Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.536
Filter
1.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731545

ABSTRACT

Functional Lyocell fibers gain interest in garments and technical textiles, especially when equipped with inherently bioactive features. In this study, Lyocell fibers are modified with an ion exchange resin and subsequently loaded with copper (Cu) ions. The modified Lyocell process enables high amounts of the resin additive (>10%) through intensive dispersion and subsequently, high uptake of 2.7% Cu throughout the whole cross-section of the fiber. Fixation by Na2CO3 increases the washing and dyeing resistance considerably. Cu content after dyeing compared to the original fiber value amounts to approx. 65% for reactive, 75% for direct, and 77% for HT dyeing, respectively. Even after 50 household washes, a recovery of 43% for reactive, 47% for direct and 26% for HT dyeing is proved. XRD measurements reveal ionic bonding of Cu fixation inside the cellulose/ion exchange resin composite. A combination of the fixation process with a change in Cu valence state by glucose/NaOH leads to the formation of Cu2O crystallites, which is proved by XRD. Cu fiber shows a strong antibacterial effect against Staphylococcus aureus and Klebsiella pneumonia bacteria, even after 50 household washing cycles of both >5 log CFU. In nonwoven blends with a share of only 6% Cu fiber, a strong antimicrobial (CFU > log 5) and full antiviral effectiveness (>log 4) was received even after 50 washing cycles. Time-dependent measurements already show strong antiviral behavior after 30 s. Further, the fibers show an increased die off of the fungal isolate Candida auris with CFU log 4.4, and nonwovens made from 6% Cu fiber share a CFU log of 1.7. Findings of the study predestines the fiber for advanced textile processing and applications in areas with high germ loads.


Subject(s)
Anti-Bacterial Agents , Antifungal Agents , Antiviral Agents , Copper , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Copper/chemistry , Copper/pharmacology , Cellulose/chemistry , Cellulose/pharmacology , Staphylococcus aureus/drug effects , Textiles , Microbial Sensitivity Tests , Klebsiella pneumoniae/drug effects , Lignin/chemistry , Lignin/pharmacology , Humans
2.
Carbohydr Polym ; 337: 122112, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710545

ABSTRACT

The growing concerns on environmental pollution and sustainability have raised the interest on the development of functional biobased materials for different applications, including food packaging, as an alternative to the fossil resources-based counterparts, currently available in the market. In this work, functional wood inspired biopolymeric nanocomposite films were prepared by solvent casting of suspensions containing commercial beechwood xylans, cellulose nanofibers (CNF) and lignosulfonates (magnesium or sodium), in a proportion of 2:5:3 wt%, respectively. All films presented good homogeneity, translucency, and thermal stability up to 153 °C. The incorporation of CNF into the xylan/lignosulfonates matrix provided good mechanical properties to the films (Young's modulus between 1.08 and 3.79 GPa and tensile strength between 12.75 and 14.02 MPa). The presence of lignosulfonates imparted the films with antioxidant capacity (DPPH radical scavenging activity from 71.6 to 82.4 %) and UV barrier properties (transmittance ≤19.1 % (200-400 nm)). Moreover, the films obtained are able to successfully delay the browning of packaged fruit stored over 7 days at 4 °C. Overall, the obtained results show the potential of using low-cost and eco-friendly resources for the development of sustainable active food packaging materials.


Subject(s)
Cellulose , Food Packaging , Lignin , Lignin/analogs & derivatives , Nanocomposites , Nanofibers , Tensile Strength , Wood , Xylans , Food Packaging/methods , Lignin/chemistry , Nanocomposites/chemistry , Cellulose/chemistry , Cellulose/analogs & derivatives , Wood/chemistry , Nanofibers/chemistry , Xylans/chemistry , Antioxidants/chemistry , Fruit/chemistry
3.
Anal Methods ; 16(19): 2983-2996, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38717259

ABSTRACT

We have successfully developed a validated high-throughput analysis method for the identification and quantification of native and oxifunctionalized monolignols using direct infusion electrospray ionization tandem mass spectrometry (DI-ESI-MS/MS). Oxifunctionalized monolignols generated through unspecific peroxygenase catalysis present a sustainable alternative to fossil aromatic hydrocarbons. This study emphasizes a sustainable analytical approach for these renewable biocatalytic precursors, addressing challenges such as matrix effects, accuracy, precision, and sensitivity of the method. Our findings demonstrate the potential of overcoming quantification difficulties using DI-ESI-MS. Notably, this analytical methodology represents a novel utilization of DI-ESI-MS/MS in examining monolignols and their functionalization, thereby advancing the exploration of lignin as a valuable and sustainable bioresource.


Subject(s)
Lignin , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Lignin/chemistry
4.
Appl Microbiol Biotechnol ; 108(1): 321, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709299

ABSTRACT

Most reduced organic matter entering activated sludge systems is particulate (1-100-µm diameter) or colloidal (0.001-1-µm diameter), yet little is known about colonization of particulate organic matter by activated sludge bacteria. In this study, colonization of biopolymers (chitin, keratin, lignocellulose, lignin, and cellulose) by activated sludge bacteria was compared with colonization of glass beads in the presence and absence of regular nutrient amendment (acetate and ammonia). Scanning electron microscopy and quantitative PCR revealed chitin and cellulose were most readily colonized followed by lignin and lignocellulose, while keratin and glass beads were relatively resistant to colonization. Bacterial community profiles on particles compared to sludge confirmed that specific bacterial phylotypes preferentially colonize different biopolymers. Nitrifying bacteria proved adept at colonizing particles, achieving higher relative abundance on particles compared to bulk sludge. Denitrifying bacteria showed similar or lower relative abundance on particles compared to sludge. KEY POINTS: • Some activated sludge bacteria colonize natural biopolymers more readily than others. • Nitrifying bacteria are overrepresented in natural biopolymer biofilm communities. • Biopolymers in wastewater likely influence activated sludge community composition.


Subject(s)
Bacteria , Sewage , Wastewater , Biopolymers/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Sewage/microbiology , Wastewater/microbiology , Lignin/metabolism , Microscopy, Electron, Scanning , Cellulose/metabolism , Biofilms/growth & development , Chitin/metabolism , Nitrification , Water Purification/methods
5.
PLoS One ; 19(5): e0304054, 2024.
Article in English | MEDLINE | ID: mdl-38776338

ABSTRACT

This study explores the Hydrothermal Carbonization (HTC) treatment of lignocellulosic biomass blends, delving into the influence of several key parameters: temperature, additive nature and dosage, residence time, and biomass composition. Rapeseeds, Pinus radiata sawdust, oat husks, and pressed olive served as the studied biomasses. One hundred twenty-eight experiments were conducted to assess the effects on mass yield (MY), energy yield (EY), higher heating value (HHV), and final ash content (ASH) by a Factorial Experimental Design. The derived model equations demonstrated a robust fit to the experimental data, averaging an R2 exceeding 0.94, affirming their predictive accuracy. The observed energy yield ranged between 65% and 80%, notably with sawdust and olive blends securing EY levels surpassing 70%, while rapeseed blends exhibited the highest HHV at 25 MJ/kg. Temperature emerged as the most influential factor, resulting in an 11% decrease in MY and a substantial 2.20 MJ/kg increase in HHV. Contrastingly, blend composition and additive presence significantly impacted ASH and EY, with all blends exhibiting increased ASH in the presence of additives. Higher initial hemicellulose and aqueous extractive content in raw biomass correlated proportionally with heightened HHV.


Subject(s)
Biofuels , Biomass , Biofuels/analysis , Lignin/chemistry , Temperature , Pinus/chemistry , Olea/chemistry , Brassica rapa/chemistry , Hot Temperature
6.
BMC Plant Biol ; 24(1): 390, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38730367

ABSTRACT

Granulation of juice sacs is a physiological disorder, which affects pomelo fruit quality. Here, the transcriptome and ubiquitinome of the granulated juice sacs were analyzed in Guanxi pomelo. We found that lignin accumulation in the granulated juice sacs was regulated at transcription and protein modification levels. In transcriptome data, we found that the genes in lignin biosynthesis pathway and antioxidant enzyme system of the granulated juice sacs were significantly upregulated. However, in ubiquitinome data, we found that ubiquitinated antioxidant enzymes increased in abundance but the enzyme activities decreased after the modification, which gave rise to reactive oxygen species (ROS) contents in granulated juice sacs. This finding suggests that ubiquitination level of the antioxidant enzymes is negatively correlated with the enzyme activities. Increased H2O2 is considered to be a signaling molecule to activate the key gene expressions in lignin biosynthesis pathway, which leads to the lignification in granulated juice sacs of pomelo. This regulatory mechanism in juice sac granulation of pomelo was further confirmed through the verification experiment using tissue culture by adding H2O2 or dimethylthiourea (DMTU). Our findings suggest that scavenging H2O2 and other ROS are important for reducing lignin accumulation, alleviating juice sac granulation and improving pomelo fruit quality.


Subject(s)
Citrus , Lignin , Lignin/metabolism , Citrus/metabolism , Citrus/genetics , Fruit and Vegetable Juices/analysis , Reactive Oxygen Species/metabolism , Transcriptome , Hydrogen Peroxide/metabolism , Gene Expression Regulation, Plant , Fruit/metabolism , Fruit/genetics , Antioxidants/metabolism
7.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732136

ABSTRACT

In the context of sustainable agriculture and biomaterial development, understanding and enhancing plant secondary cell wall formation are crucial for improving crop fiber quality and biomass conversion efficiency. This is especially critical for economically important crops like upland cotton (Gossypium hirsutum L.), for which fiber quality and its processing properties are essential. Through comprehensive genome-wide screening and analysis of expression patterns, we identified a particularly high expression of an R2R3 MYB transcription factor, GhMYB52 Like, in the development of the secondary cell wall in cotton fiber cells. Utilizing gene-editing technology to generate a loss-of-function mutant to clarify the role of GhMYB52 Like, we revealed that GhMYB52 Like does not directly contribute to cellulose synthesis in cotton fibers but instead represses a subset of lignin biosynthesis genes, establishing it as a lignin biosynthesis inhibitor. Concurrently, a substantial decrease in the lint index, a critical measure of cotton yield, was noted in parallel with an elevation in lignin levels. This study not only deepens our understanding of the molecular mechanisms underlying cotton fiber development but also offers new perspectives for the molecular improvement of other economically important crops and the enhancement of biomass energy utilization.


Subject(s)
Cotton Fiber , Gene Expression Regulation, Plant , Gossypium , Lignin , Plant Proteins , Lignin/biosynthesis , Gossypium/genetics , Gossypium/metabolism , Gossypium/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Wall/metabolism , Cell Wall/genetics , Cellulose/biosynthesis , Cellulose/metabolism , Biosynthetic Pathways
8.
Int J Mol Sci ; 25(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38732191

ABSTRACT

Acacia melanoxylon is highly valued for its commercial applications, with the heartwood exhibiting a range of colors from dark to light among its various clones. The underlying mechanisms contributing to this color variation, however, have not been fully elucidated. In an effort to understand the factors that influence the development of dark heartwood, a comparative analysis was conducted on the microstructure, substance composition, differential gene expression, and metabolite profiles in the sapwood (SW), transition zone (TZ), and heartwood (HW) of two distinct clones, SR14 and SR25. A microscopic examination revealed that heartwood color variations are associated with an increased substance content within the ray parenchyma cells. A substance analysis indicated that the levels of starches, sugars, and lignin were more abundant in SP compared to HW, while the concentrations of phenols, flavonoids, and terpenoids were found to be higher in HW than in SP. Notably, the dark heartwood of the SR25 clone exhibited greater quantities of phenols and flavonoids compared to the SR14 clone, suggesting that these compounds are pivotal to the color distinction of the heartwood. An integrated analysis of transcriptome and metabolomics data uncovered a significant accumulation of sinapyl alcohol, sinapoyl aldehyde, hesperetin, 2', 3, 4, 4', 6'-peptahydroxychalcone 4'-O-glucoside, homoeriodictyol, and (2S)-liquiritigenin in the heartwood of SR25, which correlates with the up-regulated expression of CCRs (evm.TU.Chr3.1751, evm.TU.Chr4.654_667, evm.TU.Chr4.675, evm.TU.Chr4.699, and evm.TU.Chr4.704), COMTs (evm.TU.Chr13.3082, evm.TU.Chr13.3086, and evm.TU.Chr7.1411), CADs (evm.TU.Chr10.2175, evm.TU.Chr1.3453, and evm.TU.Chr8.1600), and HCTs (evm.TU.Chr4.1122, evm.TU.Chr4.1123, evm.TU.Chr8.1758, and evm.TU.Chr9.2960) in the TZ of A. melanoxylon. Furthermore, a marked differential expression of transcription factors (TFs), including MYBs, AP2/ERFs, bHLHs, bZIPs, C2H2s, and WRKYs, were observed to be closely linked to the phenols and flavonoids metabolites, highlighting the potential role of multiple TFs in regulating the biosynthesis of these metabolites and, consequently, influencing the color variation in the heartwood. This study facilitates molecular breeding for the accumulation of metabolites influencing the heartwood color in A. melanoxylon, and offers new insights into the molecular mechanisms underlying heartwood formation in woody plants.


Subject(s)
Acacia , Gene Expression Regulation, Plant , Wood , Acacia/metabolism , Acacia/genetics , Wood/metabolism , Wood/chemistry , Flavonoids/metabolism , Lignin/metabolism , Transcriptome , Phenols/metabolism , Gene Expression Profiling/methods , Metabolomics/methods
9.
Int J Biol Macromol ; 268(Pt 1): 131619, 2024 May.
Article in English | MEDLINE | ID: mdl-38692998

ABSTRACT

The plant cell wall is a complex, heterogeneous structure primarily composed of cellulose, hemicelluloses, and lignin. Exploring the variations in these three macromolecules over time is crucial for understanding wood formation to enhance chemical processing and utilization. Here, we comprehensively analyzed the chemical composition of cell walls in the trunks of Pinus tabulaeformis using multiple techniques. In situ analysis showed that macromolecules accumulated gradually in the cell wall as the plant aged, and the distribution pattern of lignin was opposite that of polysaccharides, and both showed heterogenous distribution patterns. In addition, gel permeation chromatography (GPC) results revealed that the molecular weights of hemicelluloses decreased while that of lignin increased with age. Two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance (2D-HSQC NMR) analysis indicated that hemicelluloses mainly comprised galactoglucomannan and arabinoglucuronoxylan, and the lignin types were mainly comprised guaiacyl (G) and p-hydroxyphenyl (H) units with three main linkage types: ß-O-4, ß-ß, and ß-5. Furthermore, the C-O bond (ß-O-4) signals of lignin decreased while the C-C bonds (ß-ß and ß-5) signals increased over time. Taken together, these findings shed light on wood formation in P. tabulaeformis and lay the foundation for enhancing the processing and use of wood and timber products.


Subject(s)
Cell Wall , Cellulose , Lignin , Pinus , Polysaccharides , Lignin/chemistry , Pinus/chemistry , Cell Wall/chemistry , Polysaccharides/chemistry , Cellulose/chemistry , Molecular Weight , Trees/chemistry , Magnetic Resonance Spectroscopy/methods , Wood/chemistry
10.
World J Microbiol Biotechnol ; 40(7): 207, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767733

ABSTRACT

Biological pretreatment of wood chips by fungi is a well-known approach prior to mechanical- or chemical pulp production. For this biological approach, a limited number of white-rot fungi with an ability to colonize and selectively degrade lignin are used to pretreat wood chips allowing the remaining cellulose to be processed for further applications. Biopulping is an environmentally friendly technology that can reduce the energy consumption of traditional pulping processes. Fungal pretreatment also reduces the pitch content in the wood chips and improves the pulp quality in terms of brightness, strength, and bleachability. The bleached biopulps are easier to refine compared to pulps produced by conventional methodology. In the last decades, biopulping has been scaled up with pilot trials towards industrial level, with optimization of several intermediate steps and improvement of economic feasibility. Nevertheless, fundamental knowledge on the biochemical mechanisms involved in biopulping is still lacking. Overall, biopulping technology has advanced rapidly during recent decades and pilot mill trials have been implemented. The use of fungi as pretreatment for pulp production is in line with modern circular economy strategies and can be implemented in existing production plants. In this review, we discuss some recent advances in biopulping technology, which can improve mechanical-, chemical-, and organosolv pulping processes along with their mechanisms.


Subject(s)
Cellulose , Fungi , Lignin , Wood , Lignin/metabolism , Fungi/metabolism , Wood/microbiology , Cellulose/metabolism , Biotechnology/methods
11.
Appl Microbiol Biotechnol ; 108(1): 335, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747981

ABSTRACT

Glucuronoyl esterases (GEs) are serine-type hydrolase enzymes belonging to carbohydrate esterase family 15 (CE15), and they play a central role in the reduction of recalcitrance in plant cell walls by cleaving ester linkages between glucuronoxylan and lignin in lignocellulose. Recent studies have suggested that bacterial CE15 enzymes are more heterogeneous in terms of sequence, structure, and substrate preferences than their fungal counterparts. However, the sequence space of bacterial GEs has still not been fully explored, and further studies on diverse enzymes could provide novel insights into new catalysts of biotechnological interest. To expand our knowledge on this family of enzymes, we investigated three unique CE15 members encoded by Dyadobacter fermentans NS114T, a Gram-negative bacterium found endophytically in maize/corn (Zea mays). The enzymes are dissimilar, sharing ≤ 39% sequence identity to each other' and were considerably different in their activities towards synthetic substrates. Combined analysis of their primary sequences and structural predictions aided in establishing hypotheses regarding specificity determinants within CE15, and these were tested using enzyme variants attempting to shift the activity profiles. Together, the results expand our existing knowledge of CE15, shed light into the molecular determinants defining specificity, and support the recent thesis that diverse GEs encoded by a single microorganism may have evolved to fulfil different physiological functions. KEY POINTS: • D. fermentans encodes three CE15 enzymes with diverse sequences and specificities • The Region 2 inserts in bacterial GEs may directly influence enzyme activity • Rational amino acid substitutions improved the poor activity of the DfCE15A enzyme.


Subject(s)
Zea mays , Substrate Specificity , Esterases/genetics , Esterases/metabolism , Esterases/chemistry , Lignin/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Phylogeny
12.
Rapid Commun Mass Spectrom ; 38(14): e9716, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38738638

ABSTRACT

RATIONALE: This study overcomes traditional biomass analysis limitations by introducing a pioneering matrix-free laser desorption/ionization (LDI) approach in mass spectrometry imaging (MSI) for efficient lignin evaluation in wood. The innovative acetic acid-peracetic acid (APA) treatment significantly enhances lignin detection, enabling high-throughput, on-site analysis. METHODS: Wood slices, softwood from a conifer tree (Japanese cypress) and hardwood from a broadleaf tree (Japanese beech), were analyzed using MSI with a Fourier transform ion cyclotron resonance mass spectrometer. The developed APA treatment demonstrated effectiveness for MSI analysis of biomass. RESULTS: Our imaging technique successfully distinguishes between earlywood and latewood and enables the distinct visualization of lignin in these and other wood tissues, such as the radial parenchyma. This approach reveals significant contrasts in MSI. It has identified intense ions from ß-O-4-type lignin, specifically in the radial parenchyma of hardwood, highlighting the method's precision and utility in wood tissue analysis. CONCLUSIONS: The benefits of matrix-free LDI include reduced peak overlap, consistent sample quality, preservation of natural sample properties, enhanced analytical accuracy, and reduced operational costs. This innovative approach is poised to become a standard method for rapid and precise biomass evaluation and has important applications in environmental research and sustainable resource management and is crucial for the effective management of diverse biomass, paving the way towards a sustainable, circular society.


Subject(s)
Biomass , Lignin , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Wood , Wood/chemistry , Lignin/analysis , Lignin/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Fagus/chemistry
13.
Funct Plant Biol ; 512024 04.
Article in English | MEDLINE | ID: mdl-38669458

ABSTRACT

To improve light harvest and plant structural support under low light intensity, it is useful to investigate the effects of different ratios of blue light on petiole and stem growth. Two true leaves of soybean seedlings were exposed to a total light intensity of 200µmolm-2 s-1 , presented as either white light or three levels of blue light (40µmolm-2 s-1 , 67µmolm-2 s-1 and 100µmolm-2 s-1 ) for 15days. Soybean petioles under the low blue light treatment upregulated expression of genes relating to lignin metabolism, enhancing lignin content compared with the white light treatment. The low blue light treatment had high petiole length, increased plant height and improved petiole strength arising from high lignin content, thus significantly increasing leaf dry weight relative to the white light treatment. Compared with white light, the treatment with the highest blue light ratio reduced plant height and enhanced plant support through increased cellulose and hemicellulose content in the stem. Under low light intensity, 20% blue light enhanced petiole length and strength to improve photosynthate biomass; whereas 50% blue light lowered plants' centre of gravity, preventing lodging and conserving carbohydrate allocation.


Subject(s)
Blue Light , Cellulose , Glycine max , Lignin , Plant Stems , Cellulose/metabolism , Glycine max/growth & development , Glycine max/radiation effects , Lignin/metabolism , Plant Leaves/growth & development , Plant Leaves/radiation effects , Plant Stems/growth & development , Plant Stems/radiation effects
14.
Int J Biol Macromol ; 266(Pt 2): 131290, 2024 May.
Article in English | MEDLINE | ID: mdl-38569993

ABSTRACT

Lignocellulosic biomass (LCB) has been a lucrative feedstock for developing biochemical products due to its rich organic content, low carbon footprint and abundant accessibility. The recalcitrant nature of this feedstock is a foremost bottleneck. It needs suitable pretreatment techniques to achieve a high yield of sugar fractions such as glucose and xylose with low inhibitory components. Cellulosic sugars are commonly used for the bio-manufacturing process, and the xylose sugar, which is predominant in the hemicellulosic fraction, is rejected as most cell factories lack the five­carbon metabolic pathways. In the present review, more emphasis was placed on the efficient pretreatment techniques developed for disintegrating LCB and enhancing xylose sugars. Further, the transformation of the xylose to value-added products through chemo-catalytic routes was highlighted. In addition, the review also recapitulates the sustainable production of biochemicals by native xylose assimilating microbes and engineering the metabolic pathway to ameliorate biomanufacturing using xylose as the sole carbon source. Overall, this review will give an edge on the bioprocessing of microbial metabolism for the efficient utilization of xylose in the LCB.


Subject(s)
Biomass , Lignin , Xylose , Xylose/metabolism , Xylose/chemistry , Lignin/chemistry , Lignin/metabolism
15.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1002-1016, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38658144

ABSTRACT

Hemicellulose, as a primary component of plant cell walls, constitutes approximately one third of cell wall dry matter and ranks as the second abundant renewable biomass resource in the nature after cellulose. Hemicellulose is tightly cross-linked with cellulose, lignin and other components in the plant cell wall, leading to lignocellulose recalcitrance. However, precise genetic modifications of plant cell walls can significantly improve the saccharification efficiency of lignocellulose while ensuring normal plant growth and development. We comprehensively review the research progress in the structural distribution of hemicellulose in plant cell walls, the cross-linking between hemicellulose and other components of the cell wall, and the impact of hemicellulose modification on the saccharification efficiency of the cell wall, proving a reference for the genetic improvement of energy crops.


Subject(s)
Cell Wall , Cellulose , Lignin , Polysaccharides , Cell Wall/metabolism , Cell Wall/genetics , Polysaccharides/metabolism , Lignin/metabolism , Cellulose/metabolism , Plants/genetics , Plants/metabolism , Crops, Agricultural/genetics , Plants, Genetically Modified/genetics
16.
Int J Biol Macromol ; 267(Pt 2): 131726, 2024 May.
Article in English | MEDLINE | ID: mdl-38688791

ABSTRACT

The characteristics of multi-hydroxyl structure and strong hydrogen bonding in polyvinyl alcohol (PVA) make its melting point close to its decomposition temperature, causing melt-processing difficulty. In this work, following the plasticization of small-molecule primary plasticizer acetamide, lignin was demonstrated as a green secondary plasticizer in realizing the melt processing and simultaneous reinforcement of PVA. During the plasticization process, lignin was able to combine with the hydroxyl groups of PVA, so as to destroy the hydrogen bonds and regularity of the PVA chains. The synergistic plasticization effect of lignin dramatically reduced the melting point of PVA from 185 °C to 151 °C. The thermal processing window of PVA composites was expanded from 50 °C to roughly 80 °C after introducing lignin. In contrast to acetamide, the addition of lignin significantly increased the tensile strength and Young's modulus of the composites to 71 MPa and 1.34 GPa, respectively. Meanwhile, lignin helped to hinder the migration of acetamide via hydrogen bonds. With the addition of lignin, the composites also displayed enhanced hydrophobicity and excellent UV shielding performance. The strategy of synergistic plasticization of lignin provides a feasible basis for the practical application of lignin in melt-processable PVA materials with good comprehensive properties.


Subject(s)
Lignin , Plasticizers , Polyvinyl Alcohol , Tensile Strength , Lignin/chemistry , Polyvinyl Alcohol/chemistry , Plasticizers/chemistry , Hydrogen Bonding , Temperature , Elastic Modulus , Hydrophobic and Hydrophilic Interactions
17.
Waste Manag ; 182: 142-163, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38653043

ABSTRACT

Owing to the diversity of biomasses and many variables in pyrolysis process, the property of biochar from varied biomass feedstock or even same biomass could differ significantly. Since the property of biochar governs the further application of biochar, this review paid particular attention to the correlation between the nature of biomass feedstock and the specifications of biochar in terms of yield, elemental composition, pH, functionalities, heating value, pore structures, morphologies, etc. The property of the biochar from the pyrolysis of cellulose, hemicellulose, lignin, woody biomass (pine, mallee, poplar, acacia, oak, eucalyptus and beech), bark of woody biomass, leaves of woody biomass, straw, algae, fruit peels, tea waste was compared and summarized. In addition, the differences of the biochar of these varied origins were also analyzed. The remaining questions, about the correlation of biomass nature with biochar characteristics, to be further investigated are analyzed in detail. The deduced information about the relationship of the nature of biochar and biomass feedstock as well as key pyrolysis parameters is of importance for further development of the methods for tailoring or production of the biochar of desirable properties. The results from this study could be interesting technically and commercially for the technology developer using biochar as the source of carbon in different applications.


Subject(s)
Biomass , Charcoal , Pyrolysis , Charcoal/chemistry , Wood/chemistry , Cellulose/chemistry , Lignin/chemistry , Polysaccharides
18.
Int J Biol Macromol ; 268(Pt 2): 131953, 2024 May.
Article in English | MEDLINE | ID: mdl-38685536

ABSTRACT

Solar desalination is an effective solution to address the global water scarcity issue. However, biofouling poses a significant challenge for solar evaporators due to the presence of bacteria in seawater. In this study, an anti-biofouling evaporator was constructed using the synergistic antibacterial effect of lignin and silver nanoparticles (AgNPs). The AgNPs were easily synthesized using lignin as reductant under mild reaction conditions. Subsequently, the Lignin-AgNPs solution was integrated into polyacrylamide hydrogel (PAAm) without any purification steps, resulting in the formation of Lignin/AgNPs-PAAm (LAg-PAAm). Under the combined action of AgNPs and the hydroquinone groups present in oxidized lignin, LAg-PAAm achieved over 99 % disinfection efficiency within 1 h, effectively preventing biofilm formation in pore channels of solar evaporators. The anti-biofouling solar evaporator demonstrated an evaporation rate of 1.85 kg m-2 h-1 under 1 sun irradiation, and maintained stable performance for >30 days due to its high efficient bactericidal effect. Furthermore, it also exhibited exceptional salt-rejection capability attributed to its superior hydrophilicity.


Subject(s)
Anti-Bacterial Agents , Biofouling , Lignin , Metal Nanoparticles , Silver , Lignin/chemistry , Lignin/pharmacology , Silver/chemistry , Silver/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofouling/prevention & control , Metal Nanoparticles/chemistry , Sunlight , Acrylic Resins/chemistry , Biofilms/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Microbial Sensitivity Tests
19.
Nat Plants ; 10(5): 706-707, 2024 May.
Article in English | MEDLINE | ID: mdl-38589486
20.
Int J Biol Macromol ; 268(Pt 2): 131624, 2024 May.
Article in English | MEDLINE | ID: mdl-38642685

ABSTRACT

Lignin is an abundant natural biopolymer found in plant cell walls. Lignin can come from tinctorial plants, whose residual biomass after dye extraction was typically discarded as waste. The main objective of this study was to extract lignin from the residual biomass of Reseda luteola L. using an organosolv process and to optimize the extraction conditions. The extracted lignin was characterized, and its potential applications as an antimicrobial, anti-oxidant, and anti-UV agent were investigated. Response surface methodology based on a Box-Behnken design was employed to optimize the lignin extraction conditions (organic acid concentration, material-to-liquid ratio, extraction time). The extracted lignin was comprehensively characterized using NMR, FTIR, XRD, SEM-EDX, TGA, DSC, and UV-Vis techniques. The optimal extraction conditions yielded a remarkably high lignin recovery of 62.41 % from the plant waste, which was rarely achieved for non-wood plants in previous works. The extracted lignin exhibited excellent thermal stability and radical scavenging anti-oxidant activity but no significant antimicrobial effects. Treating wool fabrics with lignin nanoparticles substantially enhanced UV protection from the "good" to "excellent" category based on the UPF rating. This sustainable valorization approach converted abundant tinctorial plant waste into high-purity lignin with promising anti-oxidant and UV-blocking properties suitable for various applications.


Subject(s)
Antioxidants , Lignin , Lignin/chemistry , Lignin/isolation & purification , Lignin/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Ultraviolet Rays , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...