Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.803
Filter
1.
Sci Rep ; 14(1): 12431, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816406

ABSTRACT

Pulmonary arterial hypertension (PAH) is a fatal disease featured by high morbidity and mortality. Although Cordycepin is known for its anti-inflammatory, antioxidant and immune-enhancing effects, its role in PAH treatment and the underlying mechanisms remain unclear. The therapeutic effects of Cordycepin on rats with PAH were investigated using a monocrotaline (MCT)-induced rat model. The metabolic effects of Cordycepin were assessed based on the plasma metabolome. The potential mechanisms of Cordycepin in PAH treatment were investigated through transcriptome sequencing and validated in pulmonary artery smooth muscle cells (PASMC). Evaluations included hematoxylin and eosin staining for pulmonary vascular remodeling, CCK-8 assay, EDU, and TUNEL kits for cell viability, proliferation, and apoptosis, respectively, and western blot for protein expression. Cordycepin significantly reduced right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVHI) in PAH rats, and mitigated pulmonary vascular remodeling. Plasma metabolomics showed that Cordycepin could reverse the metabolic disorders in the lungs of MCT-induced PAH rats, particularly impacting linoleic acid and alpha-linolenic acid metabolism pathways. Transcriptomics revealed that the P53 pathway might be the primary pathway involved, and western blot results showed that Cordycepin significantly increased P53 and P21 protein levels in lung tissues. Integrated analysis of transcriptomics and metabolomics suggested that these pathways were mainly enriched in linoleic acid metabolism and alpha-linolenic acid metabolism pathway. In vitro experiments demonstrated that Cordycepin significantly inhibited the PDGFBB (PD)-induced abnormal proliferation and migration of PASMC and promoted PD-induced apoptosis. Meanwhile, Cordycepin enhanced the expression levels of P53 and P21 proteins in PD-insulted PASMC. However, inhibitors of P53 and P21 eliminated these effects of Cordycepin. Cordycepin may activate the P53-P21 pathway to inhibit abnormal proliferation and migration of PASMC and promote apoptosis, offering a potential approach for PAH treatment.


Subject(s)
Apoptosis , Cell Proliferation , Deoxyadenosines , Pulmonary Arterial Hypertension , Animals , Deoxyadenosines/pharmacology , Deoxyadenosines/therapeutic use , Rats , Male , Apoptosis/drug effects , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Cell Proliferation/drug effects , Transcriptome/drug effects , Metabolomics , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Monocrotaline , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Rats, Sprague-Dawley , Disease Models, Animal , Vascular Remodeling/drug effects , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Linoleic Acid/pharmacology , Hypertrophy, Right Ventricular/drug therapy , Hypertrophy, Right Ventricular/metabolism , Gene Expression Profiling
2.
J Agric Food Chem ; 72(19): 10862-10878, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38712687

ABSTRACT

Bama County is a world-famous longevity county in the Guangxi Province, China. Bama hemp is a traditional seed used in hemp cultivation in the Bama County. The seeds contain abundant unsaturated fatty acids, particularly linoleic acid (LA) and linolenic acid in the golden ratio. These two substances have been proven to be related to human health and the prevention of various diseases. However, the seed development and seed oil accumulation mechanisms remain unclear. This study employed a combined analysis of physiological, transcriptomic, and metabolomic parameters to elucidate the fatty acid formation patterns in Bama hemp seeds throughout development. We found that seed oil accumulated at a late stage in embryo development, with seed oil accumulation following an "S″-shaped growth curve, and positively correlated with seed size, sugar content, protein content, and starch content. Transcriptome analysis identified genes related to the metabolism of LA, α-linolenic acid (ALA), and jasmonic acid (JA). We found that the FAD2 gene was upregulated 165.26 folds and the FAD3 gene was downregulated 6.15 folds at day 21. Metabolomic changes in LA, ALA, and JA compounds suggested a competitive relationship among these substances. Our findings indicate that the peak period of substance accumulation and nutrient accumulation in Bama hemp seeds occurs during the midstage of seed development (day 21) rather than in the late stage (day 40). The results of this research will provide a theoretical basis for local cultivation and deep processing of Bama hemp.


Subject(s)
Cannabis , Gene Expression Regulation, Plant , Linoleic Acid , Metabolomics , Plant Proteins , Seeds , Transcriptome , alpha-Linolenic Acid , Seeds/metabolism , Seeds/growth & development , Seeds/genetics , Seeds/chemistry , alpha-Linolenic Acid/metabolism , Cannabis/genetics , Cannabis/growth & development , Cannabis/metabolism , Cannabis/chemistry , Linoleic Acid/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , China , Gene Expression Profiling
3.
Nutrients ; 16(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38794685

ABSTRACT

In response to a perceived epidemic of coronary heart disease, Ancel Keys introduced the lipid-heart hypothesis in 1953 which asserted that high intakes of total fat, saturated fat, and cholesterol lead to atherosclerosis and that consuming less fat and cholesterol, and replacing saturated fat with polyunsaturated fat, would reduce serum cholesterol and consequently the risk of heart disease. Keys proposed an equation that would predict the concentration of serum cholesterol (ΔChol.) from the consumption of saturated fat (ΔS), polyunsaturated fat (ΔP), and cholesterol (ΔZ): ΔChol. = 1.2(2ΔS - ΔP) + 1.5ΔZ. However, the Keys equation conflated natural saturated fat and industrial trans-fat into a single parameter and considered only linoleic acid as the polyunsaturated fat. This ignored the widespread consumption of trans-fat and its effects on serum cholesterol and promoted an imbalance of omega-6 to omega-3 fatty acids in the diet. Numerous observational, epidemiological, interventional, and autopsy studies have failed to validate the Keys equation and the lipid-heart hypothesis. Nevertheless, these have been the cornerstone of national and international dietary guidelines which have focused disproportionately on heart disease and much less so on cancer and metabolic disorders, which have steadily increased since the adoption of this hypothesis.


Subject(s)
Linoleic Acid , Nutrition Policy , Trans Fatty Acids , Humans , Trans Fatty Acids/adverse effects , Trans Fatty Acids/administration & dosage , Linoleic Acid/administration & dosage , Cholesterol/blood , Dietary Fats/administration & dosage , Diet
4.
J Agric Food Chem ; 72(20): 11759-11772, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38738668

ABSTRACT

This study aimed to investigate alterations in gut microbiota and metabolites mediated by wheat-resistant starch and its repair of gut barrier dysfunction induced by a high-fat diet (HFD). Structural data revealed that chlorogenic acid (CA)/linoleic acid (LA) functioned through noncovalent interactions to form a more ordered structure and fortify antidigestibility in wheat starch (WS)-CA/LA complexes; the resistant starch (RS) contents of WS-CA, WS-LA, and WS-CA-LA complexes were 23.40 ± 1.56%, 21.25 ± 1.87%, and 35.47 ± 2.16%, respectively. Dietary intervention with WS-CA/LA complexes effectively suppressed detrimental alterations in colon tissue morphology induced by HFD and repaired the gut barrier in ZO-1 and MUC-2 levels. WS-CA/LA complexes could augment gut barrier-promoting microbes including Parabacteroides, Bacteroides, and Muribaculum, accompanied by an increase in short-chain fatty acids (SCFAs) and elevated expression of SCFA receptors. Moreover, WS-CA/LA complexes modulated secondary bile acid metabolism by decreasing taurochenodeoxycholic, cholic, and deoxycholic acids, leading to the activation of bile acid receptors. Collectively, this study offered guiding significance in the manufacture of functional diets for a weak gut barrier.


Subject(s)
Chlorogenic Acid , Diet, High-Fat , Gastrointestinal Microbiome , Linoleic Acid , Mice, Inbred C57BL , Starch , Triticum , Chlorogenic Acid/metabolism , Chlorogenic Acid/pharmacology , Chlorogenic Acid/administration & dosage , Chlorogenic Acid/chemistry , Diet, High-Fat/adverse effects , Triticum/chemistry , Triticum/metabolism , Gastrointestinal Microbiome/drug effects , Animals , Male , Mice , Starch/metabolism , Starch/chemistry , Linoleic Acid/metabolism , Linoleic Acid/chemistry , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Bacteria/drug effects , Bacteria/isolation & purification , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Humans , Fatty Acids, Volatile/metabolism , Resistant Starch/metabolism
5.
Food Res Int ; 187: 114357, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763641

ABSTRACT

The oxidation of fish lipids and proteins is interconnected. The LOX (lipoxygenase)-catalyzed LA (linoleic acid) oxidation system on MPs (myofibrillar proteins) was established in vitro, to investigate the impact of lipoxidation on the physicochemical properties of fish MPs. By detecting HNE (4-hydroxy-2-nonenal) concentration during LA oxidation, the HNE treatment system was established to investigate the role of HNE in this process. In addition, the site specificity of modification on MPs was detected utilizing LC-MS/MS. Both treatments could induce sidechain modification, increase particle size, and cause loss of nutritional value through the reduction in amino acid content of MPs. The HNE group is more likely to alter the MPs' surface hydrophobicity compared to the LA group. By increasing the exposure of modification sites in MPs, the HNE group has more types and number of modifications compared to the LA group. LA group mainly induced the modification of single oxygen addition on MPs instead, which accounted for over 50 % of all modifications. The LA group induced a more pronounced reduction in the solubility of MPs as compared to the HNE group. In conclusion, HNE binding had a high susceptibility to Lys on MPs. Protein aggregation, peptide chain fragmentation, and decreased solubility occurred in the LA group mainly induced by peroxide generated during lipid oxidation or the unreacted LA instead of HNE. This study fills in the mechanism of lipoxidation on protein oxidation in fish and sheds light on the HNE modification sites of MPs, paving the way for the development of oxidation control technology.


Subject(s)
Aldehydes , Linoleic Acid , Oxidation-Reduction , Tandem Mass Spectrometry , Aldehydes/metabolism , Animals , Linoleic Acid/chemistry , Linoleic Acid/metabolism , Chromatography, Liquid/methods , Fish Proteins/metabolism , Muscle Proteins/metabolism , Fishes , Hydrophobic and Hydrophilic Interactions , Lipoxygenase/metabolism , Liquid Chromatography-Mass Spectrometry
6.
Food Res Int ; 186: 114355, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729701

ABSTRACT

In this study, five C18 fatty acids (FA) with different numbers of double bonds and configurations including stearic acid (SA), oleic acid (OA), elaidic acid (EA), linoleic acid (LA), and α-linolenic acid (ALA), were selected to prepare highland barely starch (HBS)-FA complexes to modulate digestibility and elaborate the underlying mechanism. The results showed that HBS-SA had the highest complex index (34.18 %), relative crystallinity (17.62 %) and single helix content (25.78 %). Furthermore, the HBS-C18 FA complexes were formed by EA (C18 FA with monounsaturated bonds) that had the highest R1047/1022 (1.0509) and lowest full width at half-maximum (FWHM, 20.85), suggesting good short-range ordered structure. Moreover, all C18 FAs could form two kinds of V-type complexes with HBS, which can be confirmed by the results of CLSM and DSC measurements, and all of them showed significantly lower digestibility. HBS-EA possessed the highest resistant starch content (20.17 %), while HBS-SA had the highest slowly digestible starch content (26.61 %). In addition, the inhibition of HBS retrogradation by fatty acid addition was further proven, where HBS-SA gel firmness (37.80 g) and aging enthalpy value were the lowest, indicating the most effective. Overall, compounding with fatty acids, especially SA, could be used as a novel way to make functional foods based on HBS.


Subject(s)
Digestion , Fatty Acids , Hordeum , Oleic Acid , Starch , Starch/chemistry , Fatty Acids/analysis , Fatty Acids/chemistry , Hordeum/chemistry , Oleic Acid/chemistry , Stearic Acids/chemistry , Linoleic Acid/chemistry , alpha-Linolenic Acid/chemistry , Oleic Acids
7.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731907

ABSTRACT

Linoleic acid (LA), an n-6 polyunsaturated fatty acid (PUFA), is obtained from the maternal diet during pregnancy, and is essential for normal fetal growth and development. A maternal high-LA (HLA) diet alters maternal and offspring fatty acids, maternal leptin and male/female ratio at embryonic (E) day 20 (E20). We investigated the effects of an HLA diet on embryonic offspring renal branching morphogenesis, leptin signalling, megalin signalling and angiogenesis gene expression. Female Wistar Kyoto rats were fed low-LA (LLA; 1.44% energy from LA) or high-LA (HLA; 6.21% energy from LA) diets during pregnancy and gestation/lactation. Offspring were sacrificed and mRNA from kidneys was analysed by real-time PCR. Maternal HLA decreased the targets involved in branching morphogenesis Ret and Gdnf in offspring, independent of sex. Furthermore, downstream targets of megalin, namely mTOR, Akt3 and Prkab2, were reduced in offspring from mothers consuming an HLA diet, independent of sex. There was a trend of an increase in the branching morphogenesis target Gfra1 in females (p = 0.0517). These findings suggest that an HLA diet during pregnancy may lead to altered renal function in offspring. Future research should investigate the effects an HLA diet has on offspring kidney function in adolescence and adulthood.


Subject(s)
Kidney , Linoleic Acid , Morphogenesis , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Female , Pregnancy , TOR Serine-Threonine Kinases/metabolism , Kidney/metabolism , Kidney/drug effects , Rats , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Morphogenesis/drug effects , Morphogenesis/genetics , Linoleic Acid/metabolism , Male , Rats, Inbred WKY , Gene Expression Regulation, Developmental/drug effects , Fetus/metabolism , Fetus/drug effects
8.
Environ Pollut ; 349: 123949, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38636836

ABSTRACT

Arsenic (As) is a heavy metal known for its detrimental effects on the kidneys, but the precise mechanisms underlying its toxicity remain unclear. In this study, we employed an integrated approach combining traditional toxicology methods with functional metabolomics to explore the nephrotoxicity induced by As in mice. Our findings demonstrated that after 28 days of exposure to sodium arsenite, blood urea nitrogen, serum creatinine levels were significantly increased, and pathological examination of the kidneys revealed dilation of renal tubules and glomerular injury. Additionally, uric acid, total cholesterol, and low-density lipoprotein cholesterol levels were significant increased while triglyceride level was decreased, resulting in renal insufficiency and lipid disorders. Subsequently, the kidney metabolomics analysis revealed that As exposure disrupted 24 differential metabolites, including 14 up-regulated and 10 down-regulated differential metabolites. Ten metabolic pathways including linoleic acid and glycerophospholipid metabolism were significantly enriched. Then, 80 metabolic targets and 168 predicted targets were identified using metabolite network pharmacology analysis. Of particular importance, potential toxicity targets, such as glycine amidinotransferase, mitochondrial (GATM), and nitric oxide synthase, and endothelial (NOS3), were prioritized through the "metabolite-target-pathway" network. Receiver operating characteristics curve and molecular docking analyses suggested that 1-palmitoyl-2-myristoyl-sn-glycero-3-PC, linoleic acid, and L-hydroxyarginine might be functional metabolites associated with GATM and NOS3. Moreover, targeted verification result showed that the level of linoleic acid in As group was 0.4951 µg/mL, which was significantly decreased compared with the control group. And in vivo and in vitro protein expression experiments confirmed that As exposure inhibited the expression of GATM and NOS3. In conclusion, these results suggest that As-induced renal injury may be associated with the inhibition of linoleic acid metabolism through the down-regulation of GATM and NOS3, resulting in decreased levels of linoleic acid, 1-palmitoyl-2-myristoyl-sn-glycero-3-PC, and L-hydroxyarginine metabolites.


Subject(s)
Arsenic , Drinking Water , Kidney , Linoleic Acid , Metabolomics , Animals , Mice , Linoleic Acid/metabolism , Kidney/metabolism , Kidney/drug effects , Arsenic/toxicity , Arsenic/metabolism , Drinking Water/chemistry , Male , Water Pollutants, Chemical/toxicity , Molecular Docking Simulation
9.
Sci Rep ; 14(1): 8413, 2024 04 10.
Article in English | MEDLINE | ID: mdl-38600137

ABSTRACT

Strain-specific probiotics can present antioxidant activity and reduce damage caused by oxidation. Streptococcus alactolyticus strain FGM (S. alactolyticus strain FGM) isolated from the chicken cecum shows potential probiotic properties which have been previously demonstrated. However, the antioxidant properties of S. alactolyticus strain FGM remain unknown. In this view, cell-free supernatant (CFS), intact cells (IC) and intracellular extracts (CFE) of strain FGM and 3 strains of Lactobacillus (LAB) were prepared, and their scavenging capacities against DPPH, hydroxyl radicals and linoleic acid peroxidation inhibitory were compared in this study. The effects of strain FGM cell-free supernatant (FCFS) on NO production, activity of SOD and GSH-Px in RAW264.7 cells and LPS-induced RAW264.7 cells were analyzed. The metabolites in the supernatant were quantitated by N300 Quantitative Metabolome. It was shown that the physicochemical characteristics of CFS to scavenge DPPH, hydroxyl radicals, and linoleic acid peroxidation inhibitory were significantly stronger than that of IC and CFE in the strain FGM (P < 0.05), respectively 87.12% ± 1.62, 45.03% ± 1.27, 15.63% ± 1.34. FCFS had a promotional effect on RAW264.7 cells, and significantly elevated SOD and GSH-Px activities in RAW264.7 cells. 25 µL FCFS significantly promoted the proliferation of RAW264.7 cells induced by LPS, increased the activities of SOD and GSH-PX, and decreased the release of NO. Furthermore, among the differential metabolites of FCFS quantified by N300, 12 metabolites were significantly up-regulated, including lactic acid, indole lactic acid, linoleic acid, pyruvic acid etc., many of which are known with antioxidant properties. In conclusion, FCFS had good antioxidant properties and activity, which can be attributed to metabolites produced from strain FGM fermentation. It was further confirmed that S. alactolyticus strain FGM and its postbiotic have potential probiotic properties and bright application prospects in livestock and poultry breeding.


Subject(s)
Antioxidants , Probiotics , Streptococcus , Antioxidants/pharmacology , Antioxidants/metabolism , Linoleic Acid , Lipopolysaccharides , Probiotics/metabolism , Hydroxyl Radical , Superoxide Dismutase , Lactic Acid/metabolism
10.
Plant Cell Rep ; 43(4): 109, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564014

ABSTRACT

KEY MESSAGE: The regulatory action of BXs secreted by wheat on the pathogenicity of FOF causing Fusarium wilt in faba bean were analyzed. DIMBOA and MBOA weakened the pathogenicity of FOF. A large number of pathogenic bacteria in continuous cropping soil infect faba bean plants, leading to the occurrence of wilt disease, which restricts their production. Faba bean-wheat intercropping is often used to alleviate this disease. This study investigates the effect of benzoxazinoids (BXs) secreted by wheat root on the pathogenicity of Fusarium oxysporum f. sp. Fabae (FOF) and underlying molecular mechanisms. The effects of DIMBOA(2,4-dihydroxy-7-methoxy-1,4-benzoxazine-4-one) and MBOA(6-methoxybenzoxazolin-2-one) on the activity of cell-wall-degrading enzymes in FOF(cellulase, pectinase, amylase, and protease), FOF Toxin (fusaric acid, FA) content were investigated through indoor culture experiments. The effect of BXs on the metabolic level of FOF was analyzed by metabonomics to explore the ecological function of benzoxazines intercropping control of Fusarium wilt in faba bean. The results show that the Exogenous addition of DIMBOA and MBOA decreased the activity of plant-cell-wall-degrading enzymes and fusaric acid content and significantly weakened the pathogenicity of FOF. DIMBOA and MBOA significantly inhibited the pathogenicity of FOF, and metabolome analysis showed that DIMBOA and MBOA reduced the pathogenicity of FOF by down-regulating related pathways such as nucleotide metabolism and linoleic acid metabolism, thus effectively controlling the occurrence of Fusarium wilt in faba bean.


Subject(s)
Benzoxazines , Fusarium , Triticum , Benzoxazines/pharmacology , Linoleic Acid , Virulence , Fusaric Acid , Nucleotides
11.
Sci Adv ; 10(14): eadk8093, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578989

ABSTRACT

Trained immunity is one of the mechanisms by which BCG vaccination confers persistent nonspecific protection against diverse diseases. Genomic differences between the different BCG vaccine strains that are in global use could result in variable protection against tuberculosis and therapeutic effects on bladder cancer. In this study, we found that four representative BCG strains (BCG-Russia, BCG-Sweden, BCG-China, and BCG-Pasteur) covering all four genetic clusters differed in their ability to induce trained immunity and nonspecific protection. The trained immunity induced by BCG was associated with the Akt-mTOR-HIF1α axis, glycolysis, and NOD-like receptor signaling pathway. Multi-omics analysis (epigenomics, transcriptomics, and metabolomics) showed that linoleic acid metabolism was correlated with the trained immunity-inducing capacity of different BCG strains. Linoleic acid participated in the induction of trained immunity and could act as adjuvants to enhance BCG-induced trained immunity, revealing a trained immunity-inducing signaling pathway that could be used in the adjuvant development.


Subject(s)
BCG Vaccine , Tuberculosis , Humans , Linoleic Acid , Trained Immunity , Multiomics , Adjuvants, Immunologic/pharmacology
12.
Food Res Int ; 184: 114255, 2024 May.
Article in English | MEDLINE | ID: mdl-38609233

ABSTRACT

Bile Salts (BS) are responsible for stimulating lipid digestion in our organism. Gut microbiota are responsible for the deconjugation process of primary conjugated to secondary unconjugated BS. We use two structurally distinct BS and characterize the rate of lipolysis as a compound parameter. A static in-vitro digestion model as well as meta-analysis of literature data has been performed to determine the most influential factors affecting the lipid digestion process. The results demonstrate that lipolysis of emulsions using conjugated BS (NaTC, FFA = 60.0 %, CMC in SIF = 5.58 mM, MSR of linoleic acid = 0.21, rate of adsorption = -0.057 mN/m.s) enhances the release of FFA compared to deconjugated BS (NaDC, FFA = 49.5 %, CMC in SIF = 2.49 mM, MSR of linoleic acid = 0.16 rate of adsorption = -0.064 mN/m.s). These results indicate that conjugation plays an important role in controlling the rate of lipolysis in our organism which can be in turn, tuned by the microflora composition of our gut, ultimately controlling the rate of deconjugation of the BS.


Subject(s)
Bile , Linoleic Acid , Emulsions , Lipolysis , Chemical Phenomena , Bile Acids and Salts
13.
Molecules ; 29(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38675515

ABSTRACT

The lipoxygenase pathway has a significant influence on the composition of the volatile components of virgin olive oil (VOO). In this work, the influence of the maturity index (MI) on the activity of the lipoxygenase enzyme (LOX) in the fruits of the autochthonous Dalmatian olive cultivars Oblica, Levantinka and Lastovka was studied. The analysis of the primary oxidation products of linoleic acid in the studied cultivars showed that LOX synthesises a mixture of 9- and 13-hydroperoxides of octadecenoic acid in a ratio of about 1:2, which makes it a non-traditional plant LOX. By processing the fruits of MI~3, we obtained VOOs with the highest concentration of desirable C6 volatile compounds among the cultivars studied. We confirmed a positive correlation between MI, the enzyme activity LOX and the concentration of hexyl acetate and hexanol in cultivars Oblica and Lastovka, while no positive correlation with hexanol was observed in the cultivar Levantinka. A significant negative correlation was found between total phenolic compounds in VOO and LOX enzyme activity, followed by an increase in the MI of fruits. This article contributes to the selection of the optimal harvest time for the production of VOOs with the desired aromatic properties and to the knowledge of the varietal characteristics of VOOs.


Subject(s)
Lipoxygenase , Olea , Olive Oil , Volatile Organic Compounds , Olive Oil/chemistry , Olive Oil/metabolism , Lipoxygenase/metabolism , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Olea/metabolism , Olea/chemistry , Fruit/chemistry , Fruit/metabolism , Phenols/metabolism , Phenols/analysis , Phenols/chemistry , Linoleic Acid/metabolism
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124242, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38581725

ABSTRACT

The regular overconsumption of high-energy food (rich in lipids and sugars) results in elevated nutrient absorption in intestine and consequently excessive accumulation of lipids in many organs e.g.: liver, adipose tissue, muscles. In the long term this can lead to obesity and obesity-associated diseases e.g. type 2 diabetes, non-alcoholic fatty liver disease, cardiovascular disease, inflammatory bowel disease (IBD). In the presented paper based on RI data we have proved that Raman maps can be used successfully for subcellular structures visualization and analysis of fatty acids impact on morphology and chemical composition of human colon single cells - normal and cancer. Based on Raman data we have investigated the changes related to endoplasmic reticulum, mitochondria, lipid droplets and nucleus. Analysis of ratios calculated based on Raman bands typical for proteins (1256, 1656 cm-1), lipids (1304, 1444 cm-1) and nucleic acids (750 cm-1) has confirmed for endoplasmic reticulum the increased activity of this organelle in lipoproteins synthesis upon FAs supplementation; for LDs the changes of desaturation of accumulated lipids with the highest unsaturation level for CaCo-2 cells upon EPA supplementation; for mitochondria the stronger effect of FAs supplementation was observed for CaCo-2 cells confirming the increased activity of this organelle responsible for energy production necessary for tumor development; the weakest impact of FAs supplementation was observed for nucleus for both types of cells and both types of acids. Fluorescence imaging was used for the investigations of changes in LDs/ER morphology. Our measurements have shown the increased area of LDs/ER for CaCo-2 cancer cells, and the strongest effect was noticed for CaCo-2 cells upon EPA supplementation. The increased participation of lipid structures for all types of cells upon FAs supplementation has been confirmed also by AFM studies. The lowest YM values have been observed for CaCo-2 cells including samples treated with FAs.


Subject(s)
Colonic Neoplasms , Eicosapentaenoic Acid , Spectrum Analysis, Raman , Humans , Eicosapentaenoic Acid/pharmacology , Eicosapentaenoic Acid/chemistry , Caco-2 Cells , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Colonic Neoplasms/drug therapy , Linoleic Acid/pharmacology , Linoleic Acid/chemistry , Colon/drug effects , Colon/metabolism , Colon/pathology , Microscopy, Fluorescence
15.
Food Chem ; 449: 139190, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38579653

ABSTRACT

Linoleic acid (LA) detection and edible oils discrimination are essential for food safety. Recently, CsPbBr3@SiO2 heterostructures have been widely applied in edible oil assays, while deep insights into solvent effects on their structure and performance are often overlooked. Based on the suitable polarity and viscosity of cyclohexane, we prepared CsPbBr3@SiO2 Janus nanoparticles (JNPs) with high stability in edible oil and fast halogen-exchange (FHE) efficiency with oleylammonium iodide (OLAI). LA is selectively oxidized by lipoxidase to yield hydroxylated derivative (oxLA) capable of reacting with OLAI, thereby bridging LA content to naked-eye fluorescence color changes through the anti-FHE reaction. The established method for LA in edible oils exhibited consistent results with GC-MS analysis (p > 0.05). Since the LA content difference between edible oils, we further utilized chemometrics to accurately distinguish (100%) the species of edible oils. Overall, such elaborated CsPbBr3@SiO2 JNPs enable a refreshing strategy for edible oil discrimination.


Subject(s)
Linoleic Acid , Oxides , Plant Oils , Titanium , Oxides/chemistry , Plant Oils/chemistry , Linoleic Acid/chemistry , Calcium Compounds/chemistry , Solvents/chemistry , Nanoparticles/chemistry , Silicon Dioxide/chemistry
16.
Food Res Int ; 184: 114230, 2024 May.
Article in English | MEDLINE | ID: mdl-38609219

ABSTRACT

This study explored differences in microbial lipid metabolites among sunflower seeds, soybeans, and walnuts. The matrices were subjected to in vitro digestion and colonic fermentation. Defatted digested materials and fiber/phenolics extracted therefrom were added to sunflower oil (SO) and also fermented. Targeted and untargeted lipidomics were employed to monitor and tentatively identify linoleic acid (LA) metabolites. Walnut fermentation produced the highest free fatty acids (FFAs), LA, and conjugated LAs (CLAs). Defatted digested walnuts added to SO boosted FFAs and CLAs production; the addition of fibre boosted CLAs, whereas the addition of phenolics only increased 9e,11z-CLA and 10e,12z-CLA. Several di-/tri-hydroxy-C18-FAs, reported as microbial LA metabolites for the first time, were annotated. Permutational multivariate analysis of variance indicated significant impacts of food matrix presence and type on lipidomics and C18-FAs. Our findings highlight how the food matrices affect CLA production from dietary lipids, emphasizing the role of food context in microbial lipid metabolism.


Subject(s)
Gastrointestinal Microbiome , Juglans , Fermentation , Nuts , Dietary Fats , Fatty Acids, Nonesterified , Linoleic Acid , Phenols , Sunflower Oil , Colon
17.
Food Res Int ; 184: 114243, 2024 May.
Article in English | MEDLINE | ID: mdl-38609222

ABSTRACT

Recent explorations into rice bran oil (RBO) have highlighted its potential, owing to an advantageous fatty acid profile in the context of health and nutrition. Despite this, the susceptibility of rice bran lipids to oxidative degradation during storage remains a critical concern. This study focuses on the evolution of lipid degradation in RBO during storage, examining the increase in free fatty acids (FFAs), the formation of oxylipids, and the generation of volatile secondary oxidation products. Our findings reveal a substantial rise in FFA levels, from 109.55 to 354.06 mg/g, after 14 days of storage, highlighting significant lipid deterioration. Notably, key oxylipids, including 9,10-EpOME, 12,13(9,10)-DiHOME, and 13-oxoODE, were identified, with a demonstrated positive correlation between total oxylipids and free polyunsaturated fatty acids (PUFAs), specifically linoleic acid (LA) and α-linolenic acid (ALA). Furthermore, the study provides a detailed analysis of primary volatile secondary oxidation products. The insights gained from this study not only sheds light on the underlying mechanisms of lipid rancidity in rice bran but also offers significant implications for extending the shelf life and preserving the nutritional quality of RBO, aligning with the increasing global interest in this high-quality oil.


Subject(s)
Lipidomics , Lipolysis , Fatty Acids , Fatty Acids, Nonesterified , Linoleic Acid , Rice Bran Oil
18.
Molecules ; 29(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38611912

ABSTRACT

This report demonstrates the first asymmetric synthesis of enantiopure structured triacylglycerols (TAGs) of the ABC type presenting three non-identical fatty acids, two of which are unsaturated. The unsaturated fatty acids included monounsaturated oleic acid (C18:1 n-9) and polyunsaturated linoleic acid (C18:2 n-6). This was accomplished by a six-step chemoenzymatic approach starting from (R)- and (S)-solketals. The highly regioselective immobilized Candida antarctica lipase (CAL-B) played a crucial role in the regiocontrol of the synthesis. The synthesis also benefited from the use of the p-methoxybenzyl (PMB) ether protective group, which enabled the incorporation of two different unsaturated fatty acids into the glycerol skeleton. The total of six such TAGs were prepared, four constituting the unsaturated fatty acids in the sn-1 and sn-2 positions, with a saturated fatty acid in the remaining sn-3 position of the glycerol backbone. In the two remaining TAGs, the different unsaturated fatty acids accommodated the sn-1 and sn-3 end positions, with the saturated fatty acid present in the sn-2 position. Enantiopure TAGs are urgently demanded as standards for the enantiospecific analysis of intact TAGs in fats and oils.


Subject(s)
Fatty Acids , Glycerol , Ethers , Linoleic Acid , Triglycerides
19.
Sci Rep ; 14(1): 6392, 2024 03 16.
Article in English | MEDLINE | ID: mdl-38493198

ABSTRACT

Polycystic ovary syndrome (PCOS) is a complex reproductive endocrinological disorder influenced by a combination of genetic and environmental factors. Linoleic acid (LA) is a widely consumed ω-6 polyunsaturated fatty acid, accounting for approximately 80% of daily fatty acid intake. Building upon the prior investigations of our team, which established a connection between LA levels in the follicular fluid and PCOS, this study deeply examined the specific impact of LA using a granulosa cell line. Our findings revealed that LA exerts its influence on granulosa cells (GCs) by binding to the estrogen receptor (ER). Activated ER triggers the transcription of the FOXO1 gene. Reactive oxygen species (ROS)-related oxidative stress (OS) and inflammation occur downstream of LA-induced FOXO1 activation. Increased OS and inflammation ultimately culminate in GC apoptosis. In summary, LA modulates the apoptosis and inflammation phenotypes of GCs through the ER-FOXO1-ROS-NF-κB pathway. Our study provides additional experimental evidence to comprehend the pathophysiology of PCOS and provides novel insights into the dietary management of individuals with PCOS.


Subject(s)
Linoleic Acid , Polycystic Ovary Syndrome , Female , Humans , Reactive Oxygen Species/metabolism , Linoleic Acid/pharmacology , Linoleic Acid/metabolism , Polycystic Ovary Syndrome/metabolism , Receptors, Estrogen/metabolism , Granulosa Cells/metabolism , Apoptosis , Inflammation/metabolism , Forkhead Box Protein O1/metabolism
20.
Nutrients ; 16(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474834

ABSTRACT

Over the past three decades, studies have shown that consuming polyunsaturated fatty acids (PUFAs) can enhance animal and human health and welfare through biological, biochemical, pathological, and pharmacological impacts. Furthermore, omega-6 plays key roles in the cardiopulmonary system, including promoting airway relaxation and inhibiting atherosclerosis and hypertension. However, findings from investigations of the effects of omega-6 fatty acids on molecular and cellular activity and discussions on their influence on biomarkers are still unclear. Therefore, the present study aimed to evaluate omega-6 fatty acids, the arachidonic acid (AA), and linoleic acid (LA) effects on C2C12 proliferation, myogenesis morphology, and relative myogenic biomarker expression through the Wnt pathway. C2C12 cells were cultured with and without 25, 50, 100, and 150 µM of LA and AA and then subjected to CCK8, Giemsa staining, RT qPCR, Western blotting, and RNA Sequencing. The CCK8 Assay results showed that 25, 50, 100, and 150 µM LA significantly decreased the viability after 72 h for 25, 50, 100, and 150 µM concentrations. Also, AA supplementation decreased cell viability after 24 h for 150 µM, 48 h for 150 µM, and 72 h for 50, 100, and 150 µM concentrations. Moreover, the LA and AA inhibitory effects noticed through Gimesa staining were morphological changes during myoblast differentiation. Both LA and AA showed inhibiting IGF1, Cola1, Col6a2, Col6a1, Itga10, Itga11, SFRP2, DAAM2, and NKD2 effects; however, the depressing effect was higher for AA compared to LA. The previous results were confirmed through Western blotting, which showed that 50 µM LA and AA significantly reduced DAAM2 and SFRP2 protein levels compared to the control. Regarding RNA sequencing results, LA and AA increased the number of differentially expressed (DE) Mt-rRNA and snoRNA; however, the numbers of lncRNA detected decreased compared to the control. Our findings demonstrate that high and moderate LA and AA concentrations reduce primary myoblast proliferation and differentiation. Also, they highlight novel biomarkers and regulatory factors to improve our understanding of how the nutrition of fatty acids can control and modulate the myogenesis and differentiation process through different biomarker families.


Subject(s)
Fatty Acids, Omega-6 , Linoleic Acid , Animals , Humans , Linoleic Acid/pharmacology , Arachidonic Acid/pharmacology , Biomarkers , Sequence Analysis, RNA , Calcium-Binding Proteins , Adaptor Proteins, Signal Transducing
SELECTION OF CITATIONS
SEARCH DETAIL
...