure (LEU).All 3 methods to obtain PBMC from deceased donors were safe and did not affect the procurement of organs. BCL contained around 50% of NK cells in lymphocytes population. LEU had a highest yield of donor PBMC among 3 groups. LEU had the lower amount of granulocyte contamination, compared to BCS and BCL. Based on these results, we choose LEU as the preferred method to obtain donor PBMC in the development of our tolerance-induction protocol.


Subject(s)
Leukapheresis , Leukocytes, Mononuclear , Tissue Donors , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Adult , Middle Aged , Male , Female , Leukapheresis/methods , Aged , Immune Tolerance
3.
Sci Rep ; 14(1): 12112, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802392

ABSTRACT

The forkhead box P3 (FOXP3) transcript is essential for tolerance of alloantigens. Here, we describe the expression of FOXP3 mRNA variants in healthy females and males, and in kidney transplant recipients (KTR). We measured FOXP3 in peripheral blood mononuclear cells from healthy kidney donors (N = 101), and in blood from KTRs (N = 248) before and after transplantation. FOXP3 was measured with quantitative polymerase chain reaction, and differentiated between pre-mature mRNA FOXP3, Total mature FOXP3, FOXP3 in which exon two is spliced, and full length FOXP3. We found similar levels of FOXP3 in healthy female and male kidney donors. We confirmed this result in a publicly available cohort (N = 33) of healthy individuals (GSE97475). Homogenously, female and male KTR FOXP3 levels were similar pre-transplantation, one day post-transplantation and 29 days post-transplantation. This may suggest that kidney transplantation and related immunosuppressive treatments do not influence FOXP3 expression differently in females and males. Finally, fold difference analysis revealed that KTRs express lower levels of mature FOXP3 and higher levels of pre-mature FOXP3 mRNA pre-transplant compared to healthy individuals. This finding may suggest higher pre-mRNA synthesis, lower pre-mRNA degradation, lower spliceosome efficiency or higher degradation of mature FOXP3 mRNA in kidney transplant candidates.


Subject(s)
Forkhead Transcription Factors , Kidney Transplantation , Humans , Kidney Transplantation/adverse effects , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Male , Female , Adult , Middle Aged , Transplant Recipients , RNA, Messenger/genetics , RNA, Messenger/metabolism , Alternative Splicing , Protein Isoforms/genetics , Protein Isoforms/metabolism , Leukocytes, Mononuclear/metabolism , Aged
4.
Sci Data ; 11(1): 559, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816402

ABSTRACT

Single-cell methods offer a high-resolution approach for characterizing cell populations. Many studies rely on single-cell transcriptomics to draw conclusions regarding cell state and behavior, with the underlying assumption that transcriptomic readouts largely parallel their protein counterparts and subsequent activity. However, the relationship between transcriptomic and proteomic measurements is imprecise, and thus datasets that probe the extent of their concordance will be useful to refine such conclusions. Additionally, novel single-cell analysis tools often lack appropriate gold standard datasets for the purposes of assessment. Integrative (combining the two data modalities) and predictive (using one modality to improve results from the other) approaches in particular, would benefit from transcriptomic and proteomic data from the same sample of cells. For these reasons, we performed single-cell RNA sequencing, mass cytometry, and flow cytometry on a split-sample of human peripheral blood mononuclear cells. We directly compare the proportions of specific cell types resolved by each technique, and further describe the extent to which protein and mRNA measurements correlate within distinct cell types.


Subject(s)
Flow Cytometry , Leukocytes, Mononuclear , Sequence Analysis, RNA , Single-Cell Analysis , Humans , Leukocytes, Mononuclear/metabolism , Transcriptome , Proteomics
5.
Allergy ; 79(6): 1584-1597, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38817208

ABSTRACT

BACKGROUND: Efforts to profile atopic dermatitis (AD) tissues have intensified, yet comprehensive analysis of systemic immune landscapes in severe AD remains crucial. METHODS: Employing single-cell RNA sequencing, we analyzed over 300,000 peripheral blood mononuclear cells from 12 severe AD patients (Eczema area and severity index (EASI) > 21) and six healthy controls. RESULTS: Results revealed significant immune cell shifts in AD patients, including increased Th2 cell abundance, reduced NK cell clusters with compromised cytotoxicity, and correlated Type 2 innate lymphoid cell proportions with disease severity. Moreover, unique monocyte clusters reflecting activated innate immunity emerged in very severe AD (EASI > 30). While overall dendritic cells (DCs) counts decreased, a distinct Th2-priming subset termed "Th2_DC" correlated strongly with disease severity, validated across skin tissue data, and flow cytometry with additional independent severe AD samples. Beyond the recognized role of Th2 adaptive immunity, our findings highlight significant innate immune cell alterations in severe AD, implicating their roles in disease pathogenesis and therapeutic potentials. CONCLUSION: Apart from the widely recognized role of Th2 adaptive immunity in AD pathogenesis, alterations in innate immune cells and impaired cytotoxic cells have also been observed in severe AD. The impact of these alterations on disease pathogenesis and the effectiveness of potential therapeutic targets requires further investigation.


Subject(s)
Dermatitis, Atopic , RNA-Seq , Severity of Illness Index , Single-Cell Analysis , Dermatitis, Atopic/immunology , Humans , Immunity, Innate , Male , Th2 Cells/immunology , Th2 Cells/metabolism , Female , Adult , Dendritic Cells/immunology , Dendritic Cells/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Case-Control Studies , Single-Cell Gene Expression Analysis
6.
PLoS One ; 19(5): e0304555, 2024.
Article in English | MEDLINE | ID: mdl-38820269

ABSTRACT

Inflammation is a key driver in the pathogenesis of cystic fibrosis (CF). We assessed the effectiveness of elexacaftor/tezacaftor/ivacaftor (ETI) therapy on downregulating systemic and immune cell-derived inflammatory cytokines. We also monitored the impact of ETI therapy on clinical outcome. Adults with CF, heterozygous for F508del (n = 19), were assessed at baseline, one month and three months following ETI therapy, and clinical outcomes were measured, including sweat chloride, lung function, weight, neutrophil count and C-reactive protein (CRP). Cytokine quantifications were measured in serum and following stimulation of peripheral blood mononuclear cells (PBMCs) with lipopolysaccharide (LPS) and adenosine triphosphate and analysed using LEGEND plex™ Human Inflammation Panel 1 by flow cytometry (n = 19). ASC specks were measured in serum and caspase-1 activity and mRNA levels determined from stimulated PBMCs were determined. Patients remained stable over the study period. ETI therapy resulted in decreased sweat chloride concentrations (p < 0.0001), CRP (p = 0.0112) and neutrophil count (p = 0.0216) and increased percent predicted forced expiratory volume (ppFEV1) (p = 0.0399) from baseline to three months, alongside a trend increase in weight. Three months of ETI significantly decreased IL-18 (p< 0.0011, p < 0.0001), IL-1ß (p<0.0013, p = 0.0476), IL-6 (p = 0.0109, p = 0.0216) and TNF (p = 0.0028, p = 0.0033) levels in CF serum and following PBMCs stimulation respectively. The corresponding mRNA levels were also found to be reduced in stimulated PBMCs, as well as reduced ASC specks and caspase-1 levels, indicative of NLRP3-mediated production of pro-inflammatory cytokines, IL-1ß and IL-18. While ETI therapy is highly effective at reducing sweat chloride and improving lung function, it also displays potent anti-inflammatory properties, which are likely to contribute to improved long-term clinical outcomes.


Subject(s)
Aminophenols , Anti-Inflammatory Agents , Benzodioxoles , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Cytokines , Indoles , Quinolones , Humans , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Benzodioxoles/therapeutic use , Benzodioxoles/pharmacology , Adult , Aminophenols/therapeutic use , Female , Indoles/therapeutic use , Indoles/pharmacology , Male , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Quinolones/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Cytokines/blood , Pyrazoles/therapeutic use , Pyrazoles/pharmacology , Young Adult , Pyridines/therapeutic use , Pyridines/pharmacology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/drug effects , C-Reactive Protein/metabolism , Pyrroles/therapeutic use , Pyrroles/pharmacology , Sweat/chemistry , Sweat/metabolism , Pyrrolidines
7.
Front Immunol ; 15: 1380481, 2024.
Article in English | MEDLINE | ID: mdl-38774868

ABSTRACT

Objectives: Cell surface glycosylation can influence protein-protein interactions with particular relevance to changes in core fucosylation and terminal sialylation. Glycans are ligands for immune regulatory lectin families like galectins (Gals) or sialic acid immunoglobulin-like lectins (Siglecs). This study delves into the glycan alterations within immune subsets of systemic lupus erythematosus (SLE). Methods: Evaluation of binding affinities of Galectin-1, Galectin-3, Siglec-1, Aleuria aurantia lectin (AAL, recognizing core fucosylation), and Sambucus nigra agglutinin (SNA, specific for α-2,6-sialylation) was conducted on various immune subsets in peripheral blood mononuclear cells (PBMCs) from control and SLE subjects. Lectin binding was measured by multi-parameter flow cytometry in 18 manually gated subsets of T-cells, NK-cells, NKT-cells, B-cells, and monocytes in unstimulated resting state and also after 3-day activation. Stimulated pre-gated populations were subsequently clustered by FlowSOM algorithm based on lectin binding and activation markers, CD25 or HLA-DR. Results: Elevated AAL, SNA and CD25+/CD25- SNA binding ratio in certain stimulated SLE T-cell subsets correlated with SLE Disease Activity Index 2000 (SLEDAI-2K) scores. The significantly increased frequencies of activated AALlow Siglec-1low NK metaclusters in SLE also correlated with SLEDAI-2K indices. In SLE, activated double negative NKTs displayed significantly lower core fucosylation and CD25+/CD25- Siglec-1 binding ratio, negatively correlating with disease activity. The significantly enhanced AAL binding in resting SLE plasmablasts positively correlated with SLEDAI-2K scores. Conclusion: Alterations in the glycosylation of immune cells in SLE correlate with disease severity, which might represent potential implications in the pathogenesis of SLE.


Subject(s)
Flow Cytometry , Lectins , Lupus Erythematosus, Systemic , Humans , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/metabolism , Flow Cytometry/methods , Adult , Female , Male , Middle Aged , Lectins/metabolism , Lectins/immunology , Protein Binding , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Glycosylation , Galectins/metabolism , Galectins/immunology , Young Adult , Severity of Illness Index
8.
Front Immunol ; 15: 1404121, 2024.
Article in English | MEDLINE | ID: mdl-38720900

ABSTRACT

Pharmacodynamic assessment of T-cell-based cancer immunotherapies often focus on detecting rare circulating T-cell populations. The therapy-induced immune cells in blood-derived clinical samples are often present in very low frequencies and with the currently available T-cell analytical assays, amplification of the cells of interest prior to analysis is often required. Current approaches aiming to enrich antigen-specific T cells from human Peripheral Blood Mononuclear Cells (PBMCs) depend on in vitro culturing in presence of their cognate peptides and cytokines. In the present work, we improved a standard, publicly available protocol for T-cell immune analyses based on the in vitro expansion of T cells. We used PBMCs from healthy subjects and well-described viral antigens as a model system for optimizing the experimental procedures and conditions. Using the standard protocol, we first demonstrated significant enrichment of antigen-specific T cells, even when their starting frequency ex vivo was low. Importantly, this amplification occurred with high specificity, with no or neglectable enrichment of irrelevant T-cell clones being observed in the cultures. Testing of modified culturing timelines suggested that the protocol can be adjusted accordingly to allow for greater cell yield with strong preservation of the functionality of antigen-specific T cells. Overall, our work has led to the refinement of a standard protocol for in vitro stimulation of antigen-specific T cells and highlighted its reliability and reproducibility. We envision that the optimized protocol could be applied for longitudinal monitoring of rare blood-circulating T cells in scenarios with limited sample material.


Subject(s)
T-Lymphocytes , Humans , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Antigens, Viral/immunology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Cells, Cultured , Cancer Vaccines/immunology
9.
Sci Rep ; 14(1): 10709, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38729980

ABSTRACT

Three years after SARS-CoV-2 emerged as a global infectious threat, the virus has become endemic. The neurological complications such as depression, anxiety, and other CNS complications after COVID-19 disease are increasing. The brain, and CSF have been shown as viral reservoirs for SARS-CoV-2, yielding a potential hypothesis for CNS effects. Thus, we investigated the CNS pharmacology of orally dosed nirmatrelvir/ritonavir (NMR/RTV). Using both an in vitro and an in vivo rodent model, we investigated CNS penetration and potential pharmacodynamic activity of NMR. Through pharmacokinetic modeling, we estimated the median CSF penetration of NMR to be low at 18.11% of plasma with very low accumulation in rodent brain tissue. Based on the multiples of the 90% maximal effective concentration (EC90) for SARS-CoV-2, NMR concentrations in the CSF and brain do not achieve an exposure level similar to that of plasma. A median of only 16% of all the predicted CSF concentrations in rats were > 3xEC90 (unadjusted for protein binding). This may have implications for viral persistence and neurologic post-acute sequelae of COVID-19 if increased NMR penetration in the CNS leads to decreased CNS viral loads and decreased CNS inflammation.


Subject(s)
Leukocytes, Mononuclear , Ritonavir , SARS-CoV-2 , Animals , Rats , Ritonavir/pharmacokinetics , SARS-CoV-2/drug effects , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/virology , Humans , Male , Brain/metabolism , Brain/virology , COVID-19 Drug Treatment , COVID-19/virology , COVID-19/cerebrospinal fluid , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Rats, Sprague-Dawley , Central Nervous System/metabolism , Central Nervous System/virology
10.
BMC Complement Med Ther ; 24(1): 186, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734604

ABSTRACT

BACKGROUND: Cepharanthin® alone or in combination with glucocorticoid (GC) has been used to treat chronic immune thrombocytopenia (ITP) since the 1990s. Cepharanthine (CEP) is one of the main active components of Cepharanthin®. The purpose of this study was to investigate the effects of CEP on GC pharmacodynamics on immune cells and analyse the possible action mechanism of their interactions. METHODS: Peripheral blood mononuclear cells (PBMCs), T lymphocytic leukemia MOLT-4 cells and daunorubicin resistant MOLT-4 cells (MOLT-4/DNR) were used to evaluate the pharmacodynamics and molecular mechanisms. Drug pharmacodynamics was evaluated by WST-8 assay. P-glycoprotein function was examined by rhodamine 123 assay. CD4+CD25+Foxp3+ regulatory T cells and Th1/Th2/Th17 cytokines were detected by flow cytometry. P-glycoprotein expression and GC receptor translocation were examined by Western blot. RESULTS: CEP synergistically increased methylprednisolone (MP) efficacy with the suppressive effect on the cell viability of PBMCs. 0.3 and 1 µM of CEP significantly inhibited P-glycoprotein efflux function of CD4+ cells, CD8+ cells, and lymphocytes (P<0.05). 0.03~3 µM of CEP also inhibited the P-glycoprotein efflux function in MOLT-4/DNR cells in a concentration-dependent manner (P<0.001). However, 0.03~3 µM of CEP did not influence P-glycoprotein expression. 0.03~0.3 µM of CEP significantly increased the GC receptor distribution from the cytoplasm to the nucleus in a concentration-dependent manner in MOLT-4/DNR cells. The combination did not influence the frequency of CD4+, CD4+CD25+ and CD4+CD25+Foxp3+ T cells or the secretion of Th1/Th2/Th17 cytokines from PBMCs. In contrast, CEP alone at 1 µM decreased the percentage of CD4+ T cell significantly (P<0.01). It also inhibited the secretion of IL-6, IL-10, IL-17, TNF-α, and IFN-γ. CONCLUSIONS: CEP synergistically promoted MP pharmacodynamics to decrease the cell viability of the mitogen-activated PBMCs, possibly via inhibiting P-glycoprotein function and potentiating GC receptor translocation. The present study provides new evidence of the therapeutic effect of Cepharanthin® alone or in combination with GC for the management of chronic ITP.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Benzylisoquinolines , Drug Synergism , Leukocytes, Mononuclear , Methylprednisolone , Receptors, Glucocorticoid , Humans , Benzylisoquinolines/pharmacology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Methylprednisolone/pharmacology , Receptors, Glucocorticoid/metabolism , Benzodioxoles
11.
Cell Commun Signal ; 22(1): 264, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734696

ABSTRACT

BACKGROUND: Traditional biomarkers of chronic kidney disease (CKD) detect the disease in its late stages and hardly predict associated vascular damage. Integrin-linked kinase (ILK) is a scaffolding protein and a serine/threonine protein kinase that plays multiple roles in several pathophysiological processes during renal damage. However, the involvement of ILK as a biomarker of CKD and its associated vascular problems remains to be fully elucidated. METHODS: CKD was induced by an adenine-rich diet for 6 weeks in mice. We used an inducible ILK knockdown mice (cKD-ILK) model to decrease ILK expression. ILK content in mice's peripheral blood mononuclear cells (PBMCs) was determined and correlated with renal function parameters and with the expression of ILK and fibrosis and inflammation markers in renal and aortic tissues. Also, the expression of five miRNAs that target ILK was analyzed in whole blood of mice. RESULTS: The adenine diet increased ILK expression in PBMCs, renal cortex, and aortas, and creatinine and urea nitrogen concentrations in the plasma of WT mice, while these increases were not observed in cKD-ILK mice. Furthermore, ILK content in PBMCs directly correlated with renal function parameters and with the expression of renal and vascular ILK and fibrosis and inflammation markers. Finally, the expression of the five miRNAs increased in the whole blood of adenine-fed mice, although only four correlated with plasma urea nitrogen, and of those, three were downregulated in cKD-ILK mice. CONCLUSIONS: ILK, in circulating mononuclear cells, could be a potential biomarker of CKD and CKD-associated renal and vascular damage.


Subject(s)
Biomarkers , Kidney , Leukocytes, Mononuclear , Protein Serine-Threonine Kinases , RNA, Messenger , Renal Insufficiency, Chronic , Animals , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology , Leukocytes, Mononuclear/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Biomarkers/metabolism , Biomarkers/blood , Mice , Kidney/pathology , Kidney/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Male , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/blood , MicroRNAs/metabolism , Disease Models, Animal , Fibrosis
12.
Mol Biol Rep ; 51(1): 651, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734860

ABSTRACT

BACKGROUND: Canine atopic dermatitis (CAD) is a common genetically predisposed, inflammatory, and pruritic skin disorder that affects dogs globally. To date, there are no specific biomarkers available to diagnose CAD, and the current diagnosis is based on a combination of criteria including patient history, clinical signs, and exclusion of other relevant differential diagnoses. METHODS AND RESULTS: We examined the gene expression of phosphodiesterase 4D (PDE4D) in peripheral blood mononuclear cells (PBMCs), as well as miR-203 and miR-483 in plasma, in three groups: healthy dogs, CAD dogs, and other inflammatory pruritic skin diseases (OIPSD) such as pemphigus foliaceus, scabies, cutaneous lymphoma, and dermatophytosis. Our results showed that PDE4D gene expression in the CAD group is statistically higher compared to those in the healthy and OIPSD groups, suggesting PDE4D may be a specific marker for CAD. Nevertheless, no correlation was found between PDE4D gene expression levels and the lesion severity gauged by CAD severity index-4 (CADESI-4). We also showed that miR-203 is a generic marker for clinical dermatitis and differentiates both CAD and OIPSD inflammatory conditions from healthy controls. CONCLUSIONS: We show that PDE4D is a potential marker to differentiate CAD from non-atopic healthy and OIPSD while miR-203 may be a potential marker for general dermatologic inflammation. Future study of PDE4D and miR-203 on a larger scale is warranted.


Subject(s)
Biomarkers , Cyclic Nucleotide Phosphodiesterases, Type 4 , Dermatitis, Atopic , Dog Diseases , MicroRNAs , Dermatitis, Atopic/genetics , Dermatitis, Atopic/veterinary , Dermatitis, Atopic/blood , Dermatitis, Atopic/diagnosis , Animals , Dogs , MicroRNAs/genetics , MicroRNAs/blood , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Biomarkers/blood , Dog Diseases/genetics , Dog Diseases/diagnosis , Dog Diseases/blood , Male , Leukocytes, Mononuclear/metabolism , Female
13.
Cell Transplant ; 33: 9636897241251619, 2024.
Article in English | MEDLINE | ID: mdl-38761062

ABSTRACT

Pressure injuries, or pressure ulcers, are a common problem that may lead to infections and major complications, besides being a social and economic burden due to the costs of treatment and hospitalization. While surgery is sometimes necessary, this also has complications such as recurrence or wound dehiscence. Among the newer methods of pressure injury treatment, advanced therapies are an interesting option. This study examines the healing properties of bone marrow mononuclear cells (BM-MNCs) embedded in a plasma-based scaffold in a mouse model. Pressure ulcers were created on the backs of mice (2 per mouse) using magnets and assigned to a group of ulcers that were left untreated (Control, n = 15), treated with plasma scaffold (Plasma, n = 15), or treated with plasma scaffold containing BM-MNC (Plasma + BM-MNC, n = 15). Each group was examined at three time points (3, 7, and 14 days) after the onset of treatment. At each time point, animals were subjected to biometric assessment, bioluminescence imaging, and tomography. Once treatment had finished, skin biopsies were processed for histological and wound healing reverse transcription polymerase chain reaction (RT-PCR) array studies. While wound closure percentages were higher in the Plasma and Plasma + BM-MNC groups, differences were not significant, and thus descriptive data are provided. In all individuals, the presence of donor cells was revealed by immunohistochemistry on posttreatment onset Days 3, 7, and 14. In the Plasma + BM-MNC group, less inflammation was observed by positron emission tomography-computed tomography (PET/CT) imaging of the mice at 7 days, and a complete morphometabolic response was produced at 14 days, in accordance with histological results. A much more pronounced inflammatory process was observed in controls than in the other two groups, and this persisted until Day 14 after treatment onset. RT-PCR array gene expression patterns were also found to vary significantly, with the greatest difference noted between both treatments at 14 days when 11 genes were differentially expressed.


Subject(s)
Bone Marrow Cells , Disease Models, Animal , Pressure Ulcer , Wound Healing , Animals , Pressure Ulcer/therapy , Pressure Ulcer/pathology , Mice , Bone Marrow Cells/cytology , Male , Tissue Scaffolds/chemistry , Mice, Inbred C57BL , Bone Marrow Transplantation/methods , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/transplantation
14.
Cell Mol Biol Lett ; 29(1): 70, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741147

ABSTRACT

BACKGROUND: Mycobacterium tuberculosis heat-resistant antigen (Mtb-HAg) is a peptide antigen released from the mycobacterial cytoplasm into the supernatant of Mycobacterium tuberculosis (Mtb) attenuated H37Ra strain after autoclaving at 121 °C for 20 min. Mtb-HAg can specifically induce γδ T-cell proliferation in vitro. However, the exact composition of Mtb-HAg and the protein antigens that are responsible for its function are currently unknown. METHODS: Mtb-HAg extracted from the Mtb H37Ra strain was subjected to LC‒MS mass spectrometry. Twelve of the identified protein fractions were recombinantly expressed in Escherichia coli by genetic engineering technology using pET-28a as a plasmid and purified by Ni-NTA agarose resin to stimulate peripheral blood mononuclear cells (PBMCs) from different healthy individuals. The proliferation of γδ T cells and major γδ T-cell subset types as well as the production of TNF-α and IFN-γ were determined by flow cytometry. Their proliferating γδ T cells were isolated and purified using MACS separation columns, and Mtb H37Ra-infected THP-1 was co-cultured with isolated and purified γδ T cells to quantify Mycobacterium viability by counting CFUs. RESULTS: In this study, Mtb-HAg from the attenuated Mtb H37Ra strain was analysed by LC‒MS mass spectrometry, and a total of 564 proteins were identified. Analysis of the identified protein fractions revealed that the major protein components included heat shock proteins and Mtb-specific antigenic proteins. Recombinant expression of 10 of these proteins in by Escherichia coli genetic engineering technology was used to successfully stimulate PBMCs from different healthy individuals, but 2 of the proteins, EsxJ and EsxA, were not expressed. Flow cytometry results showed that, compared with the IL-2 control, HspX, GroEL1, and GroES specifically induced γδ T-cell expansion, with Vγ2δ2 T cells as the main subset, and the secretion of the antimicrobial cytokines TNF-α and IFN-γ. In contrast, HtpG, DnaK, GroEL2, HbhA, Mpt63, EsxB, and EsxN were unable to promote γδ T-cell proliferation and the secretion of TNF-α and IFN-γ. None of the above recombinant proteins were able to induce the secretion of TNF-α and IFN-γ by αß T cells. In addition, TNF-α, IFN-γ-producing γδ T cells inhibit the growth of intracellular Mtb. CONCLUSION: Activated γδ T cells induced by Mtb-HAg components HspX, GroES, GroEL1 to produce TNF-α, IFN-γ modulate macrophages to inhibit intracellular Mtb growth. These data lay the foundation for subsequent studies on the mechanism by which Mtb-HAg induces γδ T-cell proliferation in vitro, as well as the development of preventive and therapeutic vaccines and rapid diagnostic reagents.


Subject(s)
Antigens, Bacterial , Cell Proliferation , Mycobacterium tuberculosis , T-Lymphocytes , Humans , Antigens, Bacterial/immunology , Antigens, Bacterial/metabolism , Antigens, Bacterial/genetics , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Interferon-gamma/metabolism , Interferon-gamma/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/genetics , Tumor Necrosis Factor-alpha/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/immunology
15.
Arthritis Res Ther ; 26(1): 99, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741185

ABSTRACT

OBJECTIVES: This study aims to elucidate the transcriptomic signatures and dysregulated pathways in patients with Systemic Lupus Erythematosus (SLE), with a particular focus on those persisting during disease remission. METHODS: We conducted bulk RNA-sequencing of peripheral blood mononuclear cells (PBMCs) from a well-defined cohort comprising 26 remission patients meeting the Low Lupus Disease Activity State (LLDAS) criteria, 76 patients experiencing disease flares, and 15 healthy controls. To elucidate immune signature changes associated with varying disease states, we performed extensive analyses, including the identification of differentially expressed genes and pathways, as well as the construction of protein-protein interaction networks. RESULTS: Several transcriptomic features recovered during remission compared to the active disease state, including down-regulation of plasma and cell cycle signatures, as well as up-regulation of lymphocytes. However, specific innate immune response signatures, such as the interferon (IFN) signature, and gene modules involved in chromatin structure modification, persisted across different disease states. Drug repurposing analysis revealed certain drug classes that can target these persistent signatures, potentially preventing disease relapse. CONCLUSION: Our comprehensive transcriptomic study revealed gene expression signatures for SLE in both active and remission states. The discovery of gene expression modules persisting in the remission stage may shed light on the underlying mechanisms of vulnerability to relapse in these patients, providing valuable insights for their treatment.


Subject(s)
Lupus Erythematosus, Systemic , Transcriptome , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Humans , Female , Adult , Male , Middle Aged , Gene Expression Profiling/methods , Leukocytes, Mononuclear/metabolism , Protein Interaction Maps/genetics
16.
Front Immunol ; 15: 1387808, 2024.
Article in English | MEDLINE | ID: mdl-38745656

ABSTRACT

Background: Tuberculous meningitis (TBM) is a devastating form of tuberculosis (TB) causing high mortality and disability. TBM arises due to immune dysregulation, but the underlying immune mechanisms are unclear. Methods: We performed single-cell RNA sequencing on peripheral blood mononuclear cells (PBMCs) and cerebrospinal fluid (CSF) cells isolated from children (n=6) with TBM using 10 xGenomics platform. We used unsupervised clustering of cells and cluster visualization based on the gene expression profiles, and validated the protein and cytokines by ELISA analysis. Results: We revealed for the first time 33 monocyte populations across the CSF cells and PBMCs of children with TBM. Within these populations, we saw that CD4_C04 cells with Th17 and Th1 phenotypes and Macro_C01 cells with a microglia phenotype, were enriched in the CSF. Lineage tracking analysis of monocyte populations revealed myeloid cell populations, as well as subsets of CD4 and CD8 T-cell populations with distinct effector functions. Importantly, we discovered that complement-activated microglial Macro_C01 cells are associated with a neuroinflammatory response that leads to persistent meningitis. Consistently, we saw an increase in complement protein (C1Q), inflammatory markers (CRP) and inflammatory factor (TNF-α and IL-6) in CSF cells but not blood. Finally, we inferred that Macro_C01 cells recruit CD4_C04 cells through CXCL16/CXCR6. Discussion: We proposed that the microglial Macro_C01 subset activates complement and interacts with the CD4_C04 cell subset to amplify inflammatory signals, which could potentially contribute to augment inflammatory signals, resulting in hyperinflammation and an immune response elicited by Mtb-infected tissues.


Subject(s)
Microglia , Single-Cell Analysis , Transcriptome , Tuberculosis, Meningeal , Humans , Tuberculosis, Meningeal/immunology , Microglia/immunology , Microglia/metabolism , Child , Male , Female , Child, Preschool , Cytokines/metabolism , Complement Activation/immunology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Gene Expression Profiling , Mycobacterium tuberculosis/immunology
17.
Front Endocrinol (Lausanne) ; 15: 1323168, 2024.
Article in English | MEDLINE | ID: mdl-38706700

ABSTRACT

Background: Coronary artery disease (CAD) is a common complication of Type 2 diabetes mellitus (T2DM). Understanding the pathogenesis of this complication is essential in both diagnosis and management. Thus, this study aimed to characterize the presence of CAD in T2DM using molecular markers and pathway analyses. Methods: The study is a sex- and age-frequency matched case-control design comparing 23 unrelated adult Filipinos with T2DM-CAD to 23 controls (DM with CAD). Healthy controls served as a reference. Total RNA from peripheral blood mononuclear cells (PBMCs) underwent whole transcriptomic profiling using the Illumina HumanHT-12 v4.0 expression beadchip. Differential gene expression with gene ontogeny analyses was performed, with supporting correlational analyses using weighted correlation network analysis (WGCNA). Results: The study observed that 458 genes were differentially expressed between T2DM with and without CAD (FDR<0.05). The 5 top genes the transcription factor 3 (TCF3), allograft inflammatory factor 1 (AIF1), nuclear factor, interleukin 3 regulated (NFIL3), paired immunoglobulin-like type 2 receptor alpha (PILRA), and cytoskeleton-associated protein 4 (CKAP4) with AUCs >89%. Pathway analyses show differences in innate immunity activity, which centers on the myelocytic (neutrophilic/monocytic) theme. SNP-module analyses point to a possible causal dysfunction in innate immunity that triggers the CAD injury in T2DM. Conclusion: The study findings indicate the involvement of innate immunity in the development of T2DM-CAD, and potential immunity markers can reflect the occurrence of this injury. Further studies can verify the mechanistic hypothesis and use of the markers.


Subject(s)
Coronary Artery Disease , Diabetes Mellitus, Type 2 , Gene Expression Profiling , Humans , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/complications , Coronary Artery Disease/genetics , Female , Male , Middle Aged , Case-Control Studies , Transcriptome , Aged , Adult , Leukocytes, Mononuclear/metabolism
18.
Methods Cell Biol ; 186: 1-24, 2024.
Article in English | MEDLINE | ID: mdl-38705595

ABSTRACT

Broadly speaking, cell tracking dyes are fluorescent compounds that bind stably to components on or within the cells so the fate of the labeled cells can be followed. Their staining should be bright and homogeneous without affecting cell function. For purposes of monitoring cell proliferation, each time a cell divides the intensity of cell tracking dye should diminish equally between daughter cells. These dyes can be grouped into two different classes. Protein reactive dyes label cells by reacting covalently but non-selectively with intracellular proteins. Carboxyfluorescein diacetate succinimidyl ester (CFSE) is the prototypic general protein label. Membrane intercalating dyes label cells by partitioning non-selectively and non-covalently within the plasma membrane. The PKH membrane dyes are examples of lipophilic compounds whose chemistry allows for their retention within biological membranes without affecting cellular growth, viability, or proliferation when used properly. Here we provide considerations based for labeling cell lines and peripheral blood mononuclear cells using both classes of dyes. Examples from optimization experiments are presented along with critical aspects of the staining procedures to help mitigate common risks. Of note, we present data where a logarithmically growing cell line is labeled with both a protein dye and a membrane tracking dye to compare dye loss rates over 6days. We found that dual stained cells paralleled dye loss of the corresponding single stained cells. The decrease in fluorescence intensity by protein reactive dyes, however, was more rapid than that with the membrane reactive dyes, indicating the presence of additional division-independent dye loss.


Subject(s)
Cell Proliferation , Fluoresceins , Fluorescent Dyes , Staining and Labeling , Succinimides , Humans , Fluorescent Dyes/chemistry , Fluoresceins/chemistry , Succinimides/chemistry , Staining and Labeling/methods , Cell Tracking/methods , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Animals , Cell Membrane/metabolism , Cell Membrane/chemistry
19.
Methods Cell Biol ; 186: 107-130, 2024.
Article in English | MEDLINE | ID: mdl-38705596

ABSTRACT

Mass cytometry permits the high dimensional analysis of cellular systems at single-cell resolution with high throughput in various areas of biomedical research. Here, we provide a state-of-the-art protocol for the analysis of human peripheral blood mononuclear cells (PBMC) by mass cytometry. We focus on the implementation of measures promoting the harmonization of large and complex studies to aid robustness and reproducibility of immune phenotyping data.


Subject(s)
Flow Cytometry , Leukocytes, Mononuclear , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/immunology , Flow Cytometry/methods , Flow Cytometry/standards , Immunophenotyping/methods , Single-Cell Analysis/methods
20.
PLoS One ; 19(5): e0301687, 2024.
Article in English | MEDLINE | ID: mdl-38718078

ABSTRACT

In the monitoring of human Toxoplasma gondii infection, it is crucial to confirm the development of a specific Th1/Th17 immune response memory. The use of a simple, specific, and sensitive assay to follow the T-cell activation is thus required. Current protocols are not always specific as stimulation with peptides is Human Leukocyte Antigen (HLA)-dependent, while stimulation with total-lysis antigens tends to stimulate seronegative donors resulting to false positives. Here, an improved ELISPOT protocol is reported, using peripheral blood mononuclear cells (PBMC) of T.gondii-infected donors, incubated with the inactivated parasite. The results showed that, contrary to standard protocols, a pre-incubation step at high cell density in presence of the inactivated parasite allowed a specific Th1/Th17 response with the secretion of IFN-γ, IL-2, IL-12 and IL-17 cytokines. This protocol allows to evaluate precisely the immune response after a T.gondii infection.


Subject(s)
Enzyme-Linked Immunospot Assay , Th1 Cells , Th17 Cells , Toxoplasma , Toxoplasmosis , Humans , Th1 Cells/immunology , Th17 Cells/immunology , Enzyme-Linked Immunospot Assay/methods , Toxoplasmosis/immunology , Toxoplasma/immunology , Cytokines/immunology , Cytokines/metabolism , Leukocytes, Mononuclear/immunology , Interferon-gamma/immunology , Interferon-gamma/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...