Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.342
Filter
1.
Rev. esp. patol ; 57(2): 111-115, Abr-Jun, 2024. tab, ilus
Article in English | IBECS | ID: ibc-232414

ABSTRACT

Russell bodies (RBs) are round eosinophilic intracytoplasmic inclusions formed by condensed immunoglobulins in mature plasma cells, which are called Mott cells. These cells are rarely found in the gastric tract, with even less cases reported in the colorectal region. There are still many questions about this event, as it is still unknown the relationship between the agents reported of increasing the probability of appearance of these cells and the generation of RBs. In this case report we describe the fifth patient presenting an infiltration of Mott cells in a colorectal polyp, being the second case with a monoclonal origin without a neoplastic cause, and the first one monoclonal for lambda. A comparison with previously similar reported cases is also done, and a possible etiopathogenic hypothesis proposed. (AU)


Los cuerpos de Russell (RB) son inclusiones intracitoplasmáticas eosinofílicas redondas formadas por inmunoglobulinas condensadas en las células plasmáticas maduras, que se denominan células de Mott. Estas células rara vez se encuentran en el tracto gástrico, y son aún más infrecuentes en la región colorrectal. Actualmente hay muchas dudas sobre este evento, ya que se desconoce la relación entre los agentes causantes de aumentar la probabilidad de aparición tanto de estas células como de la de RB. En este caso describimos al quinto paciente con un pólipo colorrectal, localizado en el tracto colorrectal e infiltrado por células de Mott, siendo el segundo caso de origen monoclonal sin causa neoplásica y el primero monoclonal para lambda. También se hace una comparación con casos similares previamente reportados y se propone una hipótesis etiopatogénica. (AU)


Subject(s)
Humans , Siphoviridae , Colonic Polyps , Plasma Cells , Lewy Bodies , Immunoglobulins
2.
Neurochem Int ; 177: 105760, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723900

ABSTRACT

Neurodegenerative diseases such as Parkinson's disease (PD) are characterized by the death of neurons in specific areas of the brain. One of the proteins that is involved in the pathogenesis of PD is α-synuclein (α-syn). α-Syn is a normal protein that is found in all neurons, but in PD, it misfolds and aggregates into toxic fibrils. These fibrils can then coalesce into pathological inclusions, such as Lewy bodies and Lewy neurites. The pathogenic pathway of PD is thought to involve a number of steps, including misfolding and aggregation of α-syn, mitochondrial dysfunction, protein clearance impairment, neuroinflammation and oxidative stress. A deeper insight into the structure of α-syn and its fibrils could aid in understanding the disease's etiology. The prion-like nature of α-syn is also an important area of research. Prions are misfolded proteins that can spread from cell to cell, causing other proteins to misfold as well. It is possible that α-syn may behave in a similar way, spreading from cell to cell and causing a cascade of misfolding and aggregation. Various post-translational alterations have also been observed to play a role in the pathogenesis of PD. These alterations can involve a variety of nuclear and extranuclear activities, and they can lead to the misfolding and aggregation of α-syn. A better understanding of the pathogenic pathway of PD could lead to the development of new therapies for the treatment of this disease.


Subject(s)
Parkinson Disease , Protein Folding , alpha-Synuclein , alpha-Synuclein/metabolism , Humans , Parkinson Disease/metabolism , Parkinson Disease/pathology , Animals , Lewy Bodies/metabolism , Lewy Bodies/pathology
3.
Nat Commun ; 15(1): 3835, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714700

ABSTRACT

Aggregated forms of α-synuclein constitute the major component of Lewy bodies, the proteinaceous aggregates characteristic of Parkinson's disease. Emerging evidence suggests that α-synuclein aggregation may occur within liquid condensates formed through phase separation. This mechanism of aggregation creates new challenges and opportunities for drug discovery for Parkinson's disease, which is otherwise still incurable. Here we show that the condensation-driven aggregation pathway of α-synuclein can be inhibited using small molecules. We report that the aminosterol claramine stabilizes α-synuclein condensates and inhibits α-synuclein aggregation within the condensates both in vitro and in a Caenorhabditis elegans model of Parkinson's disease. By using a chemical kinetics approach, we show that the mechanism of action of claramine is to inhibit primary nucleation within the condensates. These results illustrate a possible therapeutic route based on the inhibition of protein aggregation within condensates, a phenomenon likely to be relevant in other neurodegenerative disorders.


Subject(s)
Caenorhabditis elegans , Parkinson Disease , Protein Aggregates , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/chemistry , Caenorhabditis elegans/metabolism , Animals , Parkinson Disease/metabolism , Parkinson Disease/drug therapy , Humans , Protein Aggregates/drug effects , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/drug therapy , Disease Models, Animal , Lewy Bodies/metabolism , Kinetics
4.
Acta Neuropathol Commun ; 12(1): 81, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790074

ABSTRACT

Cerebrovascular and α-synuclein pathologies are frequently observed alongside Alzheimer disease (AD). The heterogeneity of AD necessitates comprehensive approaches to postmortem studies, including the representation of historically underrepresented ethnic groups. In this cohort study, we evaluated small vessel disease pathologies and α-synuclein deposits among Hispanic decedents (HD, n = 92) and non-Hispanic White decedents (NHWD, n = 184) from three Alzheimer's Disease Research Centers: Columbia University, University of California San Diego, and University of California Davis. The study included cases with a pathological diagnosis of Intermediate/High AD based on the National Institute on Aging- Alzheimer's Association (NIA-AA) and/or NIA-Reagan criteria. A 2:1 random comparison sample of NHWD was frequency-balanced and matched with HD by age and sex. An expert blinded to demographics and center origin evaluated arteriolosclerosis, cerebral amyloid angiopathy (CAA), and Lewy bodies/Lewy neurites (LBs/LNs) with a semi-quantitative approach using established criteria. There were many similarities and a few differences among groups. HD showed more severe Vonsattel grading of CAA in the cerebellum (p = 0.04), higher CAA density in the posterior hippocampus and cerebellum (ps = 0.01), and increased LBs/LNs density in the frontal (p = 0.01) and temporal cortices (p = 0.03), as determined by Wilcoxon's test. Ordinal logistic regression adjusting for age, sex, and center confirmed these findings except for LBs/LNs in the temporal cortex. Results indicate HD with AD exhibit greater CAA and α-synuclein burdens in select neuroanatomic regions when compared to age- and sex-matched NHWD with AD. These findings aid in the generalizability of concurrent arteriolosclerosis, CAA, and LBs/LNs topography and severity within the setting of pathologically confirmed AD, particularly in persons of Hispanic descent, showing many similarities and a few differences to those of NHW descent and providing insights into precision medicine approaches.


Subject(s)
Alzheimer Disease , Hispanic or Latino , Lewy Bodies , White People , Humans , Alzheimer Disease/pathology , Alzheimer Disease/ethnology , Female , Male , Aged , Aged, 80 and over , Cohort Studies , Lewy Bodies/pathology , Cerebral Amyloid Angiopathy/pathology , Cerebral Amyloid Angiopathy/ethnology , alpha-Synuclein/metabolism , Brain/pathology , Cerebral Small Vessel Diseases/pathology , Cerebral Small Vessel Diseases/ethnology , Arteriolosclerosis/pathology
5.
Acta Neuropathol ; 147(1): 67, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38581586

ABSTRACT

Transcription factor EB (TFEB) is a master regulator of genes involved in the maintenance of autophagic and lysosomal homeostasis, processes which have been implicated in the pathogenesis of GBA-related and sporadic Parkinson's disease (PD), and dementia with Lewy bodies (DLB). TFEB activation results in its translocation from the cytosol to the nucleus. Here, we investigated TFEB subcellular localization and its relation to intracellular alpha-synuclein (aSyn) accumulation in post-mortem human brain of individuals with either incidental Lewy body disease (iLBD), GBA-related PD/DLB (GBA-PD/DLB) or sporadic PD/DLB (sPD/DLB), compared to control subjects. We analyzed nigral dopaminergic neurons using high-resolution confocal and stimulated emission depletion (STED) microscopy and semi-quantitatively scored the TFEB subcellular localization patterns. We observed reduced nuclear TFEB immunoreactivity in PD/DLB patients compared to controls, both in sporadic and GBA-related cases, as well as in iLBD cases. Nuclear depletion of TFEB was more pronounced in neurons with Ser129-phosphorylated (pSer129) aSyn accumulation in all groups. Importantly, we observed previously-unidentified TFEB-immunopositive perinuclear clusters in human dopaminergic neurons, which localized at the Golgi apparatus. These TFEB clusters were more frequently observed and more severe in iLBD, sPD/DLB and GBA-PD/DLB compared to controls, particularly in pSer129 aSyn-positive neurons, but also in neurons lacking detectable aSyn accumulation. In aSyn-negative cells, cytoplasmic TFEB clusters were more frequently observed in GBA-PD/DLB and iLBD patients, and correlated with reduced GBA enzymatic activity as well as increased Braak LB stage. Altered TFEB distribution was accompanied by a reduction in overall mRNA expression levels of selected TFEB-regulated genes, indicating a possible early dysfunction of lysosomal regulation. Overall, we observed cytoplasmic TFEB retention and accumulation at the Golgi in cells without apparent pSer129 aSyn accumulation in iLBD and PD/DLB patients. This suggests potential TFEB impairment at the early stages of cellular disease and underscores TFEB as a promising therapeutic target for synucleinopathies.


Subject(s)
Lewy Body Disease , Humans , alpha-Synuclein/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Brain/pathology , Dopaminergic Neurons/metabolism , Lewy Bodies/pathology , Lewy Body Disease/pathology
6.
J Neuroinflammation ; 21(1): 93, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622654

ABSTRACT

The neuroinflammatory process in synucleinopathies of the aging population such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB) involves microglial activation as well as infiltration of the CNS by T cells and natural killer T cells (NKTs). To evaluate the potential of targeting NKT cells to modulate neuroinflammation, we treated α-syn transgenic (tg) mice (e.g.: Thy1 promoter line 61) with an antibody against CD1d, which is a glycoprotein expressed in antigen presenting cells (APCs). CD1d-presented lipid antigens activate NKT cells through the interaction with T cell receptor in NKTs, resulting in the production of cytokines. Thus, we hypothesized that blocking the APC-NKT interaction with an anti-CD1d antibody might reduce neuroinflammation and neurodegeneration in models of DLB/PD. Treatment with the anti-CD1d antibody did not have effects on CD3 (T cells), slightly decreased CD4 and increased CD8 lymphocytes in the mice. Moreover, double labeling studies showed that compared to control (IgG) treated α-syn tg mice, treatment with anti-CD1d decreased numbers of CD3/interferon γ (IFN γ)-positive cells, consistent with NKTs. Further double labeling studies showed that CD1d-positive cells co-localized with the astrocytes marker GFAP and that anti-CD1d antibody reduced this effect. While in control α-syn tg mice CD3 positive cells were near astrocytes, this was modified by the treatment with the CD1d antibody. By qPCR, levels of IFN γ, CCL4, and interleukin-6 were increased in the IgG treated α-syn tg mice. Treatment with CD1d antibody blunted this cytokine response that was associated with reduced astrocytosis and microgliosis in the CNS of the α-syn tg mice treated with CD1d antibody. Flow cytometric analysis of immune cells in α-syn tg mice revealed that CD1d-tet + T cells were also increased in the spleen of α-syn tg mice, which treatment with the CD1d antibody reduced. Reduced neuroinflammation in the anti-CD1d-treated α-syn tg mice was associated with amelioration of neurodegenerative pathology. These results suggest that reducing infiltration of NKT cells with an antibody against CD1d might be a potential therapeutical approach for DLB/PD.


Subject(s)
Parkinson Disease , alpha-Synuclein , Mice , Animals , alpha-Synuclein/genetics , Lewy Bodies/pathology , Neuroinflammatory Diseases , Parkinson Disease/pathology , Mice, Transgenic , Immunotherapy/methods , Cytokines , Immunoglobulin G
7.
Int J Mol Sci ; 25(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38612739

ABSTRACT

In the last two decades, alpha-synuclein (alpha-syn) assumed a prominent role as a major component and seeding structure of Lewy bodies (LBs). This concept is driving ongoing research on the pathophysiology of Parkinson's disease (PD). In line with this, alpha-syn is considered to be the guilty protein in the disease process, and it may be targeted through precision medicine to modify disease progression. Therefore, designing specific tools to block the aggregation and spreading of alpha-syn represents a major effort in the development of disease-modifying therapies in PD. The present article analyzes concrete evidence about the significance of alpha-syn within LBs. In this effort, some dogmas are challenged. This concerns the question of whether alpha-syn is more abundant compared with other proteins within LBs. Again, the occurrence of alpha-syn compared with non-protein constituents is scrutinized. Finally, the prominent role of alpha-syn in seeding LBs as the guilty structure causing PD is questioned. These revisited concepts may be helpful in the process of validating which proteins, organelles, and pathways are likely to be involved in the damage to meso-striatal dopamine neurons and other brain regions involved in PD.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , Lewy Bodies , Corpus Striatum , Disease Progression
8.
Nat Commun ; 15(1): 2436, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499535

ABSTRACT

Parkinson's disease (PD) is closely linked to α-synuclein (α-syn) misfolding and accumulation in Lewy bodies. The PDZ serine protease HTRA1 degrades fibrillar tau, which is associated with Alzheimer's disease, and inactivating mutations to mitochondrial HTRA2 are implicated in PD. Here, we report that HTRA1 inhibits aggregation of α-syn as well as FUS and TDP-43, which are implicated in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. The protease domain of HTRA1 is necessary and sufficient for inhibiting aggregation, yet this activity is proteolytically-independent. Further, HTRA1 disaggregates preformed α-syn fibrils, rendering them incapable of seeding aggregation of endogenous α-syn, while reducing HTRA1 expression promotes α-syn seeding. HTRA1 remodels α-syn fibrils by targeting the NAC domain, the key domain catalyzing α-syn amyloidogenesis. Finally, HTRA1 detoxifies α-syn fibrils and prevents formation of hyperphosphorylated α-syn accumulations in primary neurons. Our findings suggest that HTRA1 may be a therapeutic target for a range of neurodegenerative disorders.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Amyloid/metabolism , High-Temperature Requirement A Serine Peptidase 1/genetics , High-Temperature Requirement A Serine Peptidase 1/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Lewy Bodies/metabolism
9.
Nat Commun ; 15(1): 2750, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553463

ABSTRACT

The defining feature of Parkinson disease (PD) and Lewy body dementia (LBD) is the accumulation of alpha-synuclein (Asyn) fibrils in Lewy bodies and Lewy neurites. Here we develop and validate a method to amplify Asyn fibrils extracted from LBD postmortem tissue samples and use solid state nuclear magnetic resonance (SSNMR) studies to determine atomic resolution structure. Amplified LBD Asyn fibrils comprise a mixture of single protofilament and two protofilament fibrils with very low twist. The protofilament fold is highly similar to the fold determined by a recent cryo-electron microscopy study for a minority population of twisted single protofilament fibrils extracted from LBD tissue. These results expand the structural characterization of LBD Asyn fibrils and approaches for studying disease mechanisms, imaging agents and therapeutics targeting Asyn.


Subject(s)
Lewy Body Disease , Parkinson Disease , Humans , alpha-Synuclein/chemistry , Cryoelectron Microscopy , Lewy Bodies/pathology , Lewy Body Disease/pathology , Parkinson Disease/pathology
10.
Neurobiol Aging ; 137: 78-93, 2024 May.
Article in English | MEDLINE | ID: mdl-38452574

ABSTRACT

Oddball task-related EEG delta and theta responses are associated with frontal executive functions, which are significantly impaired in patients with dementia due to Parkinson's disease (PDD) and Lewy bodies (DLB). The present study investigated the oddball task-related EEG delta and theta responses in patients with PDD, DLB, and Alzheimer's disease dementia (ADD). During visual and auditory oddball paradigms, EEG activity was recorded in 20 ADD, 17 DLB, 20 PDD, and 20 healthy (HC) older adults. Event-related EEG power spectrum and phase-locking analysis were performed at the delta (1-4 Hz) and theta (4-7 Hz) frequency bands for target and nontarget stimuli. Compared to the HC persons, dementia groups showed lower frontal and central delta and theta power and phase-locking associated with task performance and neuropsychological test scores. Notably, this effect was more significant in the PDD and DLB than in the ADD. In conclusion, oddball task-related frontal and central EEG delta and theta responses may reflect frontal supramodal executive dysfunctions in PDD and DLB patients.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Parkinson Disease , Humans , Aged , Lewy Body Disease/psychology , Lewy Bodies , Electroencephalography
11.
Ann Neurol ; 95(5): 843-848, 2024 May.
Article in English | MEDLINE | ID: mdl-38501694

ABSTRACT

When effective treatments against neurodegenerative diseases become a reality, it will be important to know the age these pathologies begin to develop. We investigated alpha-synuclein pathology in brain tissue of the Tampere Sudden Death Study-unselected forensic autopsies on individuals living outside hospital institutions in Finland. Of 562 (16-95 years) participants, 42 were positive for Lewy-related pathology (LRP). The youngest LRP case was aged 54 years, and the frequency of LRP in individuals aged ≥50 years was 9%. This forensic autopsy study indicates LRP starts already in middle age and is more common than expected in the ≥50 years-of-age non-hospitalized population. ANN NEUROL 2024;95:843-848.


Subject(s)
Death, Sudden , Lewy Body Disease , alpha-Synuclein , Humans , Middle Aged , Aged, 80 and over , Aged , Male , Female , Finland/epidemiology , Death, Sudden/pathology , Adolescent , Lewy Body Disease/pathology , Lewy Body Disease/metabolism , alpha-Synuclein/metabolism , Adult , Young Adult , Brain/pathology , Brain/metabolism , Autopsy , Lewy Bodies/pathology
12.
Parkinsonism Relat Disord ; 122: 106077, 2024 May.
Article in English | MEDLINE | ID: mdl-38461037

ABSTRACT

These facts argue against the gain-of-function synucleinopathy hypothesis, which proposes that Lewy pathology causes Parkinson's disease: (1) most brains from people without neurological symptoms have multiple pathologies; (2) neither pathology type nor distribution correlate with disease severity or progression in Parkinson's disease; (3) aggregated α-synuclein in the form of Lewy bodies is not a space-occupying lesion but the insoluble fraction of its precursor, soluble monomeric α-synuclein; (4) pathology spread is passive, occurring by irreversible nucleation, not active replication; and (5) low cerebrospinal fluid α-synuclein levels predict brain atrophy and clinical disease progression. The transformation of α-synuclein into Lewy pathology may occur as a response to biological, toxic, or infectious stressors whose persistence perpetuates the nucleation process, depleting normal α-synuclein and eventually leading to Parkinson's symptoms from neuronal death. We propose testing the loss-of-function synucleinopenia hypothesis by evaluating the clinical and neurodegenerative rescue effect of replenishing the levels of monomeric α-synuclein.


Subject(s)
Parkinson Disease , alpha-Synuclein , Animals , Humans , alpha-Synuclein/metabolism , Brain/metabolism , Brain/pathology , Lewy Bodies/pathology , Lewy Bodies/metabolism , Parkinson Disease/metabolism , Synucleinopathies/metabolism , Synucleinopathies/pathology
13.
Transl Neurodegener ; 13(1): 13, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438877

ABSTRACT

BACKGROUND: Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease (PD). These mutations elevate the LRRK2 kinase activity, making LRRK2 kinase inhibitors an attractive therapeutic. LRRK2 kinase activity has been consistently linked to specific cell signaling pathways, mostly related to organelle trafficking and homeostasis, but its relationship to PD pathogenesis has been more difficult to define. LRRK2-PD patients consistently present with loss of dopaminergic neurons in the substantia nigra but show variable development of Lewy body or tau tangle pathology. Animal models carrying LRRK2 mutations do not develop robust PD-related phenotypes spontaneously, hampering the assessment of the efficacy of LRRK2 inhibitors against disease processes. We hypothesized that mutations in LRRK2 may not be directly related to a single disease pathway, but instead may elevate the susceptibility to multiple disease processes, depending on the disease trigger. To test this hypothesis, we have previously evaluated progression of α-synuclein and tau pathologies following injection of proteopathic seeds. We demonstrated that transgenic mice overexpressing mutant LRRK2 show alterations in the brain-wide progression of pathology, especially at older ages. METHODS: Here, we assess tau pathology progression in relation to long-term LRRK2 kinase inhibition. Wild-type or LRRK2G2019S knock-in mice were injected with tau fibrils and treated with control diet or diet containing LRRK2 kinase inhibitor MLi-2 targeting the IC50 or IC90 of LRRK2 for 3-6 months. Mice were evaluated for tau pathology by brain-wide quantitative pathology in 844 brain regions and subsequent linear diffusion modeling of progression. RESULTS: Consistent with our previous work, we found systemic alterations in the progression of tau pathology in LRRK2G2019S mice, which were most pronounced at 6 months. Importantly, LRRK2 kinase inhibition reversed these effects in LRRK2G2019S mice, but had minimal effect in wild-type mice, suggesting that LRRK2 kinase inhibition is likely to reverse specific disease processes in G2019S mutation carriers. Additional work may be necessary to determine the potential effect in non-carriers. CONCLUSIONS: This work supports a protective role of LRRK2 kinase inhibition in G2019S carriers and provides a rational workflow for systematic evaluation of brain-wide phenotypes in therapeutic development.


Subject(s)
Brain , Dopaminergic Neurons , Animals , Humans , Mice , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Lewy Bodies , Mice, Transgenic , Mutation/genetics
14.
Alzheimers Dement ; 20(4): 2564-2574, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38353367

ABSTRACT

INTRODUCTION: Cerebral amyloid angiopathy (CAA) often accompanies dementia-associated pathologies and is important in the context of anti-amyloid monoclonal therapies and risk of hemorrhage. METHODS: We conducted a retrospective neuropathology-confirmed study of 2384 participants in the National Alzheimer Coordinating Center cohort (Alzheimer's disease [AD], n = 1175; Lewy body pathology [LBP], n = 316; and mixed AD and LBP [AD-LBP], n = 893). We used logistic regression to evaluate age, sex, education, APOE ε4, neuritic plaques, and neurofibrillary tangles (NFTs) in CAA risk. RESULTS: APOE ε4 increased CAA risk in all three groups, while younger age and higher NFT stages increased risk in AD and AD-LBP. In AD-LBP, male sex and lower education were additional risk factors. The odds of APOE ε4 carrier homozygosity related to CAA was higher in LBP (25.69) and AD-LBP (9.50) than AD (3.17). DISCUSSION: AD and LBPs modify risk factors for CAA and should be considered in reviewing the risk of CAA. HIGHLIGHTS: Lewy body pathology modifies risk factors for cerebral amyloid angiopathy (CAA) when present along with Alzheimer's disease (AD) neuropathology. In the context of anti-amyloid monoclonal therapies and their associated risks for hemorrhage, the risk of underlying CAA in mixed dementia with Lewy body pathology needs to be considered.


Subject(s)
Alzheimer Disease , Cerebral Amyloid Angiopathy , Male , Humans , Alzheimer Disease/pathology , Apolipoprotein E4/genetics , Lewy Bodies/pathology , Retrospective Studies , Cerebral Amyloid Angiopathy/epidemiology , Cerebral Amyloid Angiopathy/pathology , Amyloid , Risk Factors , Hemorrhage , Plaque, Amyloid/pathology
15.
Cell Mol Life Sci ; 81(1): 75, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38315424

ABSTRACT

Autosomal dominant variants in LRP10 have been identified in patients with Lewy body diseases (LBDs), including Parkinson's disease (PD), Parkinson's disease-dementia (PDD), and dementia with Lewy bodies (DLB). Nevertheless, there is little mechanistic insight into the role of LRP10 in disease pathogenesis. In the brains of control individuals, LRP10 is typically expressed in non-neuronal cells like astrocytes and neurovasculature, but in idiopathic and genetic cases of PD, PDD, and DLB, it is also present in α-synuclein-positive neuronal Lewy bodies. These observations raise the questions of what leads to the accumulation of LRP10 in Lewy bodies and whether a possible interaction between LRP10 and α-synuclein plays a role in disease pathogenesis. Here, we demonstrate that wild-type LRP10 is secreted via extracellular vesicles (EVs) and can be internalised via clathrin-dependent endocytosis. Additionally, we show that LRP10 secretion is highly sensitive to autophagy inhibition, which induces the formation of atypical LRP10 vesicular structures in neurons in human-induced pluripotent stem cells (iPSC)-derived brain organoids. Furthermore, we show that LRP10 overexpression leads to a strong induction of monomeric α-synuclein secretion, together with time-dependent, stress-sensitive changes in intracellular α-synuclein levels. Interestingly, patient-derived astrocytes carrying the c.1424 + 5G > A LRP10 variant secrete aberrant high-molecular-weight species of LRP10 in EV-free media fractions. Finally, we show that this truncated patient-derived LRP10 protein species (LRP10splice) binds to wild-type LRP10, reduces LRP10 wild-type levels, and antagonises the effect of LRP10 on α-synuclein levels and distribution. Together, this work provides initial evidence for a possible functional role of LRP10 in LBDs by modulating intra- and extracellular α-synuclein levels, and pathogenic mechanisms linked to the disease-associated c.1424 + 5G > A LRP10 variant, pointing towards potentially important disease mechanisms in LBDs.


Subject(s)
Lewy Body Disease , Parkinson Disease , Humans , alpha-Synuclein/metabolism , Parkinson Disease/pathology , Lewy Body Disease/genetics , Lewy Body Disease/metabolism , Lewy Body Disease/pathology , Lewy Bodies/metabolism , Brain/metabolism , LDL-Receptor Related Proteins/metabolism
16.
Biol Sex Differ ; 15(1): 8, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38243325

ABSTRACT

BACKGROUND: Lewy body dementia (LBD) phenotype is associated with the presence and degree of Lewy body, Alzheimer's pathologies, and substantia nigra neuron loss. Nigral neuron loss is associated with parkinsonism in LBD, and females with LBD are less likely than males to have parkinsonism. As sex differences were reported for clinical correlates of Lewy body and Alzheimer's pathologies, we aimed to investigate whether there are also sex differences for correlates of nigral neuron loss. METHODS: Data were obtained from the National Alzheimer's Coordinating Center for females (n = 159) and males (n = 263) with brainstem, limbic, and neocortical Lewy body pathology. Sex differences for the nigral neuron loss' association with Lewy body pathology staging and core clinical LBD features (cognitive fluctuations, visual hallucinations, rapid eye movement sleep behavior disorder, parkinsonism) during follow-up were analyzed with generalized linear models adjusting for age and Alzheimer's pathology staging. Whether any of the core clinical features at the time of dementia onset can predict underlying nigral neuron loss for females and males were also analyzed with generalized linear models. RESULTS: Compared to males, females died older and had higher levels of Braak tau staging, but had similar levels of Lewy body pathology staging and nigral neuron loss. Females were less likely than males to have a clinical Lewy body disease diagnosis during follow-up. More advanced Lewy body pathology staging was associated with more nigral neuron loss, more so for males than females. More nigral neuron loss was associated with parkinsonism and clinical LBD diagnosis during follow-up, more so for males than females. Across the subgroup with dementia (40 females, 58 males), core LBD features at first visit with dementia were not associated with nigral neuron loss. CONCLUSIONS: Nigral neuron loss' association with Lewy body pathology staging and core LBD features can differ by sex. Compared to males, females with Lewy body pathology have a higher risk of underdiagnosis. There is a need to elucidate the mechanisms underlying sex differences for pathology and clinicopathological correlations to advance diagnostic and therapeutic efforts in LBD.


Lewy body dementia (LBD) is the third most common dementia associated with Lewy body pathology, Alzheimer's pathology, and substantia nigra loss. It is often less recognized in females compared to males, because the typical symptoms are less evident in females. In this study, we investigated whether substantia nigra neuron loss plays a role in the atypical presentation of LBD in females, contributing to the underdiagnosis compared to males. We analyzed data from 159 females and 263 males with pathological Lewy body disease obtained from the National Alzheimer's Coordinating Center. Females tended to be older at the time of death and had more tau buildup, but similar levels of Lewy body pathology and substantia nigra neuron loss compared to males. When we compared males and females of similar age with similar levels of Alzheimer's pathology, we observed that females had less substantia nigra neuron loss at less advanced Lewy body pathology stages. Greater nigral neuron loss was associated with parkinsonism and the typical LBD symptoms in males, but not as strongly in females. The extent of nigral loss could not be predicted based on the clinical features at the time of dementia diagnosis. Thus, the relationship between nigral neuron loss and the LBD symptoms seems to vary by sex. Females with underlying Lewy body disease are more likely to be underdiagnosed compared to males. We need further work to understand why these sex differences exist and how we can better identify and treat LBD.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Humans , Male , Female , Lewy Bodies/pathology , Alzheimer Disease/pathology , Sex Characteristics , Lewy Body Disease/complications , Lewy Body Disease/pathology , Lewy Body Disease/psychology , Substantia Nigra/pathology , Neurons
17.
Eur J Neurol ; 31(4): e16206, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38270442

ABSTRACT

BACKGROUND: Alpha-synuclein (α-Syn) oligomers and fibrils have been shown to augment the aggregation of TAR DNA-binding Protein 43 (TDP-43) monomers in vitro, supporting the idea that TDP-43 proteinopathies such as ALS may be modulated by the presence of toxic forms of α-Syn. Recently, parkinsonian features were reported in a study of European patients and Lewy bodies have been demonstrated pathologically in a similar series of patients. Based on these and other considerations, we sought to determine whether seed-competent α-Syn can be identified in spinal fluid of patients with ALS including familial, sporadic, and Guamanian forms of the disease. METHODS: Based on the finding that α-Syn has been found to be a prion-like protein, we have utilized a validated α-Synuclein seed amplification assay to determine if seed-competent α-Syn could be detected in the spinal fluid of patients with ALS. RESULTS: Toxic species of α-Syn were detected in CSF in 18 of 127 ALS patients, 5 of whom were from Guam. Two out of twenty six samples from patients with C9orf72 variant ALS had positive seed-amplification assays (SAAs). No positive tests were noted in superoxide dismutase type 1 ALS subjects (n = 14). The SAA was negative in 31 control subjects. CONCLUSIONS: Our findings suggest that a sub-group of ALS occurs in which self-replicating α-Syn is detectable and likely contributes to its pathogenesis. This finding may have implications for the diagnosis and treatment of this disorder.


Subject(s)
Amyotrophic Lateral Sclerosis , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , Amyotrophic Lateral Sclerosis/pathology , Lewy Bodies/metabolism , Lewy Bodies/pathology , Superoxide Dismutase-1
18.
J Theor Biol ; 581: 111734, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38246486

ABSTRACT

This paper presents a model for the growth of Lewy bodies (LBs), which are pathological hallmarks of Parkinson's disease (PD). The model simulates the growth of classical LBs, consisting of a core and a halo. The core is assumed to comprise lipid membrane fragments and damaged organelles, while the halo consists of radiating alpha-synuclein (α-syn) fibrils. The Finke-Watzky model is employed to simulate the aggregation of lipid fragments and α-syn monomers. Analytical and numerical exploration of the governing equations yielded approximate solutions applicable for larger times. The application of these approximate solutions to simulate LB radius growth led to the discovery of the cube root hypothesis, which posits that the LB radius is proportional to the cube root of its growth time. Sensitivity analysis revealed that the LB radius is unaffected by the kinetic rates of nucleation and autocatalytic growth, with growth primarily regulated by the production rates of lipid membrane fragments and α-syn monomers. The model indicates that the formation of large LBs associated with PD is dependent on the malfunction of the machinery responsible for the degradation of lipid membrane fragments, α-syn monomers, and their aggregates.


Subject(s)
Lewy Bodies , Parkinson Disease , Humans , Lewy Bodies/metabolism , Lewy Bodies/pathology , Radius/metabolism , Radius/pathology , alpha-Synuclein/metabolism , Parkinson Disease/metabolism , Lipids
20.
Ann Clin Transl Neurol ; 11(3): 673-685, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38263854

ABSTRACT

OBJECTIVE: Alzheimer's disease neuropathologic change and alpha-synucleinopathy commonly co-exist and contribute to the clinical heterogeneity of dementia. Here, we examined tau epitopes marking various stages of tangle maturation to test the hypotheses that tau maturation is more strongly associated with beta-amyloid compared to alpha-synuclein, and within the context of mixed pathology, mature tau is linked to Alzheimer's disease clinical phenotype and negatively associated with Lewy body dementia. METHODS: We used digital histology to measure percent area-occupied by pathology in cortical regions among individuals with pure Alzheimer's disease neuropathologic change, pure alpha-synucleinopathy, and a co-pathology group with both Alzheimer's and alpha-synuclein pathologic diagnoses. Multiple tau monoclonal antibodies were used to detect early (AT8, MC1) and mature (TauC3) epitopes of tangle progression. We used linear/logistic regression to compare groups and test the association between pathologies and clinical features. RESULTS: There were lower levels of tau pathology (ß = 1.86-2.96, p < 0.001) across all tau antibodies in the co-pathology group compared to the pure Alzheimer's pathology group. Among individuals with alpha-synucleinopathy, higher alpha-synuclein was associated with greater early tau (AT8 ß = 1.37, p < 0.001; MC1 ß = 1.2, p < 0.001) but not mature tau (TauC3 p = 0.18), whereas mature tau was associated with beta-amyloid (ß = 0.21, p = 0.01). Finally, lower tau, particularly TauC3 pathology, was associated with lower frequency of both core clinical features and categorical clinical diagnosis of dementia with Lewy bodies. INTERPRETATION: Mature tau may be more closely related to beta-amyloidosis than alpha-synucleinopathy, and pathophysiological processes of tangle maturation may influence the clinical features of dementia in mixed Lewy-Alzheimer's pathology.


Subject(s)
Alzheimer Disease , Parkinson Disease , Synucleinopathies , Humans , Alzheimer Disease/pathology , alpha-Synuclein , Lewy Bodies/pathology , Synucleinopathies/pathology , Parkinson Disease/pathology , tau Proteins , Amyloid beta-Peptides , Epitopes
SELECTION OF CITATIONS
SEARCH DETAIL
...