Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.792
Filter
1.
FASEB J ; 38(9): e23650, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38696238

ABSTRACT

The global challenge of male infertility is escalating, notably due to the decreased testosterone (T) synthesis in testicular Leydig cells under stress, underscoring the critical need for a more profound understanding of its regulatory mechanisms. CREBZF, a novel basic region-leucine zipper transcription factor, regulates testosterone synthesis in mouse Leydig cells in vitro; however, further validation through in vivo experiments is essential. Our study utilized Cyp17a1-Cre to knock out CREBZF in androgen-synthesis cells and explored the physiological roles of CREBZF in fertility, steroid hormone synthesis, and behaviors in adult male mice. Conditional knockout (cKO) CREBZF did not affect fertility and serum testosterone level in male mice. Primary Leydig cells isolated from CREBZF-cKO mice showed impaired testosterone secretion and decreased mRNA levels of Star, Cyp17a1, and Hsd3b1. Loss of CREBZF resulted in thickening of the adrenal cortex, especially X-zone, with elevated serum corticosterone and dehydroepiandrosterone levels and decreased serum dehydroepiandrosterone sulfate levels. Immunohistochemical staining revealed increased expression of StAR, Cyp11a1, and 17ß-Hsd3 in the adrenal cortex of CREBZF-cKO mice, while the expression of AR was significantly reduced. Along with the histological changes and abnormal steroid levels in the adrenal gland, CREBZF-cKO mice showed higher anxiety-like behavior and impaired memory in the elevated plus maze and Barnes maze, respectively. In summary, CREBZF is dispensable for fertility, and CREBZF deficiency in Leydig cells promotes adrenal function in adult male mice. These results shed light on the requirement of CREBZF for fertility, adrenal steroid synthesis, and stress response in adult male mice, and contribute to understanding the crosstalk between testes and adrenal glands.


Subject(s)
Adrenal Cortex , Leydig Cells , Mice, Knockout , Animals , Male , Mice , Leydig Cells/metabolism , Adrenal Cortex/metabolism , Androgens/metabolism , Testosterone/blood , Testosterone/metabolism , Behavior, Animal , Mice, Inbred C57BL
2.
Cell Mol Life Sci ; 81(1): 212, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724675

ABSTRACT

Leydig cells are essential components of testicular interstitial tissue and serve as a primary source of androgen in males. A functional deficiency in Leydig cells often causes severe reproductive disorders; however, the transcriptional programs underlying the fate decisions and steroidogenesis of these cells have not been fully defined. In this study, we report that the homeodomain transcription factor PBX1 is a master regulator of Leydig cell differentiation and testosterone production in mice. PBX1 was highly expressed in Leydig cells and peritubular myoid cells in the adult testis. Conditional deletion of Pbx1 in Leydig cells caused spermatogenic defects and complete sterility. Histological examinations revealed that Pbx1 deletion impaired testicular structure and led to disorganization of the seminiferous tubules. Single-cell RNA-seq analysis revealed that loss of Pbx1 function affected the fate decisions of progenitor Leydig cells and altered the transcription of genes associated with testosterone synthesis in the adult testis. Pbx1 directly regulates the transcription of genes that play important roles in steroidogenesis (Prlr, Nr2f2 and Nedd4). Further analysis demonstrated that deletion of Pbx1 leads to a significant decrease in testosterone levels, accompanied by increases in pregnenolone, androstenedione and luteinizing hormone. Collectively, our data revealed that PBX1 is indispensable for maintaining Leydig cell function. These findings provide insights into testicular dysgenesis and the regulation of hormone secretion in Leydig cells.


Subject(s)
Infertility, Male , Leydig Cells , Pre-B-Cell Leukemia Transcription Factor 1 , Testis , Testosterone , Animals , Male , Leydig Cells/metabolism , Leydig Cells/pathology , Pre-B-Cell Leukemia Transcription Factor 1/metabolism , Pre-B-Cell Leukemia Transcription Factor 1/genetics , Mice , Testosterone/metabolism , Testis/metabolism , Testis/pathology , Infertility, Male/genetics , Infertility, Male/pathology , Infertility, Male/metabolism , Cell Differentiation/genetics , Spermatogenesis/genetics , Mice, Inbred C57BL , Mice, Knockout
3.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732137

ABSTRACT

Gonadotoxic agents could impair spermatogenesis and may lead to male infertility. The present study aimed to evaluate the effect of IL-1ß on the development of spermatogenesis from cells isolated from seminiferous tubules (STs) of normal and busulfan-treated immature mice in vitro. Cells were cultured in a 3D in vitro culture system for 5 weeks. We examined the development of cells from the different stages of spermatogenesis by immunofluorescence staining or qPCR analyses. Factors of Sertoli and Leydig cells were examined by qPCR analysis. We showed that busulfan (BU) treatment significantly reduced the expression of testicular IL-1ß in the treated mice compared to the control group (CT). Cultures of cells from normal and busulfan-treated immature mice induced the development of pre-meiotic (Vasa), meiotic (Boule), and post-meiotic (acrosin) cells. However, the percentage of developed Boule and acrosin cells was significantly lower in cultures of busulfan-treated mice compared to normal mice. Adding IL-1ß to both cultures significantly increased the percentages of Vasa, Boule, and acrosin cells compared to their controls. However, the percentage of Boule and acrosin cells was significantly lower from cultures of busulfan-treated mice that were treated with IL-1ß compared to cultures treated with IL-1ß from normal mice. Furthermore, addition of IL-1ß to cultures from normal mice significantly increased only the expression of androgen receptor and transferrin but no other factors of Sertoli cells compared to their CT. However, the addition of IL-1ß to cultures from busulfan-treated mice significantly increased only the expression of androgen-binding protein and the FSH receptor compared to their CT. Adding IL-1ß to cultures of normal mice did not affect the expression of 3ßHSD compared to the CT, but it significantly reduced its expression in cultures from busulfan-treated mice compared to the CT. Our findings demonstrate the development of different stages of spermatogenesis in vitro from busulfan-treated mice and that IL-1ß could potentiate this development in vitro.


Subject(s)
Busulfan , Interleukin-1beta , Spermatogenesis , Animals , Busulfan/pharmacology , Spermatogenesis/drug effects , Male , Interleukin-1beta/metabolism , Mice , Sertoli Cells/metabolism , Sertoli Cells/drug effects , Sertoli Cells/cytology , Testis/metabolism , Testis/drug effects , Testis/cytology , Leydig Cells/metabolism , Leydig Cells/drug effects , Seminiferous Tubules/drug effects , Seminiferous Tubules/metabolism , Cells, Cultured
4.
Int J Mol Sci ; 25(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791457

ABSTRACT

Insulin-like peptide 3 (INSL3) is a biomarker for Leydig cells in the testes of vertebrates, and it is principally involved in spermatogenesis through specific binding with the RXFP2 receptor. This study reports the insl3 gene transcript and the Insl3 prepropeptide expression in both non-reproductive and reproductive tissues of Danio rerio. An immunohistochemistry analysis shows that the hormone is present at a low level in the Leydig cells and germ cells at all stages of Danio rerio testis differentiation. Considering that the insl3 gene is transcribed in Leydig cells, our results highlight an autocrine and paracrine function of this hormone in the Danio rerio testis, adding new information on the Insl3 mode of action in reproduction. We also show that Insl3 and Rxfp2 belonging to Danio rerio and other vertebrate species share most of the amino acid residues involved in the ligand-receptor interaction and activation, suggesting a conserved mechanism of action during vertebrate evolution.


Subject(s)
Insulin , Insulins , Proteins , Receptors, G-Protein-Coupled , Testis , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/metabolism , Male , Proteins/metabolism , Proteins/genetics , Insulin/metabolism , Testis/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Insulins/metabolism , Insulins/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Leydig Cells/metabolism , Amino Acid Sequence , Spermatogenesis/genetics
5.
PLoS One ; 19(5): e0299017, 2024.
Article in English | MEDLINE | ID: mdl-38758777

ABSTRACT

A growing threat to male infertility has become a major concern for the human population due to the advent of modern technologies as a source of radiofrequency radiation (RFR). Since these technologies have become an integral part of our daily lives, thus, it becomes necessary to know the impression of such radiations on human health. In view of this, the current study aims to focus on the biological effects of radiofrequency electromagnetic radiations on mouse Leydig cell line (TM3) in a time-dependent manner. TM3 cells were exposed to RFR emitted from 4G cell phone and also exposed to a particular frequency of 1800 MHz and 2450 MHz from RFR exposure system. The cells were then evaluated for different parameters such as cell viability, cell proliferation, testosterone production, and ROS generation. A considerable reduction in the testosterone levels and proliferation rate of TM3 cells were observed at 120 min of exposure as compared to the control group in all exposure settings. Conversely, the intracellular ROS levels showed a significant rise at 60, 90 and 120 min of exposure in both mobile phone and 2450 MHz exposure groups. However, RFR treatment for different time durations (15, 30, 45, 60, 90, and 120 min) did not have significant effect on cell viability at any of the exposure condition (2450 MHz, 1800 MHz, and mobile phone radiation). Therefore, our findings concluded with the negative impact of radiofrequency electromagnetic radiations on Leydig cell's physiological functions, which could be a serious concern for male infertility. However, additional studies are required to determine the specific mechanism of RFR action as well as its long-term consequences.


Subject(s)
Cell Proliferation , Cell Survival , Leydig Cells , Radio Waves , Reactive Oxygen Species , Testosterone , Male , Leydig Cells/radiation effects , Leydig Cells/metabolism , Animals , Mice , Reactive Oxygen Species/metabolism , Radio Waves/adverse effects , Cell Proliferation/radiation effects , Testosterone/metabolism , Cell Survival/radiation effects , Cell Line , Cell Phone , Electromagnetic Radiation
6.
Reprod Domest Anim ; 59(5): e14583, 2024 May.
Article in English | MEDLINE | ID: mdl-38747479

ABSTRACT

Testosterone, an important sex hormone, regulates sexual maturation, testicular development, spermatogenesis and the maintenance of secondary sexual characteristics in males. Testicular Leydig cells are the primary source of testosterone production in the body. Hezuo pigs, native to the southern part of Gansu, China, are characterized by early sexual maturity, strong disease resistance and roughage tolerance. This study employed type IV collagenase digestion combined with cell sieve filtration to isolate and purify Leydig cells from the testicular tissue of 1-month-old Hezuo pigs. We also preliminarily investigated the functions of these cells. The results indicated that the purity of the isolated and purified Leydig cells was as high as 95%. Immunofluorescence analysis demonstrated that the isolated cells specifically expressed the 3ß-hydroxysteroid dehydrogenase antibody. Enzyme-linked immunosorbent assay results showed that the testosterone secretion of the Leydig cells cultured in vitro (generations 5-9) ranged between 1.29-1.67 ng/mL. Additionally, the content of the cellular autophagy signature protein microtubule-associated protein 1 light chain 3 was measured at 230-280 pg/mL. Through this study, we established an in vitro system for the isolation, purification and characterization of testicular Leydig cells from 1-month-old Hezuo pigs, providing a reference for exploring the molecular mechanism behind precocious puberty in Hezuo pigs.


Subject(s)
Leydig Cells , Testosterone , Animals , Male , Leydig Cells/metabolism , Testosterone/metabolism , Swine , Testis/cytology , Cells, Cultured , Cell Culture Techniques/veterinary , Cell Separation/methods , Cell Separation/veterinary
7.
Ecotoxicol Environ Saf ; 276: 116316, 2024 May.
Article in English | MEDLINE | ID: mdl-38615640

ABSTRACT

Aflatoxins B1 (AFB1) a dangerous type of aflatoxin, poses a serious threat to human health. Meanwhile, Taraxasterol, a bioactive compound in dandelion, exhibits strong anti-inflammatory and antioxidant activity. Therefore, the aim of this study was to investigate the impact of AFB1 on the intrinsic and extrinsic pathways of apoptosis, as well as evaluate the protective role of taraxasterol in the TM3 Leydig cell line. Cell viability was evaluated using an MTT assay, measuring the effects of 3.6 µM AFB1 and varying concentrations of taraxasterol. Expression levels of Caspase 3,8, and 9 were analyzed with RT-qPCR, and flow cytometry was used to assess cell cycle progression and apoptotic alterations. The findings of this study demonstrated that exposure to 3.6 µM of AFB1 resulted in an upregulation of Caspase 3 and Caspase 9 expression, indicating an activation of apoptotic pathways in TM3 cells. Additionally, the analysis of apoptosis revealed a significant increase in cellular apoptosis at this AFB1 concentration. However, when TM3 cells were exposed to 5 µM of taraxasterol, a downregulation of Caspase 3 and Caspase 9 expression was observed, suggesting a protective effect against apoptosis. Moreover, the apoptotic rate in TM3 cells was reduced in the presence of 5 µM of taraxasterol. Consequently, this study highlights the potential of taraxasterol as a protective agent against AFB1-induced apoptosis and suggest its potential application in regulating cell survival and apoptosis-related processes. Further investigations are necessary to elucidate the underlying mechanisms and evaluate the clinical implications of taraxasterol in the context of fertility disorders and other conditions associated with AFB1 exposure.


Subject(s)
Aflatoxin B1 , Apoptosis , Cell Survival , Leydig Cells , Triterpenes , Aflatoxin B1/toxicity , Apoptosis/drug effects , Leydig Cells/drug effects , Animals , Cell Line , Cell Survival/drug effects , Mice , Male , Triterpenes/pharmacology , Sterols/pharmacology , Caspase 3/metabolism , Protective Agents/pharmacology , Caspase 9/metabolism
8.
Ecotoxicol Environ Saf ; 277: 116391, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38678792

ABSTRACT

Prenatal exposure to diethylhexyl phthalate (DEHP) has been linked with a decline in testosterone levels in adult male rats, but the underlying mechanism remains unclear. We investigated the potential epigenetic regulation, particularly focusing on N6-methyladenosine (m6A) modification, as a possible mechanism. Dams were gavaged with DEHP (0, 10, 100, and 750 mg/kg/day) from gestational day 14 to day 21. The male offspring were examined at the age of 56 days. Prenatal DEHP administration at 750 mg/kg/day caused a decline in testosterone concentrations, an elevation in follicle-stimulating hormone, a downregulated expression of CYP11A1 HSD3B2, without affecting Leydig cell numbers. Interestingly, Methyltransferase Like 4 (METTL4), an m6A methyltransferase, was downregulated, while there were no changes in METTL3 and METTL14. Moreover, CYP11A1 showed m6A reduction in response to prenatal DEHP exposure. Additionally, METTL4 expression increased postnatally, peaking in adulthood. Knockdown of METTL4 resulted in the downregulation of CYP11A1 and HSD3B2 and an increase in SCARB1 expression. Furthermore, the increase in autophagy protection in adult Leydig cells induced by prenatal DEHP exposure was not affected by 3-methyladenosine (3MA) treatment, indicating a potential protective role of autophagy in response to DEHP exposure. In conclusion, prenatal DEHP exposure reduces testosterone by downregulating CYP11A1 and HSD3B2 via m6A epigenetic regulation and induction of autophagy protection in adult Leydig cells as a response to DEHP exposure.


Subject(s)
Diethylhexyl Phthalate , Down-Regulation , Epigenesis, Genetic , Leydig Cells , Methyltransferases , Prenatal Exposure Delayed Effects , Testosterone , Animals , Female , Male , Pregnancy , Rats , Adenosine/analogs & derivatives , Cholesterol Side-Chain Cleavage Enzyme/genetics , Diethylhexyl Phthalate/toxicity , Diethylhexyl Phthalate/analogs & derivatives , Down-Regulation/drug effects , Epigenesis, Genetic/drug effects , Leydig Cells/drug effects , Methyltransferases/genetics , Prenatal Exposure Delayed Effects/chemically induced , Rats, Sprague-Dawley , Testosterone/blood
9.
Food Chem Toxicol ; 188: 114678, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643823

ABSTRACT

Hexafluoropropylene oxide trimer acid (HFPO-TA) is an alternative to perfluorooctanoic acid (PFOA) and is widely used in various industries. The effects of HFPO-TA on the male reproductive system and the underlying mechanisms are still not fully understood. In this study, TM3 mouse Leydig cells were used as the main model to evaluate the cytotoxicity of HFPO-TA in vitro. HFPO-TA inhibited the viability and expression of multiple biomarkers of Leydig cells. HFPO-TA also induced Leydig cell apoptosis in a caspase-dependent manner. Moreover, HFPO-TA induced the ubiquitination and degradation of Mcl-1 in a ß-TrCP-dependent manner. Further investigations showed that HFPO-TA treatment led to the upregulation of ROS, which activated the ER stress/JNK/ß-TrCP axis in Leydig cells. Overall, our study provides novel insights into the cytotoxic effects of HFPO-TA on the male reproductive system.


Subject(s)
Apoptosis , Endoplasmic Reticulum Stress , Leydig Cells , Male , Animals , Leydig Cells/drug effects , Leydig Cells/metabolism , Mice , Endoplasmic Reticulum Stress/drug effects , Apoptosis/drug effects , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Cell Line , Cell Survival/drug effects , Reactive Oxygen Species/metabolism
10.
J Agric Food Chem ; 72(18): 10616-10626, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38656193

ABSTRACT

Deoxynivalenol (DON) is a common food contaminant that can impair male reproductive function. This study investigated the effects and mechanisms of DON exposure on progenitor Leydig cell (PLC) development in prepubertal male rats. Rats were orally administrated DON (0-4 mg/kg) from postnatal days 21-28. DON increased PLC proliferation but inhibited PLC maturation and function, including reducing testosterone levels and downregulating biomarkers like HSD11B1 and INSL3 at ≥2 mg/kg. DON also stimulated mitochondrial fission via upregulating DRP1 and FIS1 protein levels and increased oxidative stress by reducing antioxidant capacity (including NRF2, SOD1, SOD2, and CAT) in PLCs in vivo. In vitro, DON (2-4 µM) inhibited PLC androgen biosynthesis, increased reactive oxygen species production and protein levels of DRP1, FIS1, MFF, and pAMPK, decreased mitochondrial membrane potential and MFN1 protein levels, and caused mitochondrial fragmentation. The mitochondrial fission inhibitor mdivi-1 attenuated DON-induced impairments in PLCs. DON inhibited PLC steroidogenesis, increased oxidative stress, perturbed mitochondrial homeostasis, and impaired maturation. In conclusion, DON disrupts PLC development in prepubertal rats by stimulating mitochondrial fission.


Subject(s)
Leydig Cells , Mitochondria , Mitochondrial Dynamics , Oxidative Stress , Rats, Sprague-Dawley , Trichothecenes , Animals , Male , Mitochondrial Dynamics/drug effects , Rats , Leydig Cells/drug effects , Leydig Cells/metabolism , Leydig Cells/cytology , Trichothecenes/toxicity , Oxidative Stress/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Testosterone/metabolism , Stem Cells/drug effects , Stem Cells/metabolism , Stem Cells/cytology , Humans , Dynamins/metabolism , Dynamins/genetics , Membrane Potential, Mitochondrial/drug effects
11.
Environ Pollut ; 350: 124030, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38663511

ABSTRACT

As a widely used alternative to perfluorooctanoic acid (PFOA), hexafluoropropylene oxide trimer acid (HFPO-TA) has been detected in the environment and humans; however, little is known regarding its male reproductive toxicity. To compare the effects of HFPO-TA on steroid hormone synthesis with PFOA, we exposed Leydig cells (MLTC-1) to non-lethal doses (0.1, 1, and 10 µM) of PFOA and HFPO-TA for 48 h. It was found that the levels of steroid hormones, 17α-hydroxyprogesterone (OHP), androstenedione (ASD), and testosterone (T) were significantly increased in 1 and 10 µM of PFOA and HFPO-TA groups, with greater elevation being observed in the HFPO-TA groups than in the PFOA groups at 10 µM. We further showed that the two rate-limiting steroidogenic genes (Star and Cyp11a1) were up-regulated, while Hsd3b, Cyp17a1, and Hsd17b were down-regulated or unchanged after PFOA/HFPO-TA exposure. Moreover, PFOA exposure significantly up-regulated histone H3K4me1/3 and H3K9me1, while down-regulated H3K4me2 and H3K9me2/3 levels. By contrast, H3K4me2/3 and H3K9me2/3 were enhanced, while H3K4me1 and H3K9me1 were repressed after HFPO-TA treatment. It was further confirmed that H3K4me1/3 were increased and H3K9me2 was decreased in Star and Cyp11a1 promoters by PFOA, while HFPO-TA increased H3K4me2/3 and decreased H3K9me1 in the two gene promoters. Therefore, we propose that low levels of PFOA/HFPO-TA enhance the expression of Star and Cyp11a1 by regulating H3K4 and H3K9 methylation, thus stimulating the production of steroid hormones in MLTC-1 cells. Collectively, HFPO-TA exhibits stronger effects on steroidogenesis compared to PFOA, which may be ascribed to the distinct regulation of histone modifications. These data suggest that HFPO-TA does not appear to be a safer alternative to PFOA on the aspect of male reproductive toxicity.


Subject(s)
Caprylates , Fluorocarbons , Fluorocarbons/toxicity , Caprylates/toxicity , Animals , Male , Histone Code/drug effects , Leydig Cells/drug effects , Leydig Cells/metabolism , Testosterone/metabolism , Histones/metabolism , Mice
12.
Chemosphere ; 358: 142086, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670510

ABSTRACT

Furan is generated in a wide array of heat-treated foods through thermal degradation, leading to severe impairments in the male reproductive system. The main objective of this study was to investigate the potential of pomegranate peel extract (PGPE) in mitigating testicular dysfunctions induced by furan. Male rats were categorized into four groups: control/untreated, PGPE, furan, and PGPE + furan group. The study results revealed that furan-treated rats exhibited significantly elevated aminotransferase and phosphatase activity, and also generated increased oxidative stress, and reduced antioxidative stress protein activity. Additionally, protein content levels (ALT, AST, ALP, and ACP) and activities of steroidogenic Leydig cell hydroxysteroid dehydrogenase (3ß-HSD and 17ß-HSD) enzymes were significantly decreased. Significant variations in testicular parameters, apoptotic genes (Bcl-2, P53, and Caspase3), inflammatory and anti-inflammatory cytokines (IL1ß, IL10), male sex hormones follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone, and sperm quality were also observed. Furthermore, testicular histological abnormalities were confirmed by biochemical and molecular modifications. Notably, PGPE pre-treated furan-intoxicated animals exhibited significant improvements in most of the assessed parameters compared to furan-treated groups. In conclusion, PGPE presents essential preventive measures and a novel pharmacological potential therapy against furan-induced testicular injury.


Subject(s)
Apoptosis , Furans , Oxidative Stress , Plant Extracts , Pomegranate , Testis , Male , Animals , Oxidative Stress/drug effects , Testis/drug effects , Testis/metabolism , Testis/pathology , Rats , Plant Extracts/pharmacology , Plant Extracts/chemistry , Apoptosis/drug effects , Pomegranate/chemistry , Furans/pharmacology , Testosterone/metabolism , Luteinizing Hormone , 17-Hydroxysteroid Dehydrogenases/metabolism , Follicle Stimulating Hormone , Leydig Cells/drug effects , Leydig Cells/metabolism , Antioxidants/metabolism
13.
Int J Mol Sci ; 25(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612808

ABSTRACT

We examined the localization of the 5-hydroxytryptamine (5-HT) receptor and its effects on mouse colonic interstitial cells of Cajal (ICCs) using electrophysiological techniques. Treatment with 5-HT increased the pacemaker activity in colonic ICCs with depolarization of membrane potentials in a dose-dependent manner. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blockers blocked pacemaker activity and 5-HT-induced effects. Moreover, an adenylate cyclase inhibitor inhibited 5-HT-induced effects, and cell-permeable 8-bromo-cAMP increased the pacemaker activity. Various agonists of the 5-HT receptor subtype were working in colonic ICCs, including the 5-HT4 receptor. In small intestinal ICCs, 5-HT depolarized the membrane potentials transiently. Adenylate cyclase inhibitors or HCN blockers did not show any influence on 5-HT-induced effects. Anoctamin-1 (ANO1) or T-type Ca2+ channel blockers inhibited the pacemaker activity of colonic ICCs and blocked 5-HT-induced effects. A tyrosine protein kinase inhibitor inhibited pacemaker activity in colonic ICCs under controlled conditions but did not show any influence on 5-HT-induced effects. Among mitogen-activated protein kinase (MAPK) inhibitors, a p38 MAPK inhibitor inhibited 5-HT-induced effects on colonic ICCs. Thus, 5-HT's effect on pacemaker activity in small intestinal and colonic ICCs has excitatory but variable patterns. ANO1, T-type Ca2+, and HCN channels are involved in 5-HT-induced effects, and MAPKs are involved in 5-HT effects in colonic ICCs.


Subject(s)
Colonic Diseases , Interstitial Cells of Cajal , Animals , Mice , Male , Serotonin/pharmacology , Leydig Cells , Adenylyl Cyclase Inhibitors , Calcium Channel Blockers , Protein Kinase Inhibitors
14.
J Cell Mol Med ; 28(8): e18303, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38613362

ABSTRACT

Curcuma longa, best known for its culinary application as the main constituent of curry powder, has shown potential impact on the reproductive system. This study aimed to investigate the efficacy of Curcuma longa extract (CLE) on Kidney-Yang deficiency mice induced by hydrocortisone and the possible roles in testosterone secretion in Leydig cells. We evaluated male sexual behaviour, reproductive organ weight, testosterone levels, and histological tissue changes in hydrocortisone-induced mice. CLE effectively reversed hydrocortisone-induced Kidney-Yang deficiency syndrome by improving sexual behaviour, testis and epididymis weight, testosterone levels and reducing pathological damage. Our in vitro study further indicated that CLE stimulated testosterone production via upregulating the mRNA and protein expression of steroidogenic enzymes in Leydig cells. It significantly improved H89-inhibited protein expression of StAR and cAMP-response element-binding (CREB), as well as melatonin-suppressed StAR protein expression. The data obtained from this study suggest that CLE could alleviate Kidney-Yang deficiency symptoms and stimulate testosterone production by upregulating the steroidogenic pathway. This research identifies CLE as a potential nutraceutical option for addressing testosterone deficiency diseases.


Subject(s)
Glomerulonephritis , Plant Extracts , Testosterone , Male , Animals , Mice , Leydig Cells , Curcuma , Hydrocortisone , Yang Deficiency
15.
PLoS One ; 19(4): e0302403, 2024.
Article in English | MEDLINE | ID: mdl-38662754

ABSTRACT

With aging, men develop testosterone-deficiency syndrome (TDS). The development is closely associated with age-related mitochondrial dysfunction of Leydig cell and oxidative stress-induced reactive oxygen species (ROS). Testosterone-replacement therapy (TRT) is used to improve the symptoms of TDS. However, due to its various side effects, research on functional ingredients derived from natural products that do not have side effects is urgently needed. In this study, using the mitochondrial dysfunction TM3 (mouse Leydig) cells, in which testosterone biosynthesis is reduced by H2O2, we evaluated the effects of elderberry extract and monosaccharide-amino acid (fructose-leucine; FL) on mRNA and protein levels related to steroidogenesis-related enzymes steroidogenic acute regulatory protein (StAR), cytochrome P450 11A1(CYP11A1, cytochrome P450 17A1(CYP17A1), cytochrome P450 19A1(CYP19A1, aromatase), 3ß-hydroxysteroid dehydrogenase (3ß-HSD), and 17ß-hydroxysteroid dehydrogenase(17ß-HSD). We analyzed elderberry extract and extract-derived FL for changes in ROS scavenging activity and testosterone secretion. Elderberry extract and FL significantly reduced H2O2-induced intracellular ROS levels, improved testosterone secretion, and increased the mRNA and protein expression levels of steroidogenesis-related enzymes (StAR, 3b-HSD, 17b-HSD, CYP11A1, CYp17A1). However, the conversion of testosterone to estradiol was inhibited by elderberry extract and extract-derived FL, which reduced the mRNA and protein expression of CYP19A1. In conclusion, elderberry extract and FL are predicted to have value as novel functional ingredients that may contribute to the prevention of TDS by ameliorating reduced steroidogenesis.


Subject(s)
Hydrogen Peroxide , Leydig Cells , Plant Extracts , Testosterone , Animals , Leydig Cells/metabolism , Leydig Cells/drug effects , Mice , Hydrogen Peroxide/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Male , Cell Line , Amino Acids/metabolism , Monosaccharides , Sambucus/chemistry , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Phosphoproteins/metabolism , Phosphoproteins/genetics
16.
Aging Male ; 27(1): 2346322, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38676285

ABSTRACT

Insulin-like peptide 3 (INSL3) is a circulating biomarker for Leydig cell functional capacity in men, also indicating Leydig Cell Insufficiency (LCI) and potential primary hypogonadism. Using results from large cohort studies we explore sources of biological and technical variance, and establish a reference range for adult men. It is constitutively secreted with little within-individual variation and reflects testicular capacity to produce testosterone. The main INSL3 assays available indicate good concordance with low technical variance; there is no effect of ethnicity. INSL3 declines with age from 35 years at about 15% per decade. Like low calculated free testosterone, and to a lesser extent low total testosterone, reduced INSL3 is significantly associated with increasing age-related morbidity, including lower overall sexual function, reflecting LCI. Consequently, low INSL3 (≤0.4 ng/ml; ca. <2 SD from the population mean) might serve as an additional biochemical marker in the assessment of functional hypogonadism (late-onset hypogonadism, LOH) where testosterone is in the borderline low range. Excluding individuals with low LCI (INSL3 ≤ 0.4 ng/ml) leads to an age-independent (> 35 years) reference range (serum) for INSL3 in the eugonadal population of 0.4 - 2.3 ng/ml, with low INSL3 prospectively identifying individuals at risk of increased future morbidity.


Subject(s)
Biomarkers , Hypogonadism , Leydig Cells , Proteins , Testosterone , Humans , Male , Hypogonadism/blood , Middle Aged , Reference Values , Proteins/analysis , Testosterone/blood , Biomarkers/blood , Aged , Adult , Insulins/blood , Insulin/blood
17.
PLoS One ; 19(4): e0292198, 2024.
Article in English | MEDLINE | ID: mdl-38574116

ABSTRACT

The surgical sterilization of cats and dogs has been used to prevent their unwanted breeding for decades. However, this is an expensive and invasive procedure, and often impractical in wider contexts, for example the control of feral populations. A sterilization agent that could be administered in a single injection, would not only eliminate the risks imposed by surgery but also be a much more cost-effective solution to this worldwide problem. In this study, we sought to develop a targeting peptide that would selectively bind to Leydig cells of the testes. Subsequently, after covalently attaching a cell ablation agent, Auristatin, to this peptide we aimed to apply this conjugated product (LH2Auristatin) to adult male mice in vivo, both alone and together with a previously developed Sertoli cell targeting peptide (FSH2Menadione). The application of LH2Auristatin alone resulted in an increase in sperm DNA damage, reduced mean testes weights and mean seminiferous tubule size, along with extensive germ cell apoptosis and a reduction in litter sizes. Together with FSH2Menadione there was also an increase in embryo resorptions. These promising results were observed in around a third of all treated animals. Given this variability, we discuss how these reagents might be modified in order to increase target cell ablation and improve their efficacy as sterilization agents.


Subject(s)
Leydig Cells , Testis , Male , Mice , Animals , Cats , Dogs , Spermatogenesis , Semen , Sertoli Cells/metabolism , Peptides/metabolism
18.
Front Endocrinol (Lausanne) ; 15: 1347435, 2024.
Article in English | MEDLINE | ID: mdl-38532895

ABSTRACT

Cryptorchidism is the condition in which one or both testes have not descended adequately into the scrotum. The congenital form of cryptorchidism is one of the most prevalent urogenital anomalies in male newborns. In the acquired form of cryptorchidism, the testis that was previously descended normally is no longer located in the scrotum. Cryptorchidism is associated with an increased risk of infertility and testicular germ cell tumors. However, data on pubertal progression are less well-established because of the limited number of studies. Here, we aim to review the currently available data on pubertal development in boys with a history of non-syndromic cryptorchidism-both congenital and acquired cryptorchidism. The review is focused on the timing of puberty, physical changes, testicular growth, and endocrine development during puberty. The available evidence demonstrated that the timing of the onset of puberty in boys with a history of congenital cryptorchidism does not differ from that of non-cryptorchid boys. Hypothalamic-pituitary-gonadal hormone measurements showed an impaired function or fewer Sertoli cells and/or germ cells among boys with a history of cryptorchidism, particularly with a history of bilateral cryptorchidism treated with orchiopexy. Leydig cell function is generally not affected in boys with a history of cryptorchidism. Data on pubertal development among boys with acquired cryptorchidism are lacking; therefore, more research is needed to investigate pubertal progression among such boys.


Subject(s)
Cryptorchidism , Testicular Neoplasms , Infant, Newborn , Humans , Male , Cryptorchidism/pathology , Testicular Neoplasms/pathology , Leydig Cells/pathology , Puberty/physiology
19.
J Hazard Mater ; 470: 134142, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38555669

ABSTRACT

Low testosterone (T) levels are associated with many common diseases, such as obesity, male infertility, depression, and cardiovascular disease. It is well known that environmental cadmium (Cd) exposure can induce T decline, but the exact mechanism remains unclear. We established a murine model in which Cd exposure induced testicular T decline. Based on the model, we found Cd caused mitochondrial fusion disorder and Parkin mitochondrial translocation in mouse testes. MFN1 overexpression confirmed that MFN1-dependent mitochondrial fusion disorder mediated the Cd-induced T synthesis suppression in Leydig cells. Further data confirmed Cd induced the decrease of MFN1 protein by increasing ubiquitin degradation. Testicular specific Parkin knockdown confirmed Cd induced the ubiquitin-dependent degradation of MFN1 protein through promoting Parkin mitochondrial translocation in mouse testes. Expectedly, testicular specific Parkin knockdown also mitigated testicular T decline. Mito-TEMPO, a targeted inhibitor for mitochondrial reactive oxygen species (mtROS), alleviated Cd-caused Parkin mitochondrial translocation and mitochondrial fusion disorder. As above, Parkin mitochondrial translocation induced mitochondrial fusion disorder and the following T synthesis repression in Cd-exposed Leydig cells. Collectively, our study elucidates a novel mechanism through which Cd induces T decline and provides a new treatment strategy for patients with androgen disorders.


Subject(s)
Cadmium , Environmental Pollutants , Leydig Cells , Testis , Testosterone , Ubiquitin-Protein Ligases , Male , Animals , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Cadmium/toxicity , Testosterone/metabolism , Testis/drug effects , Testis/metabolism , Leydig Cells/drug effects , Leydig Cells/metabolism , Environmental Pollutants/toxicity , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Mice, Inbred C57BL , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics
20.
Mol Reprod Dev ; 91(3): e23739, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38480999

ABSTRACT

During male fetal development, testosterone plays an essential role in the differentiation and maturation of the male reproductive system. Deficient fetal testosterone production can result in variations of sex differentiation that may cause infertility and even increased tumor incidence later in life. Fetal Leydig cells in the fetal testis are the major androgen source in mammals. Although fetal and adult Leydig cells are similar in their functions, they are two distinct cell types, and therefore, the knowledge of adult Leydig cells cannot be directly applied to understanding fetal Leydig cells. This review summarizes our current knowledge of fetal Leydig cells regarding their cell biology, developmental biology, and androgen production regulation in rodents and human. Fetal Leydig cells are present in basement membrane-enclosed clusters in between testis cords. They originate from the mesonephros mesenchyme and the coelomic epithelium and start to differentiate upon receiving a Desert Hedgehog signal from Sertoli cells or being released from a NOTCH signal from endothelial cells. Mature fetal Leydig cells produce androgens. Human fetal Leydig cell steroidogenesis is LHCGR (Luteinizing Hormone Chronic Gonadotropin Receptor) dependent, while rodents are not, although other Gαs -protein coupled receptors might be involved in rodent steroidogenesis regulation. Fetal steroidogenesis ceases after sex differentiation is completed, and some fetal Leydig cells dedifferentiate to serve as stem cells for adult testicular cell types. Significant gaps are acknowledged: (1) Why are adult and fetal Leydig cells different? (2) What are bona fide progenitor and fetal Leydig cell markers? (3) Which signaling pathways and transcription factors regulate fetal Leydig cell steroidogenesis? It is critical to discover answers to these questions so that we can understand vulnerable targets in fetal Leydig cells and the mechanisms for androgen production that when disrupted, leads to variations in sex differentiation that range from subtle to complete sex reversal.


Subject(s)
Androgens , Leydig Cells , Animals , Male , Humans , Leydig Cells/metabolism , Androgens/metabolism , Endothelial Cells/metabolism , Hedgehog Proteins/metabolism , Testis/metabolism , Testosterone , Luteinizing Hormone/metabolism , Receptors, LH/metabolism , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...