Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Diabetes ; 71(10): 2181-2196, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35796692

ABSTRACT

Patients with diabetes present a persistent inflammatory process, leading to impaired wound healing. Since nonhealing diabetic wound management shows limited results, the introduction of advanced therapies targeting and correcting the inflammatory status of macrophages in chronic wounds could be an effective therapeutic strategy to stop the sustained inflammation and to return to a healing state. In an excisional skin injury in a diet-induced diabetic murine model, we demonstrate that topical administration of low-dose aspirin (36 µg/wound/day) improves cutaneous wound healing by increasing wound closure through the promotion of the inflammation resolution program of macrophages. This treatment increased efferocytosis of wound macrophages from aspirin-treated diabetic mice compared with untreated diabetic mice. We also show that aspirin treatment of high-fat-fed mice oriented the phenotype of wound macrophages toward an anti-inflammatory and proresolutive profile characterized by a decrease of LTB4 production. The use of diabetic mice deficient for 5-LOX or 12/15-LOX demonstrated that these two enzymes of acid arachidonic metabolism are essential for the beneficial effect of aspirin on wound healing. Thus, aspirin treatment modified the balance between pro- and anti-inflammatory eicosanoids by promoting the synthesis of proresolving LXA4 through 5-LOX, LTA4, 12/15-LOX signaling. In conclusion, the restoration of an anti-inflammatory and proresolutive phenotype of wound macrophages by the topical administration of low-dose aspirin represents a promising therapeutic approach in chronic wounds.


Subject(s)
Diabetes Mellitus, Experimental , Administration, Topical , Animals , Anti-Inflammatory Agents/therapeutic use , Aspirin/metabolism , Aspirin/pharmacology , Aspirin/therapeutic use , Diabetes Mellitus, Experimental/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Leukotriene A4/metabolism , Leukotriene A4/pharmacology , Leukotriene B4/metabolism , Lipoxins , Macrophages/metabolism , Mice , Phenotype , Skin/metabolism , Wound Healing
2.
Biochim Biophys Acta Mol Basis Dis ; 1865(9): 2379-2392, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31167124

ABSTRACT

BACKGROUND: Abnormalities of the L-arginine-nitric oxide pathway induce hypertension. 5-Lipoxygenase (5-LO) is the key enzyme involved in synthesis of leukotrienes (LTs). However, whether nitricoxide synthase dysfunction induces hypertensive vascular remodeling by regulating 5-LO activity and its downstream inflammatory metabolites remains unknown. METHODS AND RESULTS: Six-week L-NAME treatment significantly induced hypertension and vascular remodeling in both wild-type (WT) and 5-LO-knockout (5-LO-KO) mice, and blood pressure in caudal and carotid arteries was lower in 5-LO-KO than WT mice with L-NAME exposure. On histology, L-NAME induced less media thickness, media-to-lumen ratio, and collagen deposition and fewer Ki-67-positive vascular smooth muscle cells (VSMCs) but more elastin expression in thoracic and mesenteric aortas of 5-LO-KO than L-NAME-treated WT mice. L-NAME significantly increased LT content, including LTB4 and cysteinyl LT (CysLTs), in plasma and neutrophil culture supernatants from WT mice. On immunohistochemistry, L-NAME promoted the colocalization of 5-LO and 5-LO-activating protein on the nuclear envelope of cultured neutrophils, which was accompanied by elevated LT content in culture supernatants. In addition, LTs significantly promoted BrdU incorporation, migration and phenotypic modulation in VSMCs. CONCLUSION: L-NAME may activate the 5-LO/LT pathway in immune cells, such as neutrophils, and promote the products of 5-LO metabolites, including LTB4 and CysLTs, which aggravate vascular remodeling in hypertension. 5-LO deficiency may protect against hypertension and vascular remodeling by reducing levels of 5-LO downstream inflammatory metabolites.


Subject(s)
Arachidonate 5-Lipoxygenase/genetics , Hypertension/prevention & control , Vascular Remodeling , Animals , Aorta/metabolism , Aorta/pathology , Arachidonate 5-Lipoxygenase/deficiency , Blood Pressure/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Hypertension/chemically induced , Hypertension/pathology , Leukotriene A4/blood , Leukotriene A4/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , NG-Nitroarginine Methyl Ester/metabolism , NG-Nitroarginine Methyl Ester/toxicity , Neutrophils/immunology , Neutrophils/metabolism , Nitric Oxide Synthase Type II/metabolism , Rats , Rats, Sprague-Dawley , Vascular Remodeling/drug effects
3.
Prostaglandins Other Lipid Mediat ; 120: 115-25, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25839425

ABSTRACT

We evaluated the autocrine activities of cysteinyl leukotrienes (cysteinyl-LTs) in HUVEC and studied the signaling and the pharmacological profile of the CysLT2 receptor (CysLT2R) expressed by ECs, finally assessing the role of the CysLT2R in permeability alterations in a model of isolated brain. Cysteinyl-LTs and their precursor LTA4 contracted HUVEC and increased permeability to macromolecules, increasing the formation of stress fibers through the phosphorylation of myosin light-chain (MLC) following Rho and PKC activation. Accordingly, in an organ model of cerebral vasculature with an intact intima, neutrophils challenge leaded to significant formation of cysteinyl-LTs and edema. Pretreatment with a selective CysLT2R antagonist prevented cytoskeleton rearrangement and HUVEC contraction, along with edema formation in the brain preparation, while leaving the synthesis of cysteinyl-LTs unaffected. We also demonstrate here that the CysLT1R antagonist zafirlukast, pranlukast, pobilukast and iralukast also possess CysLT2R antagonistic activity, which could help in reconsidering previous data on the role of cysteinyl-LTs in the cardiovascular system. The results obtained are further supporting a potential role for CysLT2R in cardiovascular disease.


Subject(s)
Autocrine Communication , Cysteine/metabolism , Human Umbilical Vein Endothelial Cells/cytology , Leukotrienes/metabolism , Receptors, Leukotriene/metabolism , Signal Transduction , Animals , Autocrine Communication/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Leukotriene A4/pharmacology , Leukotriene C4/pharmacology , Myosin Light Chains/metabolism , Neutrophils/drug effects , Neutrophils/metabolism , Permeability/drug effects , Phosphorylation/drug effects , Protein Kinase C/metabolism , Rats , Signal Transduction/drug effects , Stress Fibers/drug effects , Stress Fibers/metabolism , rho GTP-Binding Proteins/metabolism
4.
J Biol Chem ; 289(51): 35314-25, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25371198

ABSTRACT

Calcium/voltage-gated, large conductance potassium (BK) channels control numerous physiological processes, including myogenic tone. BK channel regulation by direct interaction between lipid and channel protein sites has received increasing attention. Leukotrienes (LTA4, LTB4, LTC4, LTD4, and LTE4) are inflammatory lipid mediators. We performed patch clamp studies in Xenopus oocytes that co-expressed BK channel-forming (cbv1) and accessory ß1 subunits cloned from rat cerebral artery myocytes. Leukotrienes were applied at 0.1 nm-10 µm to either leaflet of cell-free membranes at a wide range of [Ca(2+)]i and voltages. Only LTB4 reversibly increased BK steady-state activity (EC50 = 1 nm; Emax reached at 10 nm), with physiological [Ca(2+)]i and voltages favoring this activation. Homomeric cbv1 or cbv1-ß2 channels were LTB4-resistant. Computational modeling predicted that LTB4 docked onto the cholane steroid-sensing site in the BK ß1 transmembrane domain 2 (TM2). Co-application of LTB4 and cholane steroid did not further increase LTB4-induced activation. LTB4 failed to activate ß1 subunit-containing channels when ß1 carried T169A, A176S, or K179I within the docking site. Co-application of LTB4 with LTA4, LTC4, LTD4, or LTE4 suppressed LTB4-induced activation. Inactive leukotrienes docked onto a portion of the site, probably preventing tight docking of LTB4. In summary, we document the ability of two endogenous lipids from different chemical families to share their site of action on a channel accessory subunit. Thus, cross-talk between leukotrienes and cholane steroids might converge on regulation of smooth muscle contractility via BK ß1. Moreover, the identification of LTB4 as a highly potent ligand for BK channels is critical for the future development of ß1-specific BK channel activators.


Subject(s)
Ion Channel Gating/physiology , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Large-Conductance Calcium-Activated Potassium Channel beta Subunits/metabolism , Leukotriene B4/metabolism , Animals , Calcium/metabolism , Cerebral Arteries/cytology , Female , Ion Channel Gating/drug effects , Ion Channel Gating/genetics , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/chemistry , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Large-Conductance Calcium-Activated Potassium Channel beta Subunits/chemistry , Large-Conductance Calcium-Activated Potassium Channel beta Subunits/genetics , Leukotriene A4/chemistry , Leukotriene A4/metabolism , Leukotriene A4/pharmacology , Leukotriene B4/chemistry , Leukotriene B4/pharmacology , Leukotriene C4/chemistry , Leukotriene C4/metabolism , Leukotriene C4/pharmacology , Leukotriene D4/chemistry , Leukotriene D4/metabolism , Leukotriene D4/pharmacology , Leukotriene E4/chemistry , Leukotriene E4/metabolism , Leukotriene E4/pharmacology , Membrane Potentials/drug effects , Microinjections , Models, Molecular , Molecular Structure , Muscle Cells/cytology , Muscle Cells/metabolism , Oocytes/drug effects , Oocytes/metabolism , Oocytes/physiology , Patch-Clamp Techniques , Protein Binding , Protein Structure, Tertiary , RNA, Complementary/administration & dosage , RNA, Complementary/genetics , Rats , Xenopus laevis
5.
Invest Ophthalmol Vis Sci ; 51(3): 1699-708, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19834040

ABSTRACT

PURPOSE: Evidence suggests that capillary degeneration in early diabetic retinopathy results from chronic inflammation, and leukotrienes have been implicated in this process. The authors investigated the cellular sources of leukotriene biosynthesis in diabetic retinas and the effects of hyperglycemia on leukotriene production. METHODS: Retinas and bone marrow cells were collected from diabetic and nondiabetic mice. Mouse retinal glial cells and retinal endothelial cells (mRECs) were cultured under nondiabetic and diabetic conditions. Production of leukotriene metabolites was assessed by mass spectrometry, and Western blot analysis was used to quantitate the expression of enzymes and receptors involved in leukotriene synthesis and signaling. RESULTS: Bone marrow cells from nondiabetic mice expressed 5-lipoxygenase, the enzyme required for the initiation of leukotriene synthesis, and produced leukotriene B(4) (LTB(4)) when stimulated with the calcium ionophore A23187. Notably, LTB(4) synthesis was increased threefold over normal (P < 0.03) in bone marrow cells from diabetic mice. In contrast, retinas from nondiabetic or diabetic mice produced neither leukotrienes nor 5-lipoxygenase mRNA. Despite an inability to initiate leukotriene biosynthesis, the addition of exogenous leukotriene A(4) (LTA(4); the precursor of LTB(4)) to retinas resulted in robust production of LTB(4). Similarly, retinal glial cells synthesized LTB(4) from LTA(4), whereas mRECs produced both LTB(4) and the cysteinyl leukotrienes. Culturing the retinal cells in high-glucose concentrations enhanced leukotriene synthesis and selectively increased expression of the LTB(4) receptor BLT1. Antagonism of the BLT1 receptor inhibited LTB(4)-induced mREC cell death. CONCLUSIONS: Transcellular delivery of LTA(4) from marrow-derived cells to retinal cells results in the generation of LTB(4) and the death of endothelial cells and, thus, might contribute to chronic inflammation and retinopathy in diabetes.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Diabetic Retinopathy/metabolism , Hyperglycemia/metabolism , Leukotriene B4/biosynthesis , Animals , Apoptosis , Arachidonate 5-Lipoxygenase/genetics , Arachidonate 5-Lipoxygenase/metabolism , Blotting, Western , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Calcimycin/pharmacology , Cells, Cultured , Chromatography, High Pressure Liquid , Diabetes Mellitus, Experimental/pathology , Diabetic Retinopathy/pathology , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Glucose/pharmacology , Leukotriene A4/pharmacology , Mass Spectrometry , Mice , Mice, Inbred C57BL , Neuroglia/drug effects , Neuroglia/metabolism , RNA, Messenger/metabolism , Receptors, Leukotriene B4/metabolism , Retina/pathology , Retinal Vessels/pathology , Reverse Transcriptase Polymerase Chain Reaction
6.
J Exp Biol ; 211(Pt 8): 1344-51, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18375859

ABSTRACT

Marsupials are born in a relatively underdeveloped state and develop during a period of intensive maturation in the postnatal period. During this period, the young marsupial lacks a competent immune system, but manages to survive despite the potential of exposure to environmental pathogens. Passive immune transfer via the milk is one well-recognised strategy to compensate the neonate, but there also may be innate immune mechanisms in place. In this study, CD14 and Toll-like receptor 4 (TLR4), integral molecular components of pathogen recognition, were identified and characterised for the first time in a marsupial, the tammar wallaby (Macropus eugenii). Functional motifs of tammar CD14 and the toll/interleukin receptor (TIR) domain of TLR4 were highly conserved. The lipopolysaccharide (LPS) binding residues and the TLR4 interaction site of CD14 were conserved in all marsupials. The TIR signalling domain had 84% identity within marsupials and 77% with eutherians. Stimulation of adult tammar leukocytes resulted in the induction of a biphasic pattern of CD14 and TLR4 expression, and coincided with increased production of the pro-inflammatory cytokine TNF-alpha. Differential patterns of expression of CD14 and TLR4 were observed in tammar pouch young early in development, suggesting that early maturation of the innate immune system in these animals may have developed as an immune survival strategy to protect the marsupial neonate from exposure to microbial pathogens.


Subject(s)
Animals, Newborn/metabolism , Leukotriene A4/pharmacology , Lipopolysaccharide Receptors/metabolism , Lipopolysaccharides/pharmacology , Macropodidae/growth & development , Macropodidae/metabolism , Toll-Like Receptor 4/metabolism , Amino Acid Sequence , Animals , Animals, Newborn/genetics , Animals, Newborn/growth & development , Gene Expression Regulation, Developmental , Hydrophobic and Hydrophilic Interactions , Leukocytes/drug effects , Leukocytes/metabolism , Lipopolysaccharide Receptors/chemistry , Lipopolysaccharide Receptors/genetics , Lipopolysaccharide Receptors/isolation & purification , Macropodidae/genetics , Molecular Sequence Data , Organ Specificity/drug effects , Phylogeny , Protein Structure, Tertiary , Sequence Alignment , Time Factors , Toll-Like Receptor 4/chemistry , Toll-Like Receptor 4/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
7.
Comp Biochem Physiol B Biochem Mol Biol ; 149(3): 524-33, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18248751

ABSTRACT

Antimicrobial peptides, such as cathelicidin, are an evolutionarily old defense system. However they have more complex actions than just simply their antimicrobial effects, including immunoregulation and interaction with the adaptive immune system. In this study we have characterized several novel cathelicidin-like peptides from the tammar wallaby (Macropus eugenii). The tammar cathelicidin-like (MaeuCath) mRNA were isolated based on the conservation of the cathelin-like amino terminus. Mature MaeuCath peptides were positively charged with hydrophobic carboxyl tails, features that are fundamental for antimicrobial function. MaeuCath1 was induced in tammar leukocytes in response to pathogen-associated molecular patterns from both gram positive and negative bacteria. In addition, we also examined the expression of MaeuCath1 in the primary and secondary lymphoid organs of the tammar neonate throughout early pouch life. The results from this study demonstrate the importance that MaeuCath1 may play in innate defense of the marsupial young, especially in the mucosal organs. Such expression of antimicrobial peptides may form part of the immune strategies of marsupials for neonatal survival during their post-partum development.


Subject(s)
Cathelicidins/metabolism , Macropodidae/metabolism , Amino Acid Sequence , Animals , Cathelicidins/chemistry , Cathelicidins/genetics , Cathelicidins/isolation & purification , Cells, Cultured , Gene Expression Regulation/drug effects , Leukocytes/drug effects , Leukocytes/metabolism , Leukotriene A4/pharmacology , Lipopolysaccharides/pharmacology , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/metabolism , Molecular Sequence Data , Peptides/chemistry , Peptides/genetics , Peptides/isolation & purification , Peptides/metabolism , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Alignment
8.
J Leukoc Biol ; 78(4): 930-6, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16081598

ABSTRACT

DNA containing cytosine-guanine dinucleotide (CpG) motifs (CpG DNA) has potent immunostimulatory activities that resemble those of lipopolysaccharide (LPS) in its effects on the innate immune system. Among its activities, LPS can induce the release of high mobility group protein (HMGB1) by macrophages, a dual function molecule that can mediate the late effects of LPS. To determine whether CpG DNA can also induce HMGB1 release, the effects of a synthetic CpG oligonucleotide (ODN) on HMGB1 release from RAW 264.7 and J774A.1 cells were assessed by Western blotting of culture supernatants. Under conditions in which the CpG ODN activated the cell lines, as assessed by stimulation of tumor necrosis factor alpha and interleukin-12, it failed to cause HMGB1 release into the media. Although unable to induce HMGB1 release by itself, the CpG ODN nevertheless potentiated the action of LPS. With RAW 264.7 cells, lipoteichoic acid and polyinosinic-polycytidylic acid, like LPS, stimulated HMGB1 release as well as cytokine production. These results indicate that the effects of CpG DNA on macrophages differ from other ligands of Toll-like receptors and may lead to a distinct pattern of immune cell activation in the context of infection or its use as an immunomodulatory agent.


Subject(s)
CpG Islands/physiology , DNA/pharmacology , Dinucleoside Phosphates/pharmacology , HMGB1 Protein/metabolism , Macrophages/immunology , Animals , Cell Line , DNA/immunology , HMGB1 Protein/drug effects , Leukotriene A4/pharmacology , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Mice , RNA, Double-Stranded/pharmacology
9.
Immunology ; 114(4): 522-30, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15804289

ABSTRACT

Summary Heat stress can alert innate immunity by inducing stress proteins such as heat-shock proteins (HSPs). However, it remains unclear whether heat stress affects the activation of antigen-presenting cell (APC) in response to pathogen-associated molecule patterns (PAMPs) by directly regulating pathogen recognition receptors (PRRs). As an important kind of PRRs, Toll-like receptors (TLRs) play critical roles in the activation of immune system. In this study, we demonstrated that heat shock up-regulated the expression of HSP70 as well as TLR2 and TLR4 in monocytes. The induction of TLRs was prior to that of HSP70, which suggesting the up-regulation of TLR2 and TLR4 might be independent of the induction of HSP70. Heat shock activated p38 kinase, extracellular signal-related kinase (ERK) and nuclear factor-kappa B (NF-kappaB) signal pathways in monocytes. Pretreatment with specific inhibitor of p38 kinase, but not those of ERK and NF-kappaB, inhibited heat shock-induced up-regulation of TLR2 and TLR4. This indicates that p38 pathway takes part in heat shock-induced up-regulation of TLR2 and TLR4. Heat shock also increased lipoteichoic acid- or lipopolysaccharide-induced interleukin-6 production by monocytes. These results suggest that the p38 kinase-mediated up-regulation of TLR2 and TLR4 might be involved in the enhanced response to PAMP in human monocytes induced by heat shock.


Subject(s)
Hot Temperature , Lymphocytes/metabolism , MAP Kinase Signaling System/physiology , Membrane Glycoproteins/metabolism , Receptors, Cell Surface/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Blotting, Western/methods , Cell Line , Flow Cytometry , Gene Expression Regulation , HSC70 Heat-Shock Proteins , HSP70 Heat-Shock Proteins/analysis , Humans , Interleukin-6/immunology , Leukotriene A4/pharmacology , Lipopolysaccharide Receptors/analysis , Lipopolysaccharides/pharmacology , Lymphocyte Activation , Lymphocytes/immunology , Membrane Glycoproteins/genetics , NF-kappa B/metabolism , RNA, Messenger/analysis , Receptors, Cell Surface/genetics , Reverse Transcriptase Polymerase Chain Reaction , Toll-Like Receptor 2 , Toll-Like Receptor 4 , Toll-Like Receptors
10.
J Biol Chem ; 279(26): 27376-82, 2004 Jun 25.
Article in English | MEDLINE | ID: mdl-15078870

ABSTRACT

Leukotriene (LT) A(4) hydrolase is a bifunctional zinc metalloenzyme, which converts LTA(4) into the neutrophil chemoattractant LTB(4) and also exhibits an anion-dependent aminopeptidase activity. In the x-ray crystal structure of LTA(4) hydrolase, Arg(563) and Lys(565) are found at the entrance of the active center. Here we report that replacement of Arg(563), but not Lys(565), leads to complete abrogation of the epoxide hydrolase activity. However, mutations of Arg(563) do not seem to affect substrate binding strength, because values of K(i) for LTA(4) are almost identical for wild type and (R563K)LTA(4) hydrolase. These results are supported by the 2.3-A crystal structure of (R563A)LTA(4) hydrolase, which does not reveal structural changes that can explain the complete loss of enzyme function. For the aminopeptidase reaction, mutations of Arg(563) reduce the catalytic activity (V(max) = 0.3-20%), whereas mutations of Lys(565) have limited effect on catalysis (V(max) = 58-108%). However, in (K565A)- and (K565M)LTA(4) hydrolase, i.e. mutants lacking a positive charge, values of the Michaelis constant for alanine-p-nitroanilide increase significantly (K(m) = 480-640%). Together, our data indicate that Arg(563) plays an unexpected, critical role in the epoxide hydrolase reaction, presumably in the positioning of the carboxylate tail to ensure perfect substrate alignment along the catalytic elements of the active site. In the aminopeptidase reaction, Arg(563) and Lys(565) seem to cooperate to provide sufficient binding strength and productive alignment of the substrate. In conclusion, Arg(563) and Lys(565) possess distinct roles as carboxylate recognition sites for two chemically different substrates, each of which is turned over in separate enzymatic reactions catalyzed by LTA(4) hydrolase.


Subject(s)
Aminopeptidases/metabolism , Carboxylic Acids/metabolism , Epoxide Hydrolases/metabolism , Amino Acid Sequence , Arginine/genetics , Arginine/metabolism , Binding Sites , Catalysis , Crystallography, X-Ray , Enzyme Inhibitors/pharmacology , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/chemistry , Epoxide Hydrolases/genetics , Escherichia coli/metabolism , Humans , Hydroxamic Acids/pharmacology , Leukotriene A4/pharmacology , Lysine/genetics , Lysine/metabolism , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Static Electricity
11.
Biochem Pharmacol ; 62(7): 903-11, 2001 Oct 01.
Article in English | MEDLINE | ID: mdl-11543725

ABSTRACT

The sesquiterpene lactone helenalin, which can be isolated from several plant species of the Asteraceae family, is a potent anti-inflammatory and antineoplastic agent. In agreement, alcohol extracts of these plants are used for local external treatment of inflammatory conditions. Since leukotrienes are important mediators in inflammatory processes, the inhibitory effects of helenalin and some derivatives on leukotriene (LT) biosynthesis were studied. Treatment of human platelets with helenalin provoked irreversible inhibition of LTC(4) synthase in a concentration- and time-dependent manner with an IC(50) of 12 microM after a 60 min preincubation. 11alpha,13-Dihydrohelenalin acetate was less potent. Interestingly, individual donors could be divided into two distinct groups with respect to the efficacy of helenalin to suppress platelet LTC(4) synthase. In human granulocytes, helenalin inhibited both the 5-lipoxygenase (IC(50) 9 microM after 60 min preincubation) and LTC(4) synthase in a concentration- and time-dependent fashion. In contrast, the drug was without effect on LTA(4) hydrolase. The GSH-containing adducts (2beta-(S-glutathionyl)-2,3-dihydrohelenalin and 2beta-(S-glutathionyl)-2,3,11alpha,13-tetra hydrohelenalin acetate) did not significantly inhibit LTC(4) synthase. The present results indicate a mechanism for the anti-inflammatory effect of helenalin and related compounds.


Subject(s)
Arachidonate 5-Lipoxygenase/metabolism , Blood Platelets/drug effects , Glutathione Transferase/metabolism , Granulocytes/drug effects , Platelet Aggregation Inhibitors/pharmacology , Sesquiterpenes/pharmacology , Arachidonic Acid/pharmacology , Blood Platelets/enzymology , Calcimycin/pharmacology , Drug Interactions , Glutathione Transferase/antagonists & inhibitors , Granulocytes/metabolism , Humans , Ionophores/pharmacology , Leukotriene A4/pharmacology , Leukotriene C4/metabolism , Lipoxygenase Inhibitors , Platelet Aggregation Inhibitors/chemistry , Sesquiterpenes/chemistry , Sesquiterpenes, Guaiane
12.
Biochem Biophys Res Commun ; 235(2): 374-6, 1997 Jun 18.
Article in English | MEDLINE | ID: mdl-9199200

ABSTRACT

The effects of 1 microM concentrations of arachidonic acid hydroperoxide (HPETES) products of 5-, 12- and 15-lipoxygenase on Na+, K(+)-ATPase activity were investigated in synaptosomal membrane preparations from rat cerebral cortex. 5-HPETE inhibited Na+, K(+)-ATPase activity by up to 67 %. In contrast, 12-HPETE and 15-HPETE did not inhibit Na+, K(+)-ATPase activity. In addition, neither 5-HETE or LTA4 inhibited Na+, K(+)-ATPase activity. Dose-response studies indicated that 5-HPETE was a potent (IC25 = 10(-8) M) inhibitor of Na+, K(+)-ATPase activity. These findings indicate that 5-HPETE inhibits Na+, K(+)-ATPase activity by a mechanism that is dependent on the hydroperoxide position and independent of further metabolism by 5-lipoxygenase. It is proposed that 5-HPETE production by 5-lipoxygenase and subsequent inhibition of neuronal Na+, K(+)-ATPase activity may be a mechansim for modulating synaptic transmission.


Subject(s)
Leukotrienes/pharmacology , Neurons/enzymology , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Synaptosomes/enzymology , Animals , Arachidonate Lipoxygenases/metabolism , Cerebral Cortex/enzymology , Enzyme Inhibitors/pharmacology , Hydroxyeicosatetraenoic Acids/pharmacology , Leukotriene A4/pharmacology , Lipid Peroxides/pharmacology , Male , Neurons/drug effects , Rats , Rats, Sprague-Dawley , Synaptic Transmission/drug effects , Synaptosomes/drug effects
13.
Proc Natl Acad Sci U S A ; 93(12): 5931-5, 1996 Jun 11.
Article in English | MEDLINE | ID: mdl-8650196

ABSTRACT

Leukotriene A4 (LTA4) hydrolase [(7E,9E,11Z,14Z)-(5S,6S)-5,6-epoxyicosa-7, 9,11,14-tetraenoate hydrolase; EC 3.3.2.6] is a bifunctional zinc metalloenzyme that catalyzes the final step in the biosynthesis of the potent chemotactic agent leukotriene B4 (LTB4). LTA4 hydrolase/aminopeptidase is suicide inactivated during catalysis via an apparently mechanism-based irreversible binding of LTA4 to the protein in a 1:1 stoichiometry. Previously, we have identified a henicosapeptide, encompassing residues Leu-365 to Lys-385 in human LTA4 hydrolase, which contains a site involved in the covalent binding of LTA4 to the native enzyme. To investigate the role of Tyr-378, a potential candidate for this binding site, we exchanged Tyr for Phe or Gln in two separate mutants. In addition, each of two adjacent and potentially reactive residues, Ser-379 and Ser-380, were exchanged for Ala. The mutated enzymes were expressed as (His)6-tagged fusion proteins in Escherichia coli, purified to apparent homogeneity, and characterized. Enzyme activity determinations and differential peptide mapping, before and after repeated exposure to LTA4, revealed that wild-type enzyme and the mutants [S379A] and [S380A]LTA4hydrolase were equally susceptible to suicide inactivation whereas the mutants in position 378 were no longer inactivated or covalently modified by LTA4. Furthermore, in [Y378F]LTA4 hydrolase, the value of kcat for epoxide hydrolysis was increased 2.5-fold over that of the wild-type enzyme. Thus, by a single-point mutation in LTA4 hydrolase, catalysis and covalent modification/inactivation have been dissociated, yielding an enzyme with increased turnover and resistance to mechanism-based inactivation.


Subject(s)
Epoxide Hydrolases/antagonists & inhibitors , Tyrosine/genetics , Base Sequence , DNA, Complementary , Epoxide Hydrolases/genetics , Epoxide Hydrolases/metabolism , Humans , Kinetics , Leukotriene A4/pharmacology , Molecular Sequence Data , Mutagenesis, Site-Directed , Peptide Mapping , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
14.
FEBS Lett ; 377(1): 87-91, 1995 Dec 11.
Article in English | MEDLINE | ID: mdl-8543026

ABSTRACT

The effect of the protein kinase C activator, phorbol 12-myristate 13-acetate (PMA), on the metabolism of exogenous leukotriene (LT)A4 in human granulocytes was investigated. After incubation with LTA4 decreased levels of LTC4 but not LTB4 were observed in granulocyte suspensions pretreated with PMA. This finding could in part be ascribed to oxidative metabolism of LTC4, since PMA induced a rapid degradation of exogenously added LTC4. After blocking of LTC4 metabolism with the H2O2 scavenger catalase, a PMA-provoked suppression of the conversion of LTA4 to LTC4 was observed, indicating PKC-dependent regulation of LTC4 synthase activity. This effect, as well as PMA-induced degradation of LTC4 was prevented by specific protein kinase C inhibitors.


Subject(s)
Glutathione Transferase/antagonists & inhibitors , Granulocytes/enzymology , Tetradecanoylphorbol Acetate/pharmacology , Calcimycin/pharmacology , Catalase/pharmacology , Glutathione Transferase/metabolism , Humans , Kinetics , Leukotriene A4/pharmacology , Leukotriene B4/metabolism , Leukotriene C4/metabolism , Protein Kinase C/metabolism
16.
J Biol Chem ; 269(4): 2627-31, 1994 Jan 28.
Article in English | MEDLINE | ID: mdl-8300592

ABSTRACT

We report that leukotriene A4, the electrophilic product of 5-lipoxygenase catalysis, irreversibly inactivates the enzyme. Leukotriene A4 inhibits 5-hydroxyeicosatetraenoic acid formation by human neutrophils and differentiated granulocytic HL-60 cells in a concentration-dependent manner with IC50 values = 22.4 +/- 2.5 and 29.0 +/- 8.0 microM, respectively. Recovery of cellular enzymatic activity is negligible (< 6%) following inactivation. Leukotriene A4 inactivates cellular 5-lipoxygenase without inhibiting its translocation from the cytosol to the membrane, suggesting that it impairs catalysis without impairing formation of the complex between 5-lipoxygenase and its membrane-associated activating protein. Consistent with this, leukotriene A4 inactivates purified 5-lipoxygenase from human neutrophils, via saturable, pseudo first-order kinetics with a rate constant, ki = 0.14 min-1 and a dissociation constant, Ki = 2.1 +/- 0.7 microM. Purified 5-lipoxygenase incubated with [3H]arachidonic acid incorporated a radiolabeled species that was not removed by electrophoresis under reduced denaturing conditions. Preincubation with leukotriene A4 diminished the incorporation of radiolabeled material, consistent with irreversible modification of 5-lipoxygenase by its metastable product, leukotriene A4. This unusual product inactivation mechanism may contribute to the decline in 5-lipoxygenase activity observed during catalysis.


Subject(s)
Leukocytes/enzymology , Leukotriene A4/pharmacology , Lipoxygenase Inhibitors , Neutrophils/enzymology , Arachidonate 5-Lipoxygenase/blood , Arachidonate 5-Lipoxygenase/isolation & purification , Cell Differentiation , Cell Line , Humans , Hydroxyeicosatetraenoic Acids/analysis , Hydroxyeicosatetraenoic Acids/metabolism , Hydroxyurea/analogs & derivatives , Hydroxyurea/pharmacology , Kinetics , Leukemia, Promyelocytic, Acute , Leukotriene A4/analogs & derivatives , Lipoxygenase Inhibitors/pharmacology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...