Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 233
Filter
1.
BMC Microbiol ; 24(1): 243, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965478

ABSTRACT

BACKGROUND: Lichens, traditionally considered as a simple partnership primarily between mycobiont and photobiont, are, in reality, complex holobionts comprised of a multitude of microorganisms. Lichen mycobiome represents fungal community residing within lichen thalli. While it is acknowledged that factors like the host lichen species and environmental conditions influence the structure of the lichen mycobiome, the existing research remains insufficient. To investigate which factor, host genus or location, has a greater impact on the lichen mycobiome, we conducted a comparative analysis of mycobiomes within Parmelia and Peltigera collected from both Turkey and South Korea, using high-throughput sequencing based on internal transcribed spacer region amplification. RESULTS: Overall, the lichen mycobiome was dominated by Capnodiales (Dothideomycetes), regardless of host or location. At the order level, the taxonomic composition was not significantly different according to lichen genus host or geographical distance. Hierarchical clustering of the top 100 abundant ASVs did not clearly indicate whether the lichen mycobiome was more influenced by host genus or location. Analyses of community similarity and partitioning variables revealed that the structure of the lichen mycobiome is more significantly influenced by location than by host genus. When analyzing the core mycobiome by host genus, the Peltigera mycobiome contained more ASV members than the Parmelia mycobiome. These two core mycobiomes also share common fungal strains, including basidiomycete yeast. Additionally, we used chi-squared tests to identify host genus-specialists and location-specialists. CONCLUSIONS: By comparing lichen mycobiomes of the same genera across different countries, our study advances our comprehension of these microbial communities. Our study elucidates that, although host species play a contributory role, geographic distance exerts a more pronounced impact on the structure of lichen mycobiome. We have made foundational contributions to understanding the lichen mycobiome occupying ecologically crucial niches. We anticipate that broader global-scale investigations into the fungal community structures will provide more detailed insights into fungal residents within lichens.


Subject(s)
DNA, Fungal , Lichens , Mycobiome , Republic of Korea , Turkey , Lichens/microbiology , Lichens/classification , DNA, Fungal/genetics , Ascomycota/classification , Ascomycota/isolation & purification , Ascomycota/genetics , High-Throughput Nucleotide Sequencing , Phylogeny , Fungi/classification , Fungi/isolation & purification , Fungi/genetics , Parmeliaceae/genetics
2.
Sci Rep ; 12(1): 11048, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35773369

ABSTRACT

We show that obligate lignicoles in lichenized Micarea are predominately asexual whereas most facultative lignicoles reproduce sexually. Our phylogenetic analyses (ITS, mtSSU, Mcm7) together with ancestral state reconstruction show that the shift in reproduction mode has evolved independently several times within the group and that facultative and obligate lignicoles are sister species. The analyses support the assumption that the ancestor of these species was a facultative lignicole. We hypothezise that a shift in substrate requirement from bark to wood leads to differentiation in reproduction mode and becomes a driver of speciation. This is the first example of lichenized fungi where reproduction mode is connected to substrate requirement. This is also the first example where such an association is demonstrated to spark lichen speciation. Our main hypothesis is that obligate species on dead wood need to colonize new suitable substrata relatively fast and asexual reproduction is more effective a strategy for successful colonization.


Subject(s)
Ascomycota , Lichens , Phylogeny , Ascomycota/classification , Lichens/classification , Reproduction, Asexual
3.
PLoS One ; 16(9): e0257564, 2021.
Article in English | MEDLINE | ID: mdl-34534251

ABSTRACT

Greatly simplified ecosystems are often neglected for biodiversity studies. However, these simplified systems dominate in many regions of the world, and a lack of understanding of what shapes species occurrence in these systems can have consequences for biodiversity and ecosystem services at a massive scale. In Fennoscandia, ~90% of the boreal forest (~21Mha) is structurally simplified with little knowledge of how forest structural elements shape the occurrence and diversity of for example epiphytic lichens in these managed forests. One form of structural simplification is the reduction of the number and frequency of different tree species. As many lichen species have host tree preferences, it is particularly likely that this simplification has a huge effect on the lichen community in managed forests. In a 40-70 years old boreal forest in Sweden, we therefore related the occurrence and richness of all observed epiphytic lichens to the host tree species and beta and gamma lichen diversity at the forest stand level to the stand's tree species composition and stem diameter. Picea abies hosted the highest lichen richness followed by Pinus sylvestris, Quercus robur, Alnus glutinosa, Betula spp., and Populus tremula. However, P. tremula hosted twice as many uncommon species as any of the other tree species. Stand level beta and gamma diversity was twice as high on stands with four compared to one tree species, and was highest when either coniferous or deciduous trees made up 40-50% of the trees. The stem diameter was positively related to lichen richness at the tree and stand level, but negatively to beta diversity. For biodiversity, these findings imply that leaving a few trees of a different species during forest thinning is unlikely as effective as combining life-boat trees for endangered species with an even tree species mixture.


Subject(s)
Forests , Lichens/growth & development , Biodiversity , Lichens/classification , Lichens/physiology , Pinus , Sweden , Symbiosis
4.
Z Naturforsch C J Biosci ; 76(7-8): 291-299, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34218549

ABSTRACT

In the present study, we investigated cytogenetic and oxidative [total antioxidant capacity (TAC), total oxidant status (TOS)] effects of methanol and water extracts of Cladonia chlorophaea (Flörke ex Sommerf.) Sprengel, Dermatocarpon miniatum (L.) W.Mann and Parmelia saxatilis (L.) Ach. on cultured human lymphocytes. In addition, different phenolic compounds in the extracts were quantified by high performance liquid chromatography (HPLC) analysis. As a result of HPLC analysis, methanol extracts of all lichen species tested had higher phenolic compounds. Likewise, methanol extracts of each lichen increased TAC levels in lymphocytes more than water extracts. The TOS levels of the cells treated with different concentrations (1-100 mg/L) of the extracts decreased due to the increasing concentration of the extracts. Genotoxicity experiments revealed that the tested lichen extracts did not significantly increase (p > 0.05) the level of genotoxicity on human peripheral lymphocyte culture compared to the negative control group. The results showed that C. chlorophaea, D. miniatum and P. saxatilis lichens, which were found to be a rich source of phenolic compounds, might be of interest in the pharmaceutical and food industries.


Subject(s)
Cell Extracts/pharmacology , Cytogenetic Analysis/methods , Lichens/chemistry , Lymphocytes/drug effects , Oxidative Stress/drug effects , Phenol/pharmacology , Cell Extracts/chemistry , Cell Extracts/isolation & purification , Cells, Cultured , Chromatography, High Pressure Liquid , Chromosome Aberrations/drug effects , Chromosome Breakage/drug effects , Humans , Lichens/classification , Lymphocytes/cytology , Lymphocytes/metabolism , Micronucleus Tests/methods , Molecular Structure , Phenol/chemistry , Phenol/isolation & purification , Species Specificity
5.
mBio ; 12(3): e0111121, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34154413

ABSTRACT

The depside and depsidone series compounds of polyketide origin accumulate in the cortical or medullary layers of lichen thalli. Despite the taxonomic and ecological significance of lichen chemistry and its pharmaceutical potentials, there has been no single piece of genetic evidence linking biosynthetic genes to lichen substances. Thus, we systematically analyzed lichen polyketide synthases (PKSs) for categorization and identification of the biosynthetic gene cluster (BGC) involved in depside/depsidone production. Our in-depth analysis of the interspecies PKS diversity in the genus Cladonia and a related Antarctic lichen, Stereocaulon alpinum, identified 45 BGC families, linking lichen PKSs to 15 previously characterized PKSs in nonlichenized fungi. Among these, we identified highly syntenic BGCs found exclusively in lichens producing atranorin (a depside). Heterologous expression of the putative atranorin PKS gene (coined atr1) yielded 4-O-demethylbarbatic acid, found in many lichens as a precursor compound, indicating an intermolecular cross-linking activity of Atr1 for depside formation. Subsequent introductions of tailoring enzymes into the heterologous host yielded atranorin, one of the most common cortical substances of macrolichens. Phylogenetic analysis of fungal PKS revealed that the Atr1 is in a novel PKS clade that included two conserved lichen-specific PKS families likely involved in biosynthesis of depsides and depsidones. Here, we provide a comprehensive catalog of PKS families of the genus Cladonia and functionally characterize a biosynthetic gene cluster from lichens, establishing a cornerstone for studying the genetics and chemical evolution of diverse lichen substances. IMPORTANCE Lichens play significant roles in ecosystem function and comprise about 20% of all known fungi. Polyketide-derived natural products accumulate in the cortical and medullary layers of lichen thalli, some of which play key roles in protection from biotic and abiotic stresses (e.g., herbivore attacks and UV irradiation). To date, however, no single lichen product has been linked to respective biosynthetic genes with genetic evidence. Here, we identified a gene cluster family responsible for biosynthesis of atranorin, a cortical substance found in diverse lichen species, by categorizing lichen polyketide synthase and reconstructing the atranorin biosynthetic pathway in a heterologous host. This study will help elucidate lichen secondary metabolism, harnessing the lichen's chemical diversity, hitherto obscured due to limited genetic information on lichens.


Subject(s)
Biosynthetic Pathways/genetics , Fungal Proteins/genetics , Hydroxybenzoates/metabolism , Lichens/chemistry , Lichens/genetics , Multigene Family , Polyketide Synthases/genetics , Ascomycota/chemistry , Ascomycota/genetics , Gene Expression , Lichens/classification , Phylogeny , Polyketide Synthases/classification , Polyketide Synthases/metabolism , Polyketides/metabolism
6.
Sci Rep ; 11(1): 7428, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33795714

ABSTRACT

Macaronesia is characterized by a high degree of endemism and represents a noteworthy system to study the evolutionary history of populations and species. Here, we compare the population-genetic structure in three lichen-forming fungi, the widespread Lobaria pulmonaria and two Macaronesian endemics, L. immixta and L. macaronesica, based on microsatellites. We utilize population genetic approaches to explore population subdivision and evolutionary history of these taxa on the Canary Islands, Madeira, Azores, and the western Iberian Peninsula. A common feature in all species was the deep divergence between populations on the Azores, a pattern expected by the large geographic distance among islands. For both endemic species, there was a major split between archipelagos. In contrast, in the widespread L. pulmonaria, divergent individuals were distributed across multiple archipelagos, suggesting a complex evolutionary history involving repeated migration between islands and mainland.


Subject(s)
Genetics, Population , Lichens/classification , Lichens/genetics , Biodiversity , Europe , Genetic Variation , Islands , Phylogeny , Phylogeography
7.
Sci Rep ; 11(1): 8701, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33888793

ABSTRACT

We studied the biodiversity of Asterochloris photobionts found in Bolivian lichens to better understand their global spatial distribution and adaptation strategies in the context of a worldwide phylogeny of the genus. Based on nuclear ITS rDNA, the chloroplast rbcL gene and the actin type I gene we reconstructed a phylogenetic tree that recovered nine new Asterochloris lineages, while 32 Bolivian photobiont samples were assigned to 12 previously recognized Asterochloris lineages. We also show that some previously discovered Asterochloris photobiont species and lineages may occur in a broader spectrum of climatic conditions, and mycobiont species and photobionts may show different preferences along an altitude gradient. To reveal general patterns of of mycobiont specificity towards the photobiont in Asterochloris, we tested the influence of climate, altitude, geographical distance and effects of symbiotic partner (mycobiont) at the species level of three genera of lichen forming fungi: Stereocaulon, Cladonia and Lepraria. Further, we compared the specificity of mycobionts towards Asterochloris photobionts in cosmopolitan, Neotropical, and Pantropical lichen forming fungi. Interestingly, cosmopolitan species showed the lowest specificity to their photobionts, but also the lowest haplotype diversity. Neotropical and Paleotropical mycobionts, however, were more specific.


Subject(s)
Chlorophyta/physiology , Ecosystem , Lichens/physiology , Biodiversity , Bolivia , Chlorophyta/classification , Lichens/classification , Phylogeny , Symbiosis
8.
Mycologia ; 113(2): 278-299, 2021.
Article in English | MEDLINE | ID: mdl-33428561

ABSTRACT

Members of the poorly investigated family Teloschistaceae in South America, mostly from Bolivia and Peru, were examined using molecular and morphological data here for the first time. In recent phylogenetic reclassifications of Teloschistaceae, South American representatives were poorly represented but shown to belong to subfamilies Teloschistoideae and Xanthorioideae. In this study, we expanded the sampling of South American taxa and investigated mainly the lobate, sublobate, and squamulose members of Caloplaca s.l., using morphological characters and a molecular phylogeny based on a combined three-locus data set (one mitochondrial and two nuclear loci). Building upon new phylogenies at the family and subfamily levels (Teloschistoideae), we propose here three new genera: Andina, Aridoplaca, and Cinnabaria, with the type species Andina citrinoides, Aridoplaca peltata, and Cinnabaria boliviana. We also propose to reduce Tarasginia to synonymy with Sirenophila and Tayloriellina to synonymy with Villophora and introduce three new combinations: Dufourea ottolangei, D. volkmarwirthii, and Villophora erythrosticta. Scutaria andina is reported as new to Bolivia. A critical revision of the subfamily Brownlielloideae confirmed recent findings that it is an artifactual taxon based on a "chimeric" data set, with the type genus being part of Teloschistoideae.


Subject(s)
Ascomycota/classification , Ascomycota/genetics , Lichens/classification , Lichens/genetics , Phylogeny , DNA, Ribosomal/genetics , Sequence Alignment , South America
9.
Arch Microbiol ; 203(4): 1461-1469, 2021 May.
Article in English | MEDLINE | ID: mdl-33388791

ABSTRACT

Since lichens have been recognised as a potential natural source of bioactive substances, the aim of this study was to investigate the antimicrobial, lysozyme and antifungal effects of methanol, acetone and quencher extracts from four lichens: Diploschistes ocellatus, Flavoparmelia caperata, Squamarina cartilaginea and Xanthoria parietina. The results showed that the tested extracts had antimicrobial activity against Gram-positive and Gram-negative bacteria and anti-candida, and inhibit the spore germination of tested fungi. The different extracts varied in their effect as determined by the diameter of the inhibition zone, the highest values being observed with the methanol and acetone extracts (29.5 and 27.5 mm, respectively) for S. cartilaginea against Enterococcus faecalis. For powdered material (quencher), F. caperata showed the highest inhibition diameter (25.5 mm) against Staphylococcus aureus. The Minimum Inhibitory Concentration (MIC) values varied from 125 to 2000 µg mL-1. Methanol extracts of S. cartilaginea were more active against Enterobacter cloacae (MIC 125 µg mL-1) and Staphylococcus aureus (MIC 125 µg mL-1), and also affected lysozyme activity against Staphylococcus aureus, as well as the morphology of fungal hyphae. This study demonstrated that the investigated species are a potential source of bioactive compounds which are potentially important antimicrobial agents.


Subject(s)
Anti-Infective Agents/pharmacology , Ascomycota/classification , Ascomycota/metabolism , Lichens/metabolism , Muramidase/pharmacology , Anti-Infective Agents/metabolism , Candida/drug effects , Candida/growth & development , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Lichens/classification , Microbial Sensitivity Tests , Muramidase/metabolism , Species Specificity , Spores, Fungal/drug effects , Spores, Fungal/growth & development
10.
Mol Phylogenet Evol ; 155: 107020, 2021 02.
Article in English | MEDLINE | ID: mdl-33242583

ABSTRACT

Widespread geographic distributions in lichens have been usually explained by the high dispersal capacity of their tiny diaspores. However, recent phylogenetic surveys have challenged this assumption and provided compelling evidence for cryptic speciation and more restricted distribution ranges in diverse lineages of lichen-forming fungi. To evaluate these scenarios, we focus on the fungal genus Pseudephebe (Parmeliaceae) which includes amphitropical species, a distribution pattern whose origin has been a matter of debate since first recognized in the nineteenth century. In our study, a six-locus dataset and a broad specimen sampling covering almost all Earth's continents is used to investigate species delimitation in Pseudephebe. Population structure, gene flow and dating analyses, as well as genealogical reconstruction methods, are employed to disentangle the most plausible transcontinental migration routes, and estimate the timing of the origin of the amphitropical distribution and the Antarctic populations. Our results demonstrate the existence of three partly admixed phylogenetic species that diverged between the Miocene and Pliocene, and whose Quaternary distribution has been strongly driven by glacial cycles. Pseudephebe minuscula is the only species showing an amphitropical distribution, with populations in Antarctica, whereas the restricted distribution of P. pubescens and an undescribed Alaskan species might reflect the survival of these species in European and North American refugia. Our microevolutionary analyses suggest a Northern Hemisphere origin for P. minuscula, which could have dispersed into the Southern Hemisphere directly and/or through "mountain-hopping" during the Pleistocene. The Antarctic populations of this species are sorted into two genetic clusters: populations of the Antarctic Peninsula were grouped together with South American ones, and the Antarctic Continental populations formed a second cluster with Bolivian and Svalbard populations. Therefore, our data strongly suggest that the current distribution of P. minuscula in Antarctica is the outcome of multiple, recent colonizations. In conclusion, our results stress the need for integrating species delimitation and population analyses to properly approach historical biogeography in lichen-forming fungi.


Subject(s)
Genetic Speciation , Lichens/classification , Parmeliaceae/classification , Antarctic Regions , Ecosystem , Haplotypes/genetics , Phylogeny , Phylogeography , Polymorphism, Genetic , Sequence Analysis, DNA , Species Specificity , Time Factors
11.
Microb Ecol ; 81(2): 437-453, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32989484

ABSTRACT

Trebouxia sp. (TR9) and Coccomyxa simplex (Csol) are desiccation-tolerant lichen microalgae with different adaptive strategies in accordance with the prevailing conditions of their habitats. The remodelling of cell wall and extracellular polysaccharides depending on water availability are key elements in the tolerance to desiccation of both microalgae. Currently, there is no information about the extracellular proteins of these algae and other aero-terrestrial microalgae in response to limited water availability. To our knowledge, this is the first report on the proteins associated with the extracellular polymeric substances (EPS) of aero-terrestrial microalgae subjected to cyclic desiccation/rehydration. LC-MS/MS and bioinformatic analyses of the EPS-associated proteins in the two lichen microalgae submitted to four desiccation/rehydration cycles allowed the compilation of 111 and 121 identified proteins for TR9 and Csol, respectively. Both sets of EPS-associated proteins shared a variety of predicted biological functions but showed a constitutive expression in Csol and partially inducible in TR9. In both algae, the EPS-associated proteins included a number of proteins of unknown functions, some of which could be considered as small intrinsically disordered proteins related with desiccation-tolerant organisms. Differences in the composition and the expression pattern between the studied EPS-associated proteins would be oriented to preserve the biochemical and biophysical properties of the extracellular structures under the different conditions of water availability in which each alga thrives.


Subject(s)
Acclimatization , Extracellular Polymeric Substance Matrix/metabolism , Microalgae/physiology , Proteome/metabolism , Algal Proteins/metabolism , Cell Wall/metabolism , Chlorophyta/classification , Chlorophyta/metabolism , Chlorophyta/physiology , Desiccation , Lichens/classification , Lichens/metabolism , Lichens/physiology , Microalgae/classification , Microalgae/metabolism , Plant Proteins/metabolism , Species Specificity , Water/metabolism
12.
Stud Hist Philos Biol Biomed Sci ; 84: 101340, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32919896

ABSTRACT

Ethnobotanical research provides ample justification for comparing diverse biological nomenclatures and exploring ways that retain alternative naming practices. However, how (and whether) comparison of nomenclatures is possible remains a subject of discussion. The comparison of diverse nomenclatural practices introduces a suite of epistemic and ontological difficulties and considerations. Different nomenclatures may depend on whether the communities using them rely on formalized naming conventions; cultural or spiritual valuations; or worldviews. Because of this, some argue that the different naming practices may not be comparable if the ontological commitments employed differ. Comparisons between different nomenclatures cannot assume that either the naming practices or the object to which these names are intended to apply identifies some universally agreed upon object of interest. Investigating this suite of philosophical problems, I explore the role grey nomenclatures play in classification. 'Grey nomenclatures' are defined as those that employ names that are either intentionally or accidently non-Linnaean. The classification of the lichen thallus (a symbiont) has been classified outside the Linnaean system by botanists relying on the International Code of Nomenclature for algae, fungi, and plants (ICN). But, I argue, the use of grey names is not isolated and does not occur exclusively within institutionalized naming practices. I suggest, 'grey names' also aptly describe nomenclatures employed by indigenous communities such as the Samí of Northern Finmark, the Sherpa of Nepal, and the Okanagan First Nations. I pay particular attention to how naming practices are employed in these communities; what ontological commitments they hold; for what purposes are these names used; and what anchors the community's nomenclatural practices. Exploring the history of lichen naming and early ethnolichenological research, I then investigate the stakes that must be considered for any attempt to preserve, retain, integrate, or compare the knowledge contained in both academically formalized grey names and indigenous nomenclatures in a way that preserves their source-specific informational content.


Subject(s)
Biological Ontologies , Lichens/classification , Population Groups/psychology , Social Values , Terminology as Topic , British Columbia , Humans , Nepal , Norway , Scotland
13.
J Ethnobiol Ethnomed ; 16(1): 31, 2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32493364

ABSTRACT

BACKGROUND: Since ancient times, man has learned to use plants to obtain natural dyes, but this traditional botanical knowledge (TBK) is eroding. In the late, during, and the early 1800s, there was an increase in research related to dye species, and this allowed the development of industry and economy in rural contexts of Southern Italy. Today, dyes are mainly obtained from synthetic products, and this leads to risks for human health related to pollution. METHODS: Starting from the literature, three catalogs of the dyeing species (plants, algae, fungi, and lichens) used in the Mediterranean Basin and mainly in Southern Italy have been created. Percentages of parts used and colors extracted from species have been recorded and analyzed. The plant species present in the catalogs have been verified in the territories of Southern Italy, and the data have been registered. An ethnobotanical survey was conducted, in the region of Southern Italy, to verify the erosion level of traditional botanical knowledge, linked to the ethnobotanical dyeing, over time. RESULTS: A total of 524 species were recorded among plants, algae, fungi, and lichens, and related parts used and extracted pigments. Most uses concern the stems and leaves, and the most frequent color is yellow. From the on-field survey operations, 283 plant species have been verified. These represent 64.31% of the species reported in the flora of the dye plants produced. The results, from the ethnobotanical survey, show that only 8.6% of TBK remained in the collective memory. CONCLUSIONS: This catalog is among the largest in this sector and is the basis for studies related to the restoration of an eco-sustainable economy which would allow the development of marginal areas present throughout Southern Italy.


Subject(s)
Coloring Agents , Ethnobotany , Knowledge , Plants/classification , Fungi/classification , Humans , Italy , Lichens/classification
14.
Mol Phylogenet Evol ; 149: 106821, 2020 08.
Article in English | MEDLINE | ID: mdl-32294545

ABSTRACT

Lichens provide valuable systems for studying symbiotic interactions. In lichens, these interactions are frequently described in terms of availability, selectivity and specificity of the mycobionts and photobionts towards one another. The lichen-forming, green algal genus Trebouxia Puymaly is among the most widespread photobiont, associating with a broad range of lichen-forming fungi. To date, 29 species have been described, but studies consistently indicate that the vast majority of species-level lineages still lack formal description, and new, previously unrecognized lineages are frequently reported. To reappraise the diversity and the evolutionary relationships of species-level lineages in Trebouxia, we assembled DNA sequence data from over 1600 specimens, compiled from a range of sequences from previously published studies, axenic algal cultures, and lichens collected from poorly sampled regions. From these samples, we selected representatives of the currently known genetic diversity in the lichenized Trebouxia and inferred a phylogeny from multi-locus sequence data (ITS, rbcL, cox2). We demonstrate that the current formally described species woefully underrepresent overall species-level diversity in this important lichen-forming algal genus. We anticipate that an integrative taxonomic approach, incorporating morphological and physiological data from axenic cultures with genetic data, will be required to establish a robust, comprehensive taxonomy for Trebouxia. The data presented here provide an important impetus and reference dataset for more reliably characterizing diversity in lichenized algae and in using lichens to investigate the evolution of symbioses and holobionts.


Subject(s)
Biodiversity , Chlorophyta/classification , Lichens/classification , Phylogeny , Chlorophyta/anatomy & histology , Chlorophyta/genetics , Chlorophyta/ultrastructure , Genetic Loci , Lichens/genetics , Lichens/ultrastructure , Species Specificity
15.
Nat Commun ; 11(1): 882, 2020 02 14.
Article in English | MEDLINE | ID: mdl-32060281

ABSTRACT

The tendency for species to retain their ancestral biological properties has been widely demonstrated, but the effect of phylogenetic constraints when progressing from species to ensemble-level properties requires further assessment. Here we test whether community-level patterns (environmental shifts in local species richness and turnover) are phylogenetically conserved, assessing whether their similarity across different families of lichens, insects, and birds is dictated by the relatedness of these families. We show a significant phylogenetic signal in the shape of the species richness-elevation curve and the decay of community similarity with elevation: closely related families share community patterns within the three major taxa. Phylogenetic influences are partly explained by similarities among families in conserved traits defining body plan and interactions, implying a scaling of phylogenetic effects from the organismal to the community level. Consequently, the phylogenetic signal in community-level patterns informs about how the historical legacy of a taxon and shared responses among related taxa to similar environments contribute to community assembly and diversity patterns.


Subject(s)
Biodiversity , Biological Evolution , Birds/genetics , Insecta/genetics , Lichens/genetics , Animals , Birds/physiology , Insecta/classification , Insecta/physiology , Lichens/classification , Lichens/physiology , Phylogeny
16.
Sci Rep ; 10(1): 1497, 2020 01 30.
Article in English | MEDLINE | ID: mdl-32001749

ABSTRACT

Advancements in molecular genetics have revealed that hybridization may be common among plants, animals, and fungi, playing a role in evolutionary dynamics and speciation. While hybridization has been well-documented in pathogenic fungi, the effects of these processes on speciation in fungal lineages with different life histories and ecological niches are largely unexplored. Here we investigated the potential influence of hybridization on the emergence of morphologically and reproductively distinct asexual lichens. We focused on vagrant forms (growing obligately unattached to substrates) within a clade of rock-dwelling, sexually reproducing species in the Rhizoplaca melanophthalma (Lecanoraceae, Ascomycota) species complex. We used phylogenomic data from both mitochondrial and nuclear genomes to infer evolutionary relationships and potential patterns of introgression. We observed multiple instances of discordance between the mitochondrial and nuclear trees, including the clade comprising the asexual vagrant species R. arbuscula, R. haydenii, R. idahoensis, and a closely related rock-dwelling lineage. Despite well-supported phylogenies, we recovered strong evidence of a reticulated evolutionary history using a network approach that incorporates both incomplete lineage sorting and hybridization. These data suggest that the rock-dwelling western North American subalpine endemic R. shushanii is potentially the result of a hybrid speciation event, and introgression may have also played a role in other taxa, including vagrant species R. arbuscula, R. haydenii and R. idahoensis. We discuss the potential roles of hybridization in terms of generating asexuality and novel morphological traits in lichens. Furthermore, our results highlight the need for additional study of reticulate phylogenies when investigating species boundaries and evolutionary history, even in cases with well-supported topologies inferred from genome-scale data.


Subject(s)
Ascomycota/genetics , Hybridization, Genetic , Lichens/genetics , Lichens/microbiology , Ascomycota/classification , Ascomycota/physiology , DNA, Fungal/genetics , DNA, Mitochondrial/genetics , Evolution, Molecular , Gene Flow , Genetic Speciation , Genome, Fungal , Lichens/classification , Models, Genetic , Montana , Phylogeny , Polymorphism, Single Nucleotide , Reproduction, Asexual/genetics , Utah
17.
BMC Evol Biol ; 20(1): 2, 2020 01 06.
Article in English | MEDLINE | ID: mdl-31906844

ABSTRACT

BACKGROUND: Regions within the nuclear ribosomal operon are a major tool for inferring evolutionary relationships and investigating diversity in fungi. In spite of the prevalent use of ribosomal markers in fungal research, central features of nuclear ribosomal DNA (nrDNA) evolution are poorly characterized for fungi in general, including lichenized fungi. The internal transcribed spacer (ITS) region of the nrDNA has been adopted as the primary DNA barcode identification marker for fungi. However, little is known about intragenomic variation in the nrDNA in symbiotic fungi. In order to better understand evolution of nrDNA and the utility of the ITS region for barcode identification of lichen-forming fungal species, we generated nearly complete nuclear ribosomal operon sequences from nine species in the Rhizoplaca melanophthalma species complex using short reads from high-throughput sequencing. RESULTS: We estimated copy numbers for the nrDNA operon, ranging from nine to 48 copies for members of this complex, and found low levels of intragenomic variation in the standard barcode region (ITS). Monophyly of currently described species in this complex was supported in phylogenetic inferences based on the ITS, 28S, intergenic spacer region, and some intronic regions, independently; however, a phylogenetic inference based on the 18S provided much lower resolution. Phylogenetic analysis of concatenated ITS and intergenic spacer sequence data generated from 496 specimens collected worldwide revealed previously unrecognized lineages in the nrDNA phylogeny. CONCLUSIONS: The results from our study support the general assumption that the ITS region of the nrDNA is an effective barcoding marker for fungi. For the R. melanophthalma group, the limited amount of potential intragenomic variability in the ITS region did not correspond to fixed diagnostic nucleotide position characters separating taxa within this species complex. Previously unrecognized lineages inferred from ITS sequence data may represent undescribed species-level lineages or reflect uncharacterized aspects of nrDNA evolution in the R. melanophthalma species complex.


Subject(s)
Ascomycota/genetics , DNA Barcoding, Taxonomic , Lichens/genetics , Ascomycota/classification , Cell Nucleus/genetics , DNA Barcoding, Taxonomic/methods , DNA, Fungal/genetics , DNA, Intergenic , DNA, Ribosomal , DNA, Ribosomal Spacer/genetics , High-Throughput Nucleotide Sequencing , Lichens/classification , Phylogeny , Symbiosis , Tandem Repeat Sequences
18.
Mol Phylogenet Evol ; 144: 106704, 2020 03.
Article in English | MEDLINE | ID: mdl-31821879

ABSTRACT

Genetic patterns of lichenized fungi often display a mosaic-like and difficult to interpret structure blurring their evolutionary history. The genetic diversity and phylogeographic pattern of a mycobiont of the predominantly Mediterranean dwelling lichen Solenopsora candicans were investigated on the base of extensive sampling (361 individuals, 77 populations) across its entire distribution range. We tested whether the genetic pattern of S. candicans mirrors paleoclimatic and paleogeological events in the Mediterranean and adjacent regions. The divergence time estimates indicated a Tertiary origin for S. candicans, with formation of intraspecific diversity initiated in the Late Miocene. The distribution of the most divergent haplotypes, mostly of a pre-Pleistocene origin, was restricted to the eastern or western extremities of the Mediterranean exhibiting Kiermack disjunction. The population genetic diversity analyses indicated multiple diversity centres and refugia for S. candicans across the entire Mediterranean Basin. While the south Mediterranean regions harboured both the Tertiary and Quaternary born diversity, conforming to the 'cumulative refugia' paradigm, the Apennine and Balkan Peninsulas in the north hosted mostly younger Pleistocene haplotypes and lineages. The recent population expansion of S. candicans might have occurred in the middle Pleistocene with a population burst in the Apennine and Balkan peninsulas. The presence of unique haplotypes in Central Europe indicates the existence of extra-Mediterranean microrefugia. This study presents the first comprehensive lichen phylogeography from the Mediterranean region and simultaneously reports for the first time the glacial survival of a warm-adapted lichen in the temperate zone.


Subject(s)
Genetic Variation , Lichens/classification , Lichens/genetics , Animals , Balkan Peninsula , Biological Evolution , Demography , Haplotypes , Mediterranean Region , Phylogeny , Phylogeography , Refugium , Time Factors
19.
PLoS One ; 14(7): e0219620, 2019.
Article in English | MEDLINE | ID: mdl-31295314

ABSTRACT

Continuity in forest habitats is crucial for species diversity and richness. Ancient Scots pine forests are usually under forest management, which disturbs vegetation and causes differentiation in terms of tree stand age. To date, vegetation variability in ancient Scots pine forests has not been examined based on tree stand age classes. In the present study the continuity of a large Scots pine forest complex was investigated, and a system of sampling plots established in five tree stand age classes: initiation stands (4-10 years), young stands (20-35 years), middle-aged stands (45-60 years), pre-mature stands (70-85 years) and mature stands (95-110 years). Species composition, including vascular plants, bryophytes and lichens, on soil, tree trunks, and coarse woody debris, was analyzed. Based on existing classifications systems, forest species and ancient forest species groups were distinguished. In the studied ancient Scots pine forests the species pool and richness were relatively low, and the vegetation consisted mostly of generalist species. Cryptogams, which can grow on diverse substrates, were the most abundant species. Moreover, most species could tolerate both forest and non-forest conditions. Age class forests provided different environmental niches for species. Initiation stands were optimal for terrestrial light-demanding species, and in terms of species composition, initiation stands were most specific. Young stands were most preferred by species on coarse woody debris, and at this stage of stand maturation epiphytic species re-appeared. The oldest stands were not rich in forest specialists, i.e. species of closed forest and ancient forest species. Cryptogams of closed forests inhabited different substrates, and they were not associated only with the oldest stands. The low number of forest specialists in the oldest stands may be a general feature of acidophilus pine forests. However, it may also be a result of the lack of species sources in the vicinity of maturing pine stands. In managed forests a frequent diversity pattern is an increase in a species pool and richness after clear-cut logging. In the present study we obtained higher species pools in initiation and young stands, but richness was similar in all tree stand age classes. This resulted from taking into account species of different substrates (terrestrial, epixylous and epiphytic species) which changed their participation in the vegetation of subsequent stages of tree stand development.


Subject(s)
Biodiversity , Pinus sylvestris/growth & development , Pinus/growth & development , Soil Microbiology , Bryophyta/classification , Bryophyta/growth & development , Ecosystem , Forests , Lichens/classification , Lichens/growth & development , Pinus/microbiology , Pinus sylvestris/microbiology , Species Specificity , Tracheophyta/classification , Tracheophyta/growth & development
20.
Sci Rep ; 9(1): 8518, 2019 06 28.
Article in English | MEDLINE | ID: mdl-31253825

ABSTRACT

Historical mass extinction events had major impacts on biodiversity patterns. The most recent and intensively studied event is the Cretaceous - Paleogene (K-Pg) boundary (ca. 66 million years ago [MYA]). However, the factors that may have impacted diversification dynamics vary across lineages. We investigated the macroevolutionary dynamics with a specific focus on the impact of major historical events such as the K-Pg mass extinction event on two major subclasses - Lecanoromycetidae and Ostropomycetidae - of lichen-forming fungi and tested whether variation in the rate of diversification can be associated with the evolution of a specific trait state - macrolichen. Our results reveal accelerated diversification events in three families of morphologically complex lichen-forming fungi - Cladoniaceae, Parmeliaceae, and Peltigeraceae - which are from the subclass Lecanoromycetidae and mostly composed of macrolichens, those that form three dimensional structures. Our RTT plot result for the subclass Lecanoromycetidae also reveals accelerated diversification. Changes in diversification rates occurred around the transition between Mesozoic and Cenozoic eras and was likely related to the K-Pg mass extinction event. The phylogenetic positions for rate increases estimated based on marginal shift probability are, however, scattered from 100 to 40 MYA preventing us from making explicit inference. Although we reveal that the phenotypic state of macrolichens is associated with a higher diversification rate than microlichens, we also show that the evolution of macrolichens predated the K-Pg event. Furthermore, the association between macrolichens and increased diversification is not universal and can be explained, in part, by phylogenetic relatedness. By investigating the macroevolutionary dynamics of lichen-forming fungi our study provides a new empirical system suitable to test the effect of major historical event on shaping biodiversity patterns and to investigate why changes in biodiversity patterns are not in concordance across clades. Our results imply that multiple historical events during the transition from Mesozoic to Cenozoic eras, including the K-Pg mass extinction event, impacted the evolutionary dynamics in lichen-forming fungi. However, future studies focusing on individual lichen-forming fungal families are required to ascertain whether diversification rates are associated with growth form and certain geological events.


Subject(s)
Biodiversity , Extinction, Biological , Lichens/classification , Phenotype , Biological Evolution , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...