Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 613
Filter
1.
Neurology ; 102(12): e209460, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38815233

ABSTRACT

BACKGROUND AND OBJECTIVES: Alzheimer disease (AD) copathologies of ß-amyloid and tau are common in the Lewy body diseases (LBD), dementia with Lewy bodies (DLB) and Parkinson disease (PD), and target distinct hippocampal subfields compared with Lewy pathology, including subiculum and CA1. We investigated the hypothesis that AD copathologies impact the pattern of hippocampal subregion volume loss and cognitive function in LBD. METHODS: This was a cross-sectional and longitudinal, single-center, observational cohort study. Participants underwent neuropsychological testing and 3T-MRI with hippocampal segmentation using FreeSurferV7. PiB-PET and flortaucipir-PET imaging of comorbid ß-amyloid (A) and tau (T) were acquired. The association of functional cognition, ß-amyloid, and tau loads with hippocampal subregion volume was assessed. The contribution of subregion volumes to the relationship of AD-related deposits on functional cognition was examined with mediation analysis. The effects of AD-related deposits on the rate of subregion atrophy were evaluated with mixed-effects models. RESULTS: Of 103 participants (mean age: 70.3 years; 37.3% female), 52 had LBD with impaired cognition (LBD-I), 26 had normal cognition (LBD-N), and 25 were A- healthy controls (HCs). Volumes of hippocampal subregions prone to AD copathologies, including subiculum (F = 6.9, p = 0.002), presubiculum (F = 7.3, p = 0.001), and parasubiculum (F = 5.9, p = 0.004), were reduced in LBD-I compared with LBD-N and HC. Volume was preserved in CA2/3, Lewy pathology susceptible subregions. In LBD-I, reduced CA1, subiculum, and presubiculum volumes were associated with greater functional cognitive impairment (all p < 0.05). Compared with HC, subiculum volume was reduced in A+T+ but not A-T- participants (F = 2.62, p = 0.043). Reduced subiculum volume mediated the effect of amyloid on functional cognition (0.12, 95% CI: 0.005 to 0.26, p = 0.040). In 26 longitudinally-evaluated participants, baseline tau deposition was associated with faster CA1 (p = 0.021) and subiculum (p = 0.002) atrophy. DISCUSSION: In LBD, volume loss in hippocampal output subregions-particularly the subiculum-is associated with functional cognition and AD-related deposits. Tau deposition appears to accelerate subiculum and CA1 atrophy, whereas Aß does not. Subiculum volume may have value as a biomarker of AD copathology-mediated neurodegeneration and disease progression.


Subject(s)
Amyloid beta-Peptides , Hippocampus , Lewy Body Disease , Positron-Emission Tomography , tau Proteins , Humans , Lewy Body Disease/metabolism , Lewy Body Disease/diagnostic imaging , Lewy Body Disease/pathology , Female , Male , Aged , tau Proteins/metabolism , Hippocampus/diagnostic imaging , Hippocampus/pathology , Hippocampus/metabolism , Cross-Sectional Studies , Amyloid beta-Peptides/metabolism , Longitudinal Studies , Magnetic Resonance Imaging , Aged, 80 and over , Neuropsychological Tests , Cohort Studies , Alzheimer Disease/metabolism , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Middle Aged
2.
Transl Psychiatry ; 14(1): 215, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806463

ABSTRACT

Previous observational investigations suggest that structural and diffusion imaging-derived phenotypes (IDPs) are associated with major neurodegenerative diseases; however, whether these associations are causal remains largely uncertain. Herein we conducted bidirectional two-sample Mendelian randomization analyses to infer the causal relationships between structural and diffusion IDPs and major neurodegenerative diseases using common genetic variants-single nucleotide polymorphism (SNPs) as instrumental variables. Summary statistics of genome-wide association study (GWAS) for structural and diffusion IDPs were obtained from 33,224 individuals in the UK Biobank cohort. Summary statistics of GWAS for seven major neurodegenerative diseases were obtained from the largest GWAS for each disease to date. The forward MR analyses identified significant or suggestively statistical causal effects of genetically predicted three structural IDPs on Alzheimer's disease (AD), frontotemporal dementia (FTD), and multiple sclerosis. For example, the reduction in the surface area of the left superior temporal gyrus was associated with a higher risk of AD. The reverse MR analyses identified significantly or suggestively statistical causal effects of genetically predicted AD, Lewy body dementia (LBD), and FTD on nine structural and diffusion IDPs. For example, LBD was associated with increased mean diffusivity in the right superior longitudinal fasciculus and AD was associated with decreased gray matter volume in the right ventral striatum. Our findings might contribute to shedding light on the prediction and therapeutic intervention for the major neurodegenerative diseases at the neuroimaging level.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Genome-Wide Association Study , Mendelian Randomization Analysis , Neurodegenerative Diseases , Phenotype , Polymorphism, Single Nucleotide , Humans , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/diagnostic imaging , Frontotemporal Dementia/genetics , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/pathology , Male , Female , Diffusion Magnetic Resonance Imaging , Multiple Sclerosis/genetics , Multiple Sclerosis/diagnostic imaging , Brain/diagnostic imaging , Brain/pathology , Aged , Lewy Body Disease/genetics , Lewy Body Disease/diagnostic imaging , Middle Aged , Magnetic Resonance Imaging , United Kingdom
3.
J Prev Alzheimers Dis ; 11(3): 549-557, 2024.
Article in English | MEDLINE | ID: mdl-38706271

ABSTRACT

BACKGROUND: In an exploratory 91-participant phase 2a clinical trial (AscenD-LB, NCT04001517) in dementia with Lewy bodies (DLB), neflamapimod showed improvement over placebo on multiple clinical endpoints. To confirm those results, a phase 2b clinical study (RewinD-LB, NCT05869669 ) that is similar to AscenD-LB has been initiated. OBJECTIVES: To optimize the choice of patient population, primary endpoint, and biomarker evaluations in RewinD-LB. DESIGN: Evaluation of the efficacy results from AscenD-LB, the main results of which, and a re-analysis after stratification for absence or presence of AD co-pathology (assessed by plasma ptau181), have been published. In addition, the MRI data from a prior phase 2a clinical trial in Early Alzheimer's disease (AD), were reviewed. SETTING: 22 clinical sites in the US and 2 in the Netherlands. PARTICIPANTS: Probable DLB by consensus criteria and abnormal dopamine uptake by DaTscan™ (Ioflupane I123 SPECT). INTERVENTION: Neflamapimod 40mg capsules or matching placebo capsules, twice-a-day (BID) or three-times-a-day (TID), for 16 weeks. MEASUREMENTS: 6-test Neuropsychological Test Battery (NTB) assessing attention and executive function, Clinical Dementia Rating Sum-of-Boxes (CDR-SB), Timed Up and Go (TUG), International Shopping List Test (ISLT). RESULTS: Within AscenD-LB, patients without evidence of AD co-pathology exhibited a neflamapimod treatment effect that was greater than that in the overall population and substantial (cohen's d effect size vs. placebo ≥ for CDR-SB, TUG, Attention and ISLT-recognition). In addition, the CDR-SB and TUG performed better than the cognitive tests to demonstrate neflamapimod treatment effect in comparison to placebo. Further, clinical trial simulations indicate with 160-patients (randomized 1:1), RewinD-LB conducted in patients without AD co-pathology has >95% (approaching 100%) statistical power to detect significant improvement over placebo on the CDR-SB. Preliminary evidence of positive treatment effects on beta functional connectivity by EEG and basal forebrain atrophy by MRI were obtained in AscenD-LB and the Early AD study, respectively. CONCLUSION: In addition to use of a single dose regimen of neflamapimod (40mg TID), key distinctions between phase 2b and phase 2a include RewinD-LB (1) excluding patients with AD co-pathology, (2) having CDR-SB as the primary endpoint, and (3) having MRI studies to evaluate effects on basal forebrain atrophy.


Subject(s)
Benzylamines , Fluorocarbons , Indoles , Lewy Body Disease , Humans , Lewy Body Disease/drug therapy , Lewy Body Disease/diagnostic imaging , Aged , Female , Male , Double-Blind Method , Magnetic Resonance Imaging , Biomarkers/blood , Aged, 80 and over , Neuropsychological Tests
4.
Neurocase ; 30(1): 1-7, 2024 02.
Article in English | MEDLINE | ID: mdl-38758704

ABSTRACT

A research participant was monitored over nearly two decades at Mayo Clinic, undergoing annual neurologic assessments, neuropsychological tests, and multimodal imaging. Initially, he was cognitively normal but developed symptoms consistent with Posterior Cortical Atrophy (PCA) during the study. Early tests indicated mild, yet normal-range declines in language and visuospatial skills. FDG-PET scans revealed increased metabolism in posterior brain regions long before symptoms appeared. Advanced analysis using a novel in-house machine-learning tool predicted concurrent Alzheimer's disease and dementia with Lewy bodies. Autopsy confirmed a mixed neurodegenerative condition with significant Alzheimer's pathology and dense neocortical Lewy bodies. This case underscores the value of longitudinal imaging in predicting complex neurodegenerative diseases, offering vital insights into the early neurocognitive changes associated with PCA and dementia with Lewy bodies.


Subject(s)
Atrophy , Lewy Body Disease , Positron-Emission Tomography , Humans , Lewy Body Disease/pathology , Lewy Body Disease/metabolism , Lewy Body Disease/diagnostic imaging , Male , Atrophy/pathology , Cerebral Cortex/pathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/metabolism , Aged , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/diagnostic imaging , Prodromal Symptoms , Neuropsychological Tests
5.
Alzheimers Res Ther ; 16(1): 85, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641653

ABSTRACT

BACKGROUND: Dementia with Lewy bodies (DLB) is characterized by insular atrophy, which occurs at the early stage of the disease. Damage to the insula has been associated with disorders reflecting impairments of the most fundamental components of the self, such as anosognosia, which is a frequently reported symptom in patients with Lewy bodies (LB). The purpose of this study was to investigate modifications of the self-concept (SC), another component of the self, and to identify neuroanatomical correlates, in prodromal to mild DLB. METHODS: Twenty patients with prodromal to mild DLB were selected to participate in this exploratory study along with 20 healthy control subjects matched in terms of age, gender, and level of education. The Twenty Statements Test (TST) was used to assess the SC. Behavioral performances were compared between LB patients and control subjects. Three-dimensional magnetic resonance images (MRI) were acquired for all participants and correlational analyses were performed using voxel-based morphometry (VBM) in whole brain and using a mask for the insula. RESULTS: The behavioral results on the TST showed significantly impaired performances in LB patients in comparison with control subjects (p < .0001). Correlational analyses using VBM revealed positive correlations between the TST and grey matter volume within insular cortex, right supplementary motor area, bilateral inferior temporal gyri, right inferior frontal gyrus, and left lingual gyrus, using a threshold of p = .001 uncorrected, including total intracranial volume (TIV), age, and MMSE as nuisance covariates. Additionally, correlational analysis using a mask for the insula revealed positive correlation with grey matter volume within bilateral insular cortex, using a threshold of p = .005. CONCLUSIONS: The behavioral results confirm the existence of SC impairments in LB patients from the prodromal stage of the disease, compared to matched healthy controls. As we expected, VBM analyses revealed involvement of the insula, among that of other brain regions, already known to be involved in other self-components. While this study is exploratory, our findings provide important insights regarding the involvement of the insula within the self, confirming the insula as a core region of the self-networks, including for high-order self-representations such as the SC.


Subject(s)
Lewy Body Disease , Humans , Lewy Body Disease/diagnostic imaging , Lewy Body Disease/pathology , Insular Cortex , Brain/pathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Magnetic Resonance Imaging
6.
Alzheimers Res Ther ; 16(1): 89, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654300

ABSTRACT

BACKGROUND: Association of medial temporal lobe (MTL) metabolism with Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) has not been evaluated considering their mixed disease (MD). METHODS: 131 patients with AD, 133 with DLB, 122 with MD, and 28 normal controls (NCs) underwent neuropsychological tests, assessments for parkinsonism, cognitive fluctuation (CF), and visual hallucinations (VH), and 18F-fluorodeoxyglucose PET to quantify MTL metabolism in the amygdala, hippocampus, and entorhinal cortex. The effects of AD and DLB on MTL metabolism were evaluated using general linear models (GLMs). Associations between MTL metabolism, cognition, and clinical features were evaluated using GLMs or logistic regression models separately performed for the AD spectrum (NC + AD + MD), DLB spectrum (NC + DLB + MD), and disease groups (AD + DLB + MD). Covariates included age, sex, and education. RESULTS: AD was associated with hippocampal/entorhinal hypometabolism, whereas DLB was associated with relative amygdalar/hippocampal hypermetabolism. Relative MTL hypermetabolism was associated with lower attention/visuospatial/executive scores and severe parkinsonism in both the AD and DLB spectra and disease groups. Left hippocampal/entorhinal hypometabolism was associated with lower verbal memory scores, whereas right hippocampal hypometabolism was associated with lower visual memory scores in both the AD spectrum and disease groups. Relative MTL hypermetabolism was associated with an increased risk of CF and VH in the disease group, and relative amygdalar hypermetabolism was associated with an increased risk of VH in the DLB spectrum. CONCLUSIONS: Entorhinal-hippocampal hypometabolism and relative amygdala-hippocampal hypermetabolism could be characteristics of AD- and DLB-related neurodegeneration, respectively.


Subject(s)
Alzheimer Disease , Fluorodeoxyglucose F18 , Lewy Body Disease , Neuropsychological Tests , Positron-Emission Tomography , Temporal Lobe , Humans , Lewy Body Disease/metabolism , Lewy Body Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/diagnostic imaging , Female , Male , Aged , Temporal Lobe/metabolism , Temporal Lobe/diagnostic imaging , Aged, 80 and over , Middle Aged
7.
Neuroimage ; 290: 120564, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38442778

ABSTRACT

Posterior cortical atrophy (PCA) and dementia with Lewy bodies (DLB) show distinct atrophy and overlapping hypometabolism profiles, but it is unknown how disruptions in structural and functional connectivity compare between these disorders and whether breakdowns in connectivity relate to either atrophy or hypometabolism. Thirty amyloid-positive PCA patients, 24 amyloid-negative DLB patients and 30 amyloid-negative cognitively unimpaired (CU) healthy individuals were recruited at Mayo Clinic, Rochester, MN, and underwent a 3T head MRI, including structural MRI, resting state functional MRI (rsfMRI) and diffusion tensor imaging (DTI) sequences, as well as [18F] fluorodeoxyglucose (FDG) PET. We assessed functional connectivity within and between 12 brain networks using rsfMRI and the CONN functional connectivity toolbox and calculated regional DTI metrics using the Johns Hopkins atlas. Multivariate linear-regression models corrected for multiple comparisons and adjusted for age and sex compared DTI metrics and within-network and between-network functional connectivity across groups. Regional gray-matter volumes and FDG-PET standard uptake value ratios (SUVRs) were calculated and analyzed at the voxel-level using SPM12. We used univariate linear-regression models to investigate the relationship between connectivity measures, gray-matter volume, and FDG-PET SUVR. On DTI, PCA showed degeneration in occipito-parietal white matter, posterior thalamic radiations, splenium of the corpus collosum and sagittal stratum compared to DLB and CU, with greater degeneration in the temporal white matter and the fornix compared to CU. We observed no white-matter degeneration in DLB compared to CU. On rsfMRI, reduced within-network connectivity was present in dorsal and ventral default mode networks (DMN) and the dorsal-attention network in PCA compared to DLB and CU, with reduced within-network connectivity in the visual and sensorimotor networks compared to CU. DLB showed reduced connectivity in the cerebellar network compared to CU. Between-network analysis showed increased connectivity in both cerebellar-to-sensorimotor and cerebellar-to-dorsal attention network connectivity in PCA and DLB. PCA showed reduced anterior DMN-to-cerebellar and dorsal attention-to-sensorimotor connectivity, while DLB showed reduced posterior DMN-to-sensorimotor connectivity compared to CU. PCA showed reduced dorsal DMN-to-visual connectivity compared to DLB. The multimodal analysis revealed weak associations between functional connectivity and volume in PCA, and between functional connectivity and metabolism in DLB. These findings suggest that PCA and DLB have unique connectivity alterations, with PCA showing more widespread disruptions in both structural and functional connectivity; yet some overlap was observed with both disorders showing increased connectivity from the cerebellum.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Humans , Lewy Body Disease/diagnostic imaging , Diffusion Tensor Imaging , Fluorodeoxyglucose F18 , Magnetic Resonance Imaging , Atrophy , Alzheimer Disease/metabolism
8.
Parkinsonism Relat Disord ; 122: 106061, 2024 May.
Article in English | MEDLINE | ID: mdl-38430691

ABSTRACT

INTRODUCTION: Early-onset dementia with Lewy bodies (EO-DLB) is associated with rapid cognitive decline and severe neuropsychiatric symptoms at onset. METHODS: Using FDG-PET imaging for 62 patients (21 EO-DLB, 41 LO (late-onset)-DLB), we explored brain hypometabolism, and metabolic connectivity in the whole-brain network and resting-state networks (RSNs). We also evaluated the spatial association between brain hypometabolism and neurotransmitter pathways topography. RESULTS: Direct comparisons between the two clinical subgroups showed that EO-DLB was characterized by a lower metabolism in posterior cingulate/precuneus and occipital cortex. Metabolic connectivity analysis revealed significant alterations in posterior regions in both EO-DLB and LO-DLB. The EO-DLB, however, showed more severe loss of connectivity between occipital and parietal nodes and hyperconnectivity between frontal and cerebellar nodes. Spatial topography association analysis indicated significant correlations between neurotransmitter maps (i.e. acetylcholine, GABA, serotonin, dopamine) and brain hypometabolism in both EO and LO-DLB, with significantly higher metabolic correlation in the presynaptic serotonergic system for EO-DLB, supporting its major dysfunction. CONCLUSIONS: Our study revealed greater brain hypometabolism and loss of connectivity in posterior brain region in EO- than LO-DLB. Serotonergic mapping emerges as a relevant factor for further investigation addressing clinical differences between DLB subtypes.


Subject(s)
Brain , Lewy Body Disease , Neurotransmitter Agents , Positron-Emission Tomography , Humans , Lewy Body Disease/diagnostic imaging , Lewy Body Disease/metabolism , Male , Female , Aged , Brain/diagnostic imaging , Brain/metabolism , Neurotransmitter Agents/metabolism , Middle Aged , Aged, 80 and over , Age of Onset , Brain Mapping , Nerve Net/diagnostic imaging , Nerve Net/metabolism , Fluorodeoxyglucose F18 , Neural Pathways/diagnostic imaging , Neural Pathways/metabolism
9.
Parkinsonism Relat Disord ; 122: 106062, 2024 May.
Article in English | MEDLINE | ID: mdl-38452445

ABSTRACT

INTRODUCTION: Visual rating of the cingulate island sign (CIS) on [18F]fluorodeoxyglucose ([18F]FDG) positron emission tomography (PET) has a high specificity for dementia with Lewy bodies (DLB) in selected cohorts such as DLB versus Alzheimer's disease (AD). In a mixed memory clinical population this study aimed to uncover the prevalence of CIS, the diagnostic accuracy for DLB, and the relationship between CIS and disease severity. METHODS: CIS on [18F]FDG-PET was retrospectively assessed with the visual CIS rating scale (CISRs) in 1000 patients with a syndrome diagnosis of mild cognitive impairment (MCI) or dementia with no restrictions in etiological diagnosis. RESULTS: In this cohort 24.3 % had a CISRs score ≥1 and 3.5 % had a CISRs score = 4. The prevalence of a CISRs score ≥1 was highest in DLB (74.0 %, n = 57). A CISRs score ≥1 was present in at least 9 % in other diagnostic groups. The prevalence of CIS across disease severities showed no statistically significant difference (p = 0.23). To differentiate DLB from non-DLB the optimal cut-off was a CISRs score ≥1 (balanced accuracy = 77.1 %) in MCI/mild dementia and a CISRs score ≥2 (balanced accuracy = 80.6 %) in moderate/severe dementia. The positive predictive value of a CISRs score = 4 for DLB was 57.7 % in MCI/mild dementia and 33.3 % in moderate/severe dementia. CONCLUSION: The CISRs is useful in differentiating DLB from other etiologies in a mixed memory clinical population. Balanced accuracy and positive predictive value may vary across disease severities in the population studied.


Subject(s)
Cognitive Dysfunction , Fluorodeoxyglucose F18 , Gyrus Cinguli , Lewy Body Disease , Positron-Emission Tomography , Humans , Male , Female , Aged , Lewy Body Disease/epidemiology , Lewy Body Disease/diagnostic imaging , Lewy Body Disease/diagnosis , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/diagnosis , Prevalence , Retrospective Studies , Middle Aged , Gyrus Cinguli/diagnostic imaging , Aged, 80 and over , Cohort Studies , Sensitivity and Specificity
10.
Mov Disord ; 39(5): 836-846, 2024 May.
Article in English | MEDLINE | ID: mdl-38477399

ABSTRACT

BACKGROUND: Diffusion-weighted magnetic resonance imaging (dMRI) examines tissue microstructure integrity in vivo. Prior dementia with Lewy bodies (DLB) diffusion tensor imaging studies yielded mixed results. OBJECTIVE: We employed free-water (FW) imaging to assess DLB progression and correlate with clinical decline in DLB. METHODS: Baseline and follow-up MRIs were obtained at 12 and/or 24 months for 27 individuals with DLB or mild cognitive impairment with Lewy bodies (MCI-LB). FW was analyzed using the Mayo Clinic Adult Lifespan Template. Primary outcomes were FW differences between baseline and 12 or 24 months. To compare FW change longitudinally, we included 20 cognitively unimpaired individuals from the Alzheimer's Disease Neuroimaging Initiative. RESULTS: We followed 23 participants to 12 months and 16 participants to 24 months. Both groups had worsening in Montreal Cognitive Assessment (MoCA) and Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) scores. We found significant FW increases at both time points compared to baseline in the insula, amygdala, posterior cingulum, parahippocampal, entorhinal, supramarginal, fusiform, retrosplenial, and Rolandic operculum regions. At 24 months, we found more widespread microstructural changes in regions implicated in visuospatial processing, motor, and cholinergic functions. Between-group analyses (DLB vs. controls) confirmed significant FW changes over 24 months in most of these regions. FW changes were associated with longitudinal worsening of MDS-UPDRS and MoCA scores. CONCLUSIONS: FW increased in gray and white matter regions in DLB, likely due to neurodegenerative pathology associated with disease progression. FW change was associated with clinical decline. The findings support dMRI as a promising tool to track disease progression in DLB. © 2024 International Parkinson and Movement Disorder Society.


Subject(s)
Cognitive Dysfunction , Disease Progression , Lewy Body Disease , Humans , Lewy Body Disease/diagnostic imaging , Lewy Body Disease/pathology , Female , Male , Aged , Aged, 80 and over , Longitudinal Studies , Cognitive Dysfunction/etiology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/pathology , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , Water , Diffusion Tensor Imaging/methods , Middle Aged , White Matter/diagnostic imaging , White Matter/pathology
11.
Ann Neurol ; 95(6): 1178-1192, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38466158

ABSTRACT

OBJECTIVE: To apply a machine learning analysis to clinical and presynaptic dopaminergic imaging data of patients with rapid eye movement (REM) sleep behavior disorder (RBD) to predict the development of Parkinson disease (PD) and dementia with Lewy bodies (DLB). METHODS: In this multicenter study of the International RBD study group, 173 patients (mean age 70.5 ± 6.3 years, 70.5% males) with polysomnography-confirmed RBD who eventually phenoconverted to overt alpha-synucleinopathy (RBD due to synucleinopathy) were enrolled, and underwent baseline presynaptic dopaminergic imaging and clinical assessment, including motor, cognitive, olfaction, and constipation evaluation. For comparison, 232 RBD non-phenoconvertor patients (67.6 ± 7.1 years, 78.4% males) and 160 controls (68.2 ± 7.2 years, 53.1% males) were enrolled. Imaging and clinical features were analyzed by machine learning to determine predictors of phenoconversion. RESULTS: Machine learning analysis showed that clinical data alone poorly predicted phenoconversion. Presynaptic dopaminergic imaging significantly improved the prediction, especially in combination with clinical data, with 77% sensitivity and 85% specificity in differentiating RBD due to synucleinopathy from non phenoconverted RBD patients, and 85% sensitivity and 86% specificity in discriminating PD-converters from DLB-converters. Quantification of presynaptic dopaminergic imaging showed that an empirical z-score cutoff of -1.0 at the most affected hemisphere putamen characterized RBD due to synucleinopathy patients, while a cutoff of -1.0 at the most affected hemisphere putamen/caudate ratio characterized PD-converters. INTERPRETATION: Clinical data alone poorly predicted phenoconversion in RBD due to synucleinopathy patients. Conversely, presynaptic dopaminergic imaging allows a good prediction of forthcoming phenoconversion diagnosis. This finding may be used in designing future disease-modifying trials. ANN NEUROL 2024;95:1178-1192.


Subject(s)
Dopamine , Lewy Body Disease , Machine Learning , Parkinson Disease , REM Sleep Behavior Disorder , Synucleinopathies , Humans , REM Sleep Behavior Disorder/diagnostic imaging , Male , Female , Aged , Synucleinopathies/diagnostic imaging , Middle Aged , Lewy Body Disease/diagnostic imaging , Parkinson Disease/diagnostic imaging , Parkinson Disease/complications , Dopamine/metabolism , Tomography, Emission-Computed, Single-Photon , Presynaptic Terminals/metabolism , Dopaminergic Imaging
12.
Neuroimage Clin ; 42: 103596, 2024.
Article in English | MEDLINE | ID: mdl-38554485

ABSTRACT

INTRODUCTION: Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) show heterogeneous brain atrophy patterns which group-average analyses fail to capture. Neuroanatomical normative modelling overcomes this by comparing individuals to a large reference cohort. Patient-specific atrophy patterns are measured objectively and summarised to index overall neurodegeneration (the 'total outlier count'). We aimed to quantify patterns of neurodegenerative dissimilarity in participants with PD and DLB and evaluate the potential clinical relevance of total outlier count by testing its association with key clinical measures in PD and DLB. MATERIALS AND METHODS: We included 108 participants with PD and 61 with DLB. PD participants were subclassified into high and low visual performers as this has previously been shown to stratify those at increased dementia risk. We generated z-scores from T1w-MRI scans for each participant relative to normative regional cortical thickness and subcortical volumes, modelled in a reference cohort (n = 58,836). Outliers (z < -1.96) were aggregated across 169 brain regions per participant. To measure dissimilarity, individuals' Hamming distance scores were calculated. We also examined total outlier counts between high versus low visual performance in PD; and PD versus DLB; and tested associations between these and cognition. RESULTS: There was significantly greater inter-individual dissimilarity in brain-outlier patterns in PD poor compared to high visual performers (W = 522.5; p < 0.01) and in DLB compared to PD (W = 5649; p < 0.01). PD poor visual performers had significantly greater total outlier counts compared to high (ß = -4.73 (SE = 1.30); t = -3.64; p < 0.01) whereas a conventional group-level GLM failed to identify differences. Higher total outlier counts were associated with poorer MoCA (ß = -0.55 (SE = 0.27), t = -2.04, p = 0.05) and composite cognitive scores (ß = -2.01 (SE = 0.79); t = -2.54; p = 0.02) in DLB, and visuoperception (ß = -0.67 (SE = 0.19); t = -3.59; p < 0.01), in PD. CONCLUSIONS: Neuroanatomical normative modelling shows promise as a clinically informative technique in PD and DLB, where patterns of atrophy are variable.


Subject(s)
Atrophy , Lewy Body Disease , Magnetic Resonance Imaging , Neuroimaging , Parkinson Disease , Humans , Lewy Body Disease/diagnostic imaging , Lewy Body Disease/pathology , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Parkinson Disease/complications , Female , Male , Aged , Atrophy/pathology , Magnetic Resonance Imaging/methods , Middle Aged , Neuroimaging/methods , Aged, 80 and over , Brain/diagnostic imaging , Brain/pathology
13.
J Neurol Sci ; 458: 122941, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38422782

ABSTRACT

INTRODUCTION: Clinical parkinsonism is a core diagnostic feature for mild cognitive impairment with Lewy bodies (MCI-LB) but can be challenging to identify. A five-item scale derived from the Unified Parkinson's Disease Rating Scale (UPDRS) has been recommended for the assessment of parkinsonism in dementia. This study aimed to determine whether the five-item scale is effective to identify parkinsonism in MCI. METHODS: Participants with MCI from two cohorts (n = 146) had a physical examination including the UPDRS and [123I]-FP-CIT SPECT striatal dopaminergic imaging. Participants were classified as having clinical parkinsonism (P+) or no parkinsonism (P-), and with abnormal striatal dopaminergic imaging (D+) or normal imaging (D-). The five-item scale was the sum of UPDRS tremor at rest, bradykinesia, action tremor, facial expression, and rigidity scores. The ability of the scale to differentiate P+D+ and P-D- participants was examined. RESULTS: The five-item scale had an AUROC of 0.92 in Cohort 1, but the 7/8 cut-off defined for dementia had low sensitivity to identify P+D+ participants (sensitivity 25%, specificity 100%). Optimal sensitivity and specificity was obtained at a 3/4 cut-off (sensitivity 83%, specificity 88%). In Cohort 2, the five-item scale had an AUROC of 0.97, and the 3/4 cut-off derived from Cohort 1 showed sensitivity of 100% and a specificity of 82% to differentiate P+D+ from P-D- participants. The five-item scale was not effective in differentiating D+ from D- participants. CONCLUSIONS: The five-item scale is effective to identify parkinsonism in MCI, but a lower threshold must be used in MCI compared with dementia.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Lewy Body Disease , Parkinsonian Disorders , Humans , Lewy Body Disease/diagnosis , Lewy Body Disease/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/metabolism , Tomography, Emission-Computed, Single-Photon , Alzheimer Disease/metabolism
14.
Clin Nucl Med ; 49(4): 364-365, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38350092

ABSTRACT

ABSTRACT: We reported imaging findings with complex signs that were corresponded with both dementia with Lewy bodies (DLB) and Alzheimer disease (AD) in the case of a 78-year-old woman. Initially suspected as DLB due to cognitive and movement issues, diagnostic support included the cingulate island sign on 18 F-FDG PET, positive 131 I-MIBG cardiac scintigraphy, and DAT PET. However, MRI indicated hippocampal atrophy, and 18 F-FDG PET showed hypometabolism in the medial temporal lobe, suggesting the possibility of concomitant AD. Subsequent detection of ß-amyloid pathology and tau accumulation in the brain further supported the concurrent presence of AD pathology.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Mixed Dementias , Female , Humans , Aged , Alzheimer Disease/diagnostic imaging , Fluorodeoxyglucose F18 , Lewy Body Disease/diagnostic imaging , Amyloid beta-Peptides
16.
J Clin Invest ; 134(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38165040

ABSTRACT

Early identification of neurodegenerative diseases before extensive neuronal loss or disabling symptoms have occurred is imperative for effective use of disease-modifying therapies. Emerging data indicate that central Lewy body diseases - Parkinson disease and dementia with Lewy bodies - can begin in the peripheral nervous system, opening up a therapeutic window before central involvement. In this issue of the JCI, Goldstein et al. report that cardiac 18F-dopamine positron emission tomography reveals lower activity selectively in individuals with several self-reported Parkinson disease risk factors who later develop Parkinson disease or dementia with Lewy bodies. Accurately identifying which at-risk individuals will develop central Lewy body disease will optimize early patient selection for disease-modifying therapies.


Subject(s)
Lewy Body Disease , Neurodegenerative Diseases , Parkinson Disease , Humans , Lewy Body Disease/diagnostic imaging , Parkinson Disease/diagnostic imaging , Heart , Positron-Emission Tomography
17.
Int J Geriatr Psychiatry ; 39(1): e6056, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38229210

ABSTRACT

OBJECTIVES: We have previously demonstrated difficulties in written production in dementia with Lewy bodies (DLB) patients. We now aim to determine the neural correlates of writing production in DLB, combining clinical data and structural MRI measures. METHOD: Sixteen prodromal to mild DLB patients were selected to participate in the study. The GREMOTS test was used to assess writing production. Using three-dimensional T1 brain MRI images, correlations between the GREMOTS test and grey matter (GM) volume were performed using voxel-based morphometry (VBM; SPM12, XjView and Matlab R2021b softwares). RESULTS: VBM analysis (p < 0.001, uncorrected) revealed a positive and significant correlation between both left anterior insula and left supramarginal gyrus GM volumes and DLB patients' ability to write logatoms using the phonological route. The handwriting deficit was negatively and significantly correlated to the supplementary motor area. The parkinsonism-like characteristics of agraphia were negatively and significantly correlated with both right anterior and right posterior cerebellum GM volumes. Our study also revealed a negative and significant correlation between grammatical spelling impairments and an area of the orbitofrontal gyrus, and a negative and significant correlation between supramarginal gyrus and general slowness in dictation tasks. CONCLUSION: Writing disorders in early DLB patients appears to be GM decreases in several brain regions, such as the left anterior insula, the left supramaginal gyrus, as well as two areas of the right cerebellum.


Subject(s)
Dementia , Lewy Body Disease , Humans , Lewy Body Disease/diagnostic imaging , Brain/diagnostic imaging , Gray Matter/diagnostic imaging , Magnetic Resonance Imaging , Writing
18.
Brain ; 147(1): 255-266, 2024 01 04.
Article in English | MEDLINE | ID: mdl-37975822

ABSTRACT

Dementia with Lewy bodies is characterized by a high burden of autonomic dysfunction and Lewy pathology in peripheral organs and components of the sympathetic and parasympathetic nervous system. Parasympathetic terminals may be quantified with 18F-fluoroetoxybenzovesamicol, a PET tracer that binds to the vesicular acetylcholine transporter in cholinergic presynaptic terminals. Parasympathetic imaging may be useful for diagnostics, improving our understanding of autonomic dysfunction and for clarifying the spatiotemporal relationship of neuronal degeneration in prodromal disease. Therefore, we aimed to investigate the cholinergic parasympathetic integrity in peripheral organs and central autonomic regions of subjects with dementia with Lewy bodies and its association with subjective and objective measures of autonomic dysfunction. We hypothesized that organs with known parasympathetic innervation, especially the pancreas and colon, would have impaired cholinergic integrity. To achieve these aims, we conducted a cross-sectional comparison study including 23 newly diagnosed non-diabetic subjects with dementia with Lewy bodies (74 ± 6 years, 83% male) and 21 elderly control subjects (74 ± 6 years, 67% male). We obtained whole-body images to quantify PET uptake in peripheral organs and brain images to quantify PET uptake in regions of the brainstem and hypothalamus. Autonomic dysfunction was assessed with questionnaires and measurements of orthostatic blood pressure. Subjects with dementia with Lewy bodies displayed reduced cholinergic tracer uptake in the pancreas (32% reduction, P = 0.0003) and colon (19% reduction, P = 0.0048), but not in organs with little or no parasympathetic innervation. Tracer uptake in a region of the medulla oblongata overlapping the dorsal motor nucleus of the vagus correlated with autonomic symptoms (rs = -0.54, P = 0.0077) and changes in orthostatic blood pressure (rs = 0.76, P < 0.0001). Tracer uptake in the pedunculopontine region correlated with autonomic symptoms (rs = -0.52, P = 0.0104) and a measure of non-motor symptoms (rs = -0.47, P = 0.0230). In conclusion, our findings provide the first imaging-based evidence of impaired cholinergic integrity of the pancreas and colon in dementia with Lewy bodies. The observed changes may reflect parasympathetic denervation, implying that this process is initiated well before the point of diagnosis. The findings also support that cholinergic denervation in the brainstem contributes to dysautonomia.


Subject(s)
Autonomic Nervous System Diseases , Lewy Body Disease , Humans , Male , Aged , Female , Lewy Body Disease/diagnostic imaging , Lewy Body Disease/pathology , Cross-Sectional Studies , Autonomic Nervous System Diseases/diagnostic imaging , Autonomic Nervous System Diseases/etiology , Pancreas/pathology , Cholinergic Agents , Colon/pathology
19.
Aust N Z J Psychiatry ; 58(2): 175-182, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37264610

ABSTRACT

OBJECTIVE: Neurofibrillary tangles are present in a proportion of people with dementia with Lewy bodies and may be associated with worse cognition. Recent advances in biomarkers for Alzheimer's disease include second-generation tau positron emission tomography as well as the detection of phosphorylated tau at threonine 181 (p-tau181) in plasma. This study aimed to investigate tau in people with dementia with Lewy bodies using a second-generation tau positron emission tomography tracer as well as plasma p-tau181. METHODS: Twenty-seven participants (mean age 74.7 ± 5.5) with clinically diagnosed probable dementia with Lewy bodies underwent comprehensive clinical assessment and positron emission tomography imaging (18F-MK6240 and 18F-NAV4694). Plasma p-tau181 levels were measured using Simoa technology. RESULTS: Five dementia with Lewy bodies participants (18.5%) had an abnormal tau positron emission tomography (increased tau uptake in the temporal meta-region-of-interest). Higher plasma p-tau181 concentrations correlated with higher tau deposition in the temporal region (ρ = 0.46, 95% confidence interval = [0.10, 0.72]) and classified abnormal tau positron emission tomography in dementia with Lewy bodies with an area under the curve of 0.95 (95% confidence interval = [0.86, 0.99]). Plasma p-tau181 also correlated positively with cortical amyloid-beta binding (ρ = 0.68, 95% confidence interval = [0.40, 0.84]) and classified abnormal amyloid-beta positron emission tomography in dementia with Lewy bodies with an area under the curve of 0.91 (95% confidence interval = [0.79, 0.99]). There was no association found between tau deposition and any of the clinical variables. CONCLUSIONS: Tau is a common co-pathology in dementia with Lewy bodies. Plasma p-tau181 correlated with abnormal tau and amyloid-beta positron emission tomography and may potentially be used as a marker to identify co-morbid Alzheimer's disease-related pathology in dementia with Lewy bodies. The clinical implications of tau in dementia with Lewy bodies need to be further evaluated in larger longitudinal studies.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Aged , Aged, 80 and over , Humans , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides/metabolism , Biomarkers , Lewy Body Disease/diagnostic imaging , Positron-Emission Tomography/methods , tau Proteins/metabolism
20.
J Neurol ; 271(2): 962-975, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37902878

ABSTRACT

BACKGROUND: Within the spectrum of Lewy body disorders (LBD), both Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are characterized by gait and balance disturbances, which become more prominent under dual-task (DT) conditions. The brain substrates underlying DT gait variations, however, remain poorly understood in LBD. OBJECTIVE: To investigate the relationship between gray matter volume loss and DT gait variations in LBD. METHODS: Seventy-nine participants including cognitively unimpaired PD, PD with mild cognitive impairment, PD with dementia (PDD), or DLB and 20 cognitively unimpaired controls were examined across a multi-site study. PDD and DLB were grouped together for analyses. Differences in gait speed between single and DT conditions were quantified by dual task cost (DTC). Cortical, subcortical, ventricle, and cerebellum brain volumes were obtained using FreeSurfer. Linear regression models were used to examine the relationship between gray matter volumes and DTC. RESULTS: Smaller amygdala and total cortical volumes, and larger ventricle volumes were associated with a higher DTC across LBD and cognitively unimpaired controls. No statistically significant interaction between group and brain volumes were found. Adding cognitive and motor covariates or white matter hyperintensity volumes separately to the models did not affect brain volume and DTC associations. CONCLUSION: Gray matter volume loss is associated with worse DT gait performance compared to single task gait, across cognitively unimpaired controls through and the LBD spectrum. Impairment in DT gait performance may be driven by age-related cortical neurodegeneration.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Parkinson Disease , Humans , Aging , Alzheimer Disease/complications , Gait , Gray Matter/diagnostic imaging , Lewy Bodies , Lewy Body Disease/diagnostic imaging , Lewy Body Disease/complications , Parkinson Disease/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...