Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 463
Filter
1.
Sci Rep ; 12(1): 3050, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35197540

ABSTRACT

Dysregulation of circadian rhythm can cause nocturia. Levels of fatty acid metabolites, such as palmitoylethanolamide (PEA), 9-hydroxy-10E,12Z-octadecadienoic acid (9-HODE), and 4-hydroxy-5E,7Z,10Z,13Z,16Z,19Z-docosahexaenoic acid (4-HDoHE), are higher in the serum of patients with nocturia; however, the reason remains unknown. Here, we investigated the circadian rhythm of fatty acid metabolites and their effect on voiding in mice. WT and Clock mutant (ClockΔ19/Δ19) mice, a model for nocturia with circadian rhythm disorder, were used. Levels of serum PEA, 9-HODE, and 4-HDoHEl were measured every 8 h using LC/MS. Voiding pattern was recorded using metabolic cages after administration of PEA, 9-HODE, and 4-HDoHE to WT mice. Levels of serum PEA and 9-HODE fluctuated with circadian rhythm in WT mice, which were lower during the light phase. In contrast, circadian PEA and 9-HODE level deteriorated or retreated in ClockΔ19/Δ19 mice. Levels of serum PEA, 9-HODE, and 4-HDoHE were higher in ClockΔ19/Δ19 than in WT mice. Voiding frequency increased in PEA- and 4-HDoHE-administered mice. Bladder capacity decreased in PEA-administered mice. The changes of these bladder functions in mice were similar to those in elderly humans with nocturia. These findings highlighted the novel effect of lipids on the pathology of nocturia. These may be used for development of biomarkers and better therapies for nocturia.


Subject(s)
Fatty Acids/metabolism , Nocturia/genetics , Nocturia/metabolism , Amides/administration & dosage , Amides/blood , Animals , CLOCK Proteins/genetics , Circadian Rhythm , Disease Models, Animal , Docosahexaenoic Acids/administration & dosage , Docosahexaenoic Acids/blood , Ethanolamines/administration & dosage , Ethanolamines/blood , Fatty Acids/administration & dosage , Injections, Intraperitoneal , Linoleic Acids, Conjugated/administration & dosage , Linoleic Acids, Conjugated/blood , Male , Mice, Inbred C57BL , Nocturia/blood , Palmitic Acids/administration & dosage , Palmitic Acids/blood , Photoperiod , Urinary Bladder/pathology , Urination/genetics
2.
Int J Mol Sci ; 22(6)2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33810070

ABSTRACT

Phosphoproteomics is a cutting-edge technique that can be utilized to explore adipose tissue (AT) metabolism by quantifying the repertoire of phospho-peptides (PP) in AT. Dairy cows were supplemented with conjugated linoleic acid (CLA, n = 5) or a control diet (CON, n = 5) from 63 d prepartum to 63 d postpartum; cows were slaughtered at 63 d postpartum and AT was collected. We performed a quantitative phosphoproteomics analysis of subcutaneous (SC) and omental (OM) AT using nanoUPLC-MS/MS and examined the effects of CLA supplementation on the change in the phosphoproteome. A total of 5919 PP were detected in AT, and the abundance of 854 (14.4%) were differential between CON and CLA AT (p ≤ 0.05 and fold change ± 1.5). The abundance of 470 PP (7.9%) differed between OM and SC AT, and the interaction treatment vs. AT depot was significant for 205 PP (3.5% of total PP). The integrated phosphoproteome demonstrated the up- and downregulation of PP from proteins related to lipolysis and lipogenesis, and phosphorylation events in multiple pathways, including the regulation of lipolysis in adipocytes, mTOR signaling, insulin signaling, AMPK signaling, and glycolysis. The differential regulation of phosphosite on a serine residue (S777) of fatty acid synthase (FASN) in AT of CLA-supplemented cows was related to lipogenesis and with more phosphorylation sites compared to acetyl-coenzyme A synthetase (ACSS2). Increased protein phosphorylation was seen in acetyl-CoA carboxylase 1 (ACACA;8 PP), FASN (9 PP), hormone sensitive lipase (LIPE;6 PP), perilipin (PLIN;3 PP), and diacylglycerol lipase alpha (DAGLA;1 PP) in CLA vs. CON AT. The relative gene expression in the SC and OM AT revealed an increase in LIPE and FASN in CLA compared to CON AT. In addition, the expression of DAGLA, which is a lipid metabolism enzyme related to the endocannabinoid system, was 1.6-fold higher in CLA vs. CON AT, and the expression of the cannabinoid receptor CNR1 was reduced in CLA vs. CON AT. Immunoblots of SC and OM AT showed an increased abundance of FASN and a lower abundance of CB1 in CLA vs. CON. This study presents a complete map of the SC and the OM AT phosphoproteome in dairy cows following CLA supplementation and discloses many unknown phosphorylation sites, suggestive of increased lipid turnover in AT, for further functional investigation.


Subject(s)
Adipose Tissue/metabolism , Dietary Supplements , Linoleic Acids, Conjugated/metabolism , Lipid Metabolism , Phosphoproteins/metabolism , Proteome , Proteomics , Animals , Biomarkers , Cattle , Computational Biology/methods , Gene Ontology , Linoleic Acids, Conjugated/administration & dosage , Lipogenesis , Milk , Omentum , Proteomics/methods , Subcutaneous Fat/metabolism
3.
Neurotox Res ; 39(3): 815-825, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33713300

ABSTRACT

Oxidative stress has been shown to play an important role in the pathogenesis of multiple sclerosis (MS). Curcumin (CUR), an antioxidant compound, can be a potent treatment for neurodegenerative diseases, such as MS. CUR has poor bioavailability; therefore, it is used in nanoforms to increase its bioavailability. In the present study, the effects of CUR and conjugated linoleic acid-CUR (Lino-CUR) on spatial memory and oxidative stress in a putative animal model of MS were investigated. Forty-nine adult male Wistar rats (250 ± 50 g) were randomly divided into seven groups (n = 7): control, sham, ethidium bromide (EB), CUR (20 and 40 µg/kg) + EB, and Lino-CUR (20 and 40 µg/kg) + EB groups. Following MS induction, the groups were treated for 5 consecutive days. Finally, spatial memory and levels of oxidative stress parameters were assessed. Treatment with CUR and Lino-CUR at two doses significantly improved spatial memory and reduced oxidative stress parameters in the experimental models of MS. Furthermore, the effects of high dose (40 µg/kg) of Lino-CUR were more remarkable. These findings suggest that the microinjection of CUR in its synthetic form Lino-CUR significantly ameliorated spatial memory, through the reduction of oxidative stress markers in the brain of studied animals as a rat model of MS.


Subject(s)
Cognitive Dysfunction/prevention & control , Curcumin/administration & dosage , Demyelinating Diseases/prevention & control , Ethidium/toxicity , Linoleic Acids, Conjugated/administration & dosage , Oxidative Stress/drug effects , Animals , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Curcumin/chemistry , Demyelinating Diseases/chemically induced , Demyelinating Diseases/metabolism , Enzyme Inhibitors/toxicity , Linoleic Acids, Conjugated/chemistry , Male , Oxidative Stress/physiology , Rats , Rats, Wistar
4.
Nutrients ; 13(2)2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33670720

ABSTRACT

Alpha-linolenic acid (ALA), docosahexaenoic acid (DHA), rumenic acid (RmA), and punicic acid (PunA) are claimed to influence several physiological functions including insulin sensitivity, lipid metabolism and inflammatory processes. In this double-blind randomized controlled trial, we investigated the combined effect of ALA, DHA, RmA and PunA on subjects at risk of developing metabolic syndrome. Twenty-four women and men were randomly assigned to two groups. Each day, they consumed two eggs enriched with oleic acid (control group) or enriched with ALA, DHA, RmA, and PunA (test group) for 3 months. The waist circumference decreased significantly (-3.17 cm; p < 0.001) in the test group. There were no major changes in plasma insulin and blood glucose in the two groups. The dietary treatments had no significant effect on endothelial function as measured by peripheral arterial tonometry, although erythrocyte nitrosylated hemoglobin concentrations tended to decrease. The high consumption of eggs induced significant elevations in plasma low-density lipoprotein (LDL)- and high-density lipoprotein (HDL)-cholesterol (p < 0.001), which did not result in any change in the LDL/HDL ratio in both groups. These results indicate that consumption of eggs enriched with ALA, DHA, RmA and PunA resulted in favorable changes in abdominal obesity without affecting other factors of the metabolic syndrome.


Subject(s)
Diet/methods , Eggs , Fatty Acids, Unsaturated/administration & dosage , Food, Fortified , Metabolic Syndrome/prevention & control , Obesity, Abdominal/diet therapy , Adult , Aged , Cardiometabolic Risk Factors , Cholesterol, HDL/blood , Docosahexaenoic Acids/administration & dosage , Double-Blind Method , Female , Humans , Linoleic Acids, Conjugated/administration & dosage , Linolenic Acids/administration & dosage , Lipoproteins, LDL/blood , Male , Metabolic Syndrome/etiology , Middle Aged , Obesity, Abdominal/blood , Obesity, Abdominal/complications , Waist Circumference , alpha-Linolenic Acid/administration & dosage
5.
Exp Dermatol ; 30(2): 237-248, 2021 02.
Article in English | MEDLINE | ID: mdl-33206422

ABSTRACT

Atopic dermatitis (AD) is a multifactorial chronic inflammatory skin disease characterized by skin barrier dysfunction, eczematous lesions, pruritus, and abnormal immune responses. In this study, we assessed the therapeutic effect of topical applied conjugated linoleic acid (CLA) on a murine AD model that was developed by repetitive applications of 2, 4-dinitrofluorobenzene (DNFB). 2% or 5% CLA could markedly ameliorate AD-like skin lesions, scratching behaviour and skin inflammation as evidenced by the reduced inflammatory blood cells, IgE and Th2-related cytokine levels, and the infiltration of mast cells and inflammatory cells to the dermal tissues. Moreover, topical application with CLA modulated skin barrier repair including maintaining a balanced skin pH and increasing skin hydration, partially mediated by upregulating skin barrier-related protein, filaggrin (FLG). In addition, topical CLA significantly dose-dependently inhibited pro-inflammatory cytokines including interleukin (IL)-6, IL-1ß, tumour necrosis factor (TNF)-α and pro-inflammatory enzyme expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in inflamed mice skin. Its anti-inflammatory effect was associated with the inhibition of DNFB-stimulated IκBα and NF-κB p65 phosphorylation in mouse skin. Taken together, our results suggest that locally applied CLA exerts potentially protective effects against AD lesional skin at least in part, due to regulation of skin barrier function and inflammatory response.


Subject(s)
Cytokines/blood , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/physiopathology , Linoleic Acids, Conjugated/therapeutic use , Administration, Cutaneous , Animals , Behavior, Animal/drug effects , Cyclooxygenase 2/metabolism , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/pathology , Dinitrofluorobenzene , Disease Models, Animal , Filaggrin Proteins/metabolism , Hydrogen-Ion Concentration , Immunoglobulin E/blood , Interleukin-1beta/blood , Interleukin-6/blood , Linoleic Acids, Conjugated/administration & dosage , Male , Mice , Mice, Inbred BALB C , NF-KappaB Inhibitor alpha/metabolism , Nitric Oxide Synthase Type II/metabolism , Phosphorylation/drug effects , Skin Physiological Phenomena/drug effects , Transcription Factor RelA/metabolism , Tumor Necrosis Factor-alpha/blood
6.
J Dairy Sci ; 103(12): 11889-11910, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32981719

ABSTRACT

Dairy cows are exposed to increased inflammatory processes in the transition period from late pregnancy to early lactation. Essential fatty acids (EFA) and conjugated linoleic acid (CLA) are thought to modulate the inflammatory response in dairy cows. The present study investigated the effects of a combined EFA and CLA infusion on the fatty acid (FA) status in plasma lipids, and whether changes in the FA pattern were associated with the acute phase and inflammatory response during late pregnancy and early lactation. Rumen-cannulated Holstein cows (n = 40) were assigned from wk 9 antepartum to wk 9 postpartum to 1 of 4 treatment groups. Cows were abomasally supplemented with coconut oil (CTRL, 76 g/d), linseed and safflower oil (EFA, 78 g/d of linseed oil and 4 g/d of safflower oil; ratio of oils = 19.5:1; n-6:n-3 FA ratio = 1:3), Lutalin (CLA, 38 g/d; isomers cis-9,trans-11 and trans-10,cis-12; each 10 g/d), or both (EFA+CLA). Blood samples were taken to measure changes in FA in blood plasma on d -63, -42, 1, 28, and 56, and in plasma lipid fractions (cholesterol esters, free fatty acids, phospholipids, and triglycerides) on d -42, 1, and 56 relative to calving, and in erythrocyte membrane (EM) on d 56 after calving. Traits related to the acute phase response and inflammation were measured in blood throughout the study. Liver samples were obtained for biopsy on d -63, -21, 1, 28, and 63 relative to calving to measure the mRNA abundance of genes related to the inflammatory response. The concentrations of α-linolenic acid and n-3 FA metabolites increased in lipid fractions (especially phospholipids) and EM due to EFA supplementation with higher α-linolenic acid but lower n-3 metabolite concentrations in EFA+CLA than in EFA treatment only. Concentration of linoleic acid decreased in plasma fat toward calving and increased during early lactation in all groups. Concentration of plasma arachidonic acid was lower in EFA- than in non-EFA-treated groups in lipid fractions and EM. The cis-9,trans-11 CLA increased in all lipid fractions and EM after both CLA treatments. Plasma haptoglobin was lowered by EFA treatment before calving. Plasma bilirubin was lower in EFA and CLA than in CTRL at calving. Plasma concentration of IL-1ß was higher in EFA than in CTRL and EFA+CLA at certain time points before and after calving. Plasma fibrinogen dropped faster in CLA than in EFA and EFA+CLA on d 14 postpartum. Plasma paraoxonase tended to be elevated by EFA treatment, and was higher in EFA+CLA than in CTRL on d 49. Hepatic mRNA abundance revealed time changes but no treatment effects with respect to the inflammatory response. Our data confirmed the enrichment of n-3 FA in EM by EFA treatment and the inhibition of n-3 FA desaturation by CLA treatment. The elevated n-3 FA status and reduced n-6:n-3 ratio by EFA treatment indicated a more distinct effect on the inflammatory response during the transition period than the single CLA treatment, and the combined EFA+CLA treatment caused minor additional changes on the anti-inflammatory response.


Subject(s)
Cattle/physiology , Dietary Supplements/analysis , Fatty Acids, Essential/administration & dosage , Fatty Acids/blood , Linoleic Acids, Conjugated/administration & dosage , Lipids/blood , Abomasum/metabolism , Animals , Cattle/blood , Fatty Acids, Nonesterified/blood , Female , Inflammation/veterinary , Lactation , Linoleic Acid/blood , Postpartum Period , Pregnancy
7.
Am J Clin Nutr ; 112(5): 1382-1389, 2020 11 11.
Article in English | MEDLINE | ID: mdl-32860399

ABSTRACT

BACKGROUND: Aging is associated with skeletal muscle anabolic resistance (i.e., reduced muscle protein synthesis during anabolic conditions such as hyperaminoacidemia). The results from studies conducted in cell culture systems and animals suggest that both vitamin D and conjugated linoleic acids (CLAs) stimulate muscle protein synthesis. OBJECTIVES: To conduct a randomized, double-blind, placebo-controlled clinical trial to determine the independent and combined effects of dietary vitamin D and CLA supplementation on myofibrillar protein synthesis rates in sedentary older adults. METHODS: Thirty-two sedentary, older adults were randomized to receive either: 1) 2000 IU vitamin D-3 (Vit D) per day; 2) 4000 mg CLA per day; 3) both Vit D (2000 IU/d) and CLA (4000 mg/d); or 4) placebo for 8 wk. Myofibrillar protein synthesis rates were evaluated by using intravenous [ring-2H5]phenylalanine infusion in conjunction with muscle biopsies during basal, postabsorptive conditions and during combined amino acid and insulin infusion before and after the supplementation period. RESULTS: Before the intervention, basal myofibrillar protein synthesis rates were not different among groups (Placebo: 0.033 ± 0.003; Vit D: 0.034 ± 0.002; CLA: 0.029 ± 0.005; Vit D + CLA: 0.038 ± 0.005 %·h-1), and hyperinsulinemia-hyperaminoacidemia increased myofibrillar protein synthesis rates by ∼35%. Compared with placebo, neither Vit D nor CLA nor combined Vit D + CLA supplementation affected the basal myofibrillar protein synthesis rates (placebo: 0.040 ± 0.004%/h; Vit D: 0.044 ± 0.006%/h; CLA: 0.039 ± 0.006%/h; Vit D + CLA: 0.040 ± 0.007%/h) or the hyperinsulinemia-hyperaminoacidemia-induced increase in myofibrillar protein synthesis (percentage increase from basal before and after the interventions: placebo, 30 ± 11 and 36 ± 11; Vit D, 38 ± 8 and 34 ± 10; CLA, 50 ± 14 and 51 ± 16; Vit D + CLA, 29 ± 15 and 35 ± 8). CONCLUSIONS: Vitamin D and/or CLA supplementation, at the doses provided in our study, does not have muscle anabolic effects in sedentary older adults.The study was registered at clinicaltrials.gov (NCT03115775).


Subject(s)
Gene Expression Regulation/drug effects , Linoleic Acids, Conjugated/pharmacology , Muscle Proteins/biosynthesis , Vitamin D/pharmacology , Vitamins/pharmacology , Aged , Double-Blind Method , Drug Therapy, Combination , Female , Humans , Linoleic Acids, Conjugated/administration & dosage , Male , Vitamin D/administration & dosage , Vitamins/administration & dosage
8.
Int J Mol Sci ; 21(15)2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32752280

ABSTRACT

Goat's milk is a rich source of bioactive compounds (peptides, conjugated linoleic acid, short chain fatty acids, monounsaturated and polyunsaturated fatty acids, polyphenols such as phytoestrogens and minerals among others) that exert important health benefits. However, goat's milk composition depends on the type of food provided to the animal and thus, the abundance of bioactive compounds in milk depends on the dietary sources of the goat feed. The metabolic impact of goat milk rich in bioactive compounds during metabolic challenges such as a high-fat (HF) diet has not been explored. Thus, we evaluated the effect of milk from goats fed a conventional diet, a conventional diet supplemented with 30% Acacia farnesiana (AF) pods or grazing on metabolic alterations in mice fed a HF diet. Interestingly, the incorporation of goat's milk in the diet decreased body weight and body fat mass, improved glucose tolerance, prevented adipose tissue hypertrophy and hepatic steatosis in mice fed a HF diet. These effects were associated with an increase in energy expenditure, augmented oxidative fibers in skeletal muscle, and reduced inflammatory markers. Consequently, goat's milk can be considered a non-pharmacologic strategy to improve the metabolic alterations induced by a HF diet. Using the body surface area normalization method gave a conversion equivalent daily human intake dose of 1.4 to 2.8 glasses (250 mL per glass/day) of fresh goat milk for an adult of 60 kg, which can be used as reference for future clinical studies.


Subject(s)
Energy Metabolism/drug effects , Fatty Acids/administration & dosage , Fatty Liver/prevention & control , Milk/chemistry , Mitochondria, Muscle/drug effects , Muscle, Skeletal/drug effects , Obesity/prevention & control , Animals , Biomarkers/analysis , Diet, High-Fat/adverse effects , Dietary Supplements , Fatty Liver/etiology , Gene Expression/drug effects , Goats , Insulin Resistance , Linoleic Acids, Conjugated/administration & dosage , Male , Mice, Inbred C57BL , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Obesity/etiology
9.
J Dairy Sci ; 103(9): 8554-8563, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32684447

ABSTRACT

The conjugated linoleic acid (CLA) isomers, a group of naturally occurring isomers of the essential fatty acid (FA) linoleic acid, have received special attention in animal and human nutrition. Although they have long been used as dietary integrators in dairy cows, the effects of CLA isomers on bovine immune cells remain mostly undisclosed. The present study aimed to cover this gap and investigate the in vitro effects of CLA on inflammatory functions, including chemotaxis, phagocytosis, killing capability, and extracellular respiratory burst of purified bovine monocytes (CD14+). The apoptosis rate of monocytes was addressed as well. Once assessed, the effects of different concentrations (10, 50, 100, and 500 µM) of the 2 main CLA isomers, namely cis-9,trans-11 and trans-10,cis-12, the experiments were carried out using a concentration of 50 µM of the CLA isomers, both individually and in a mixture (50:50). The immunomodulatory activities of linoleic acid, an essential FA, and stearic acid, a saturated FA, were also investigated. Only the 50:50 CLA mixture was able to reduce monocyte apoptosis and to increase the extracellular respiratory burst during experimental proinflammatory conditions, as assessed by measuring production of reactive oxygen species. Linoleic acid and CLA had no effects on chemotaxis, phagocytosis, or killing capability. Remarkably, treatment of monocytes with stearic acid significantly reduced their chemotactic capability. The present results demonstrated that CLA isomers do have immunomodulatory effects on some functions of bovine monocytes, and that the mixture of the 2 CLA isomers is more effective than the CLA isomers individually.


Subject(s)
Inflammation/metabolism , Linoleic Acids, Conjugated/pharmacology , Monocytes/drug effects , Respiratory Burst/physiology , Animals , Cattle , Diet/veterinary , Dose-Response Relationship, Drug , Female , Linoleic Acids, Conjugated/administration & dosage , Monocytes/metabolism , Reactive Oxygen Species
10.
Nutrients ; 12(6)2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32560516

ABSTRACT

Preliminary evidence suggests that conjugated linoleic acid (CLA) may reduce body weight and affect body composition. The present study assessed the effect of CLA supplementation on body fat composition in overweight and obese women, while also evaluating the liver safety of CLA use. Seventy-four obese or overweight women were randomly assigned to receive 3 g/day CLA or placebo for 12 weeks. Body composition (dual-energy X-ray absorptiometry) and liver function (13C-methacetin breath test and serum liver enzymes) were assessed before and after the trial. Patients receiving CLA experienced a significant reduction of total body fat expressed as mass (p = 0.0007) and percentage (p = 0.0006), android adipose tissue (p = 0.0002), gynoid adipose tissue (p = 0.0028), and visceral adipose tissue (p = 4.2 × 10-9) as well as a significant increase in lean body mass to height (p = 6.1 × 10-11) when compared to those receiving a placebo. The maximum momentary 13C recovery changes and end-point values were significantly higher in the CLA group when compared to the placebo group (p = 0.0385 and p = 0.0076, respectively). There were no significant changes in alanine aminotransferase, asparagine aminotransferase, and gamma-glutamyl transpeptidase activities between the groups. In conclusion, CLA supplementation was well tolerated and safe for the liver, which shows beneficial effects on fat composition in overweight and obese women.


Subject(s)
Adipose Tissue/drug effects , Dietary Supplements , Linoleic Acids, Conjugated/therapeutic use , Liver/drug effects , Overweight/drug therapy , Adult , Double-Blind Method , Female , Humans , Linoleic Acids, Conjugated/administration & dosage , Middle Aged , Obesity/drug therapy , Poland
11.
Int J Biol Macromol ; 162: 246-261, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32531361

ABSTRACT

Alzheimer's disease (AD) is neurological disorder characterized by dementia which causes severe problems with behavior, thinking and memory. Systemic administration of therapeutics to the central nervous system (CNS) is usually associated with very low efficiency due to presence of blood brain barrier (BBB), which only allows permeation of few types of molecules from the circulation to the CNS. As an alternative, naturally amphiphilic micelles can be utilized to enhance targeted drug delivery to the brain. In this sense, lactoferrin (LF) was covalently attached to conjugated linoleic acid (CLA) via carbodiimide coupling reaction to form a new micellar nanoplatform with particle size of about 53 nm. Afterwards, fabricated micelles were further loaded once again with CLA to enhance its delivery to the CNS. In vitro drug release study revealed that CLA exhibited sustained release at pH 6.8, associated with good hemocompatibility without any remarkable in vivo toxicity in terms of liver and kidney functions. Moreover, in vivo studies showed that the fabricated micelles manifested enhanced in vivo biodistrbution in brain tissue due to the active targeting potential of LF. Additionally, drug-loaded LF-CLA micelles exhibited enhanced cognitive capabilities, reduced brain oxidative stress, inflammation, apoptosis and acetylcholine esterase activity, besides a decline in the deposition of amyloid ß peptide1-42 in aluminum chloride Alzheimer's-induced animal model. CLA-based micelles could be a promising CNS actively targeted delivery system with a sophisticated potential to reduce AD symptoms.


Subject(s)
Alzheimer Disease/drug therapy , Blood-Brain Barrier/drug effects , Drug Carriers/chemistry , Lactoferrin/administration & dosage , Linoleic Acids, Conjugated/administration & dosage , Memory/drug effects , Nanostructures/chemistry , Acetylcholinesterase/metabolism , Administration, Oral , Alzheimer Disease/chemically induced , Alzheimer Disease/enzymology , Amyloid beta-Peptides/metabolism , Animals , Apoptosis/drug effects , Behavior Rating Scale , Disease Models, Animal , Drug Liberation , Hydrogen-Ion Concentration , Inflammation/drug therapy , Kidney/drug effects , Lactoferrin/pharmacology , Lactoferrin/toxicity , Linoleic Acids, Conjugated/pharmacology , Linoleic Acids, Conjugated/toxicity , Liver/drug effects , Male , Micelles , Microscopy, Electron, Transmission , Nanostructures/ultrastructure , Oxidative Stress/drug effects , Particle Size , Rats , Rats, Wistar , Spectroscopy, Fourier Transform Infrared
12.
Br J Nutr ; 124(3): 286-295, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32234086

ABSTRACT

Maternal nutritional programming by a high-fat (HF) diet is related to hepatic lipid accumulation and steatosis in offspring. Conjugated linoleic acid (CLA) might ameliorate impaired hepatic lipid homoeostasis; therefore, the aim was to investigate the potential preventive effect of maternal CLA consumption on TAG metabolism alterations induced by HF diets in adult male rat offspring receiving or not receiving CLA. Female Wistar rats were fed a control (C) diet, HF diet or HF diet supplemented with CLA (HF+CLA) for 4 weeks before mating and throughout pregnancy and lactation. After weaning, for 9 weeks, male offspring of C or HF rats continued with the same diets as their mothers (C/C or HF/HF groups, respectively) and male offspring of HF+CLA rats were fed HF or HF+CLA diets (HF+CLA/HF or HF+CLA/HF+CLA groups, respectively). Nutritional parameters, serum and liver TAG levels, the TAG secretion rate (TAG-SR) and the activities as well as gene expression of key hepatic enzymes involved in TAG regulation were assessed. The most interesting results were that maternal CLA decreased epididymal white adipose tissue weight and prevented serum and liver TAG accumulation induced by a HF diet in adult male offspring receiving or not receiving CLA. The prevention of liver steatosis in HF+CLA/HF+CLA and HF+CLA/HF offspring was associated with an increased hepatic TAG-SR. Overall, this study provides evidence that maternal CLA consumption programmes TAG regulation and in this way contributes to lowering lipid levels in tissues and preventing liver steatosis in particular.


Subject(s)
Diet, High-Fat/adverse effects , Dietary Supplements , Fatty Liver/prevention & control , Linoleic Acids, Conjugated/administration & dosage , Prenatal Exposure Delayed Effects/prevention & control , Adipose Tissue, White/metabolism , Animals , Fatty Liver/etiology , Female , Liver/metabolism , Male , Maternal Exposure/adverse effects , Maternal Nutritional Physiological Phenomena , Pregnancy , Prenatal Exposure Delayed Effects/etiology , Rats , Rats, Wistar
13.
J Nutr Biochem ; 81: 108379, 2020 07.
Article in English | MEDLINE | ID: mdl-32330842

ABSTRACT

Conjugated linoleic acid (CLA), commonly found in beef, lamb and dairy products, has been reported to exhibit anti-inflammatory and antipruritus effects and to inhibit the release of chemical mediators such as histamine and eicosanoid in laboratory rodents. The chief objective of the study is to assess the efficacy of CLA on atopic dermatitis (AD) in mice and to explore possible mechanisms with CLA treatments. To develop a new therapy for AD, the anti-AD potential of CLA was investigated by inducing AD-like skin lesions in mice using 2,4-dinitrofluorobenzene. We evaluated dermatitis severity; histopathological changes; serum levels of T helper (Th) cytokines (interferon-γ, interleukin-4); changes in protein expression by western blotting and immunohistochemistry staining for cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX), toll like receptor 4 (TLR-4), myeloid differentiation factor 88 (MyD88), nuclear factor-κB (NF-κB) and tumor necrosis factor α (TNF-α); and production of the proinflammatory lipid mediators, such as prostaglandin E2 and leukotriene B4, in the skin lesions. Treatment with CLA ameliorated the development of AD-like clinical symptoms and effectively inhibited epidermal hyperplasia and infiltration of mast cells and CD4+ T cells in the AD mouse skin. Total serum immunoglobulin E levels and the expression levels of Th1/Th2 cytokines and lipid mediators in dorsal skin were dramatically suppressed by CLA. Furthermore, CLA down-regulated the expressions of COX-2, 5-LOX, TLR4, MyD88, NF-κB and TNF-α. Taken together, our findings demonstrate the potential usefulness of CLA as an anti-inflammatory dietary supplement or drug for the prevention and management of AD skin diseases by modulating the COX-2/5-LOX and TLR4/MyD88/NF-κB signaling pathways.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Dermatitis, Atopic/drug therapy , Dinitrofluorobenzene/adverse effects , Linoleic Acids, Conjugated/pharmacology , Animals , Anti-Inflammatory Agents/administration & dosage , Arachidonate 5-Lipoxygenase/metabolism , Cyclooxygenase 2/metabolism , Cytokines/blood , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/metabolism , Dinoprostone/metabolism , Humans , Leukotriene B4/metabolism , Linoleic Acids, Conjugated/administration & dosage , Male , Mast Cells/metabolism , Mice , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , Skin/drug effects , Skin/pathology , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
14.
Lipids ; 55(3): 201-212, 2020 05.
Article in English | MEDLINE | ID: mdl-32092162

ABSTRACT

Trans-10, cis-12 conjugated linoleic acid (CLA) is a potent inhibitor of milk fat synthesis in the cow and similarly reduces milk fat in rodents. The objective of this study was to determine whether dietary fat can overcome CLA inhibition of milk fat concentration in lactating mice. Wild type C57Bl/6J mice (n = 31) were fed semipurified diets containing either low fat (LF; 4% fat) or high fat (HF; 23.6% fat) starting 4-6 days postpartum. Dietary fat was increased by inclusion of high oleic sunflower oil. After 2 days on the experimental diets, lactating dams were orally dosed with either water (control) or trans-10, cis-12 CLA (20 mg/day) for 5 days. CLA treatment decreased pup growth similarly in both HF and LF diets. Milk fat percent was increased over 16% by the HF diet and decreased over 12% by CLA, but there was no interaction of dietary fat and CLA. Both CLA and the HF diet reduced the proportion of short- and medium-chain fatty acids that originate from de novo synthesis, and there was no interaction of diet and CLA. CLA had no effect on the percent of preformed fatty acids, but the HF diet increased their abundance. Dietary fat and CLA both modified mammary expression of lipogenic enzymes and regulators, but no interactions were observed. In conclusion, CLA reduced milk fat concentration and litter growth, but these effects were not overcome by increased dietary fat from high oleic sunflower oil. CLA inhibition of milk fat in the mammary gland is not substrate dependent, and the mechanism is independent from dietary supply of oleic acid.


Subject(s)
Dietary Fats/administration & dosage , Linoleic Acids, Conjugated/administration & dosage , Milk/chemistry , Sunflower Oil/chemistry , Animals , Dietary Fats/pharmacology , Fatty Acids/analysis , Female , Lactation , Linoleic Acids, Conjugated/pharmacology , Lipogenesis/drug effects , Mice , Mice, Inbred C57BL , Milk/drug effects , Sunflower Oil/administration & dosage
15.
Nutrients ; 12(2)2020 Feb 04.
Article in English | MEDLINE | ID: mdl-32033223

ABSTRACT

Conjugated linoleic acid (CLA) is a dietary supplement that has been shown to improve obesity. However, some authors have associated high doses of CLA supplementation with liver impairment and insulin resistance. The aim of this study was to assess whether the consumption of low doses of CLA maintained the beneficial effects on the main metabolic disturbances associated with metabolic syndrome (MetS) but prevented the occurrence of non-desirable outcomes associated with its consumption. Male Wistar rats, fed standard or cafeteria (CAF) diet for 12 weeks, were supplemented with three different low doses of CLA in the last three weeks. Both biochemical and H1 NMR-based metabolomics profiles were analysed in serum and liver. The consumption of 100 mg/kg CLA, but not doses of 200 and 300 mg/kg, ameliorated the increase in body weight gain as well as the serum concentrations of glucose, insulin, cholesterol, triglyceride, diglyceride, and total phospholipid induced by a CAF diet. In turn, CLA reverted the increase in lactate, alanine, and glucose concentrations in the liver of these animals, but enhanced hepatic cholesterol accumulation without any detrimental effect on liver function. In conclusion, a low dose of CLA corrected the adverse effects associated with MetS without compromising other metabolic parameters.


Subject(s)
Diet/methods , Dietary Supplements , Linoleic Acids, Conjugated/administration & dosage , Metabolic Syndrome/prevention & control , Weight Gain/drug effects , Animals , Blood Glucose/drug effects , Cholesterol/metabolism , Diet/adverse effects , Diglycerides/blood , Disease Models, Animal , Insulin/blood , Liver/metabolism , Male , Metabolic Syndrome/etiology , Phospholipids/blood , Rats , Rats, Wistar , Risk Factors , Triglycerides/blood
16.
J Dairy Sci ; 103(3): 2829-2846, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31954574

ABSTRACT

The mammalian target of rapamycin (mTOR) is a major regulator of protein synthesis via its main downstream effectors, ribosomal protein S6 kinase (S6K1) and eukaryotic initiation factor 4E binding protein (4EBP1). The ubiquitin-proteasome system (UPS) is the main proteolytic pathway in muscle, and the muscle-specific ligases tripartite motif containing 63 (TRIM63; also called muscle-specific ring-finger protein 1, MuRF-1) and F-box only protein 32 (FBXO32; also called atrogin-1) are important components of the UPS. We investigated 20S proteasome activity and mRNA expression of key components of mTOR signaling and UPS in skeletal muscle of dairy cows during late gestation and early lactation and tested the effects of dietary supplementation (from d 1 in milk) with conjugated linoleic acids (sCLA; 100 g/d; n = 11) compared with control fat-supplemented cows (CTR; n = 10). Blood and muscle tissue (semitendinosus) samples were collected on d -21, 1, 21, and 70 relative to parturition. Dry matter intake increased with time of lactation in both groups. It was lower in sCLA than in CTR on d 21, which resulted in a reduced calculated metabolizable protein balance. Most serum and muscle concentrations of AA followed time-related changes but were unaffected by CLA supplementation. In both groups, serum and muscle 3-methylhistidine (3-MH) concentrations and the ratio of 3-MH:creatinine increased from d -21 to d 1, followed by a decline on d 21. The mRNA abundance of MTOR on d 21 and 70 was greater in sCLA than in CTR. The abundance of 4EBP1 mRNA did not differ between groups but was upregulated in both on d 1. The mRNA abundance of S6K1 on d 70 was greater in CTR than in sCLA, but remained unchanged over time in both groups. The mRNA abundance of FBXO32 (encoding atrogin-1) on d 21 was greater in sCLA than in CTR. The mRNA abundance of TRIM63 (also known as MuRF1) showed a similar pattern as FBXO32 in both groups: an increase from d -21 to d 1, followed by a decline. The mRNA for the α (BCKDHA) and ß (BCKDHB) polypeptide of branched-chain α-keto acid dehydrogenase was elevated in sCLA and CTR cows on d 21, respectively, suggesting a role of CLA in determining the metabolic fate of branched-chain AA. For the mTOR protein, no group differences were observed. The abundance of S6K1 protein was greater across all time points in sCLA versus CTR. The antepartum 20S proteasome activity in muscle was elevated in both groups compared with postpartum, probably reflecting the start of protein mobilization before parturition. Plasma insulin concentrations decreased in both groups postpartum but to a greater extent in CTR than in sCLA, resulting in greater insulin concentrations in sCLA than in CTR. Thus, the greater abundance of MTOR mRNA and S6K1 protein in sCLA compared with CTR might be mediated by the greater plasma insulin postpartum. The upregulation of MTOR mRNA in sCLA cows on d 21, despite greater FBXO32 mRNA abundance, may reflect a simultaneous activation of both anabolic and catabolic signaling pathways, likely resulting in greater protein turnover.


Subject(s)
Cattle/physiology , Dietary Supplements/analysis , Linoleic Acids, Conjugated/administration & dosage , Proteasome Endopeptidase Complex/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/genetics , Animals , Cattle/genetics , Female , Insulin/blood , Lactation/drug effects , Methylhistidines/analysis , Milk/metabolism , Muscle, Skeletal/metabolism , Parturition , Postpartum Period , Pregnancy , RNA, Messenger/genetics , Ubiquitin/metabolism
17.
J Dairy Sci ; 103(1): 972-991, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31704022

ABSTRACT

The objective of this study was to test the effects of essential fatty acids (EFA), particularly α-linolenic acid, and conjugated linoleic acid (CLA) supplementation on fatty acid (FA) composition, performance, and systemic and hepatic antioxidative and inflammatory responses in dairy cows. Four cows (126 ± 4 d in milk) were investigated in a 4 × 4 Latin square and were abomasally infused with 1 of the following for 6 wk: (1) coconut oil (control treatment, CTRL; 38.3 g/d; providing saturated FA), (2) linseed and safflower oil (EFA treatment; 39.1 and 1.6 g/d, respectively; providing mainly α-linolenic acid), (3) Lutalin (BASF, Ludwigshafen, Germany; CLA treatment; cis-9,trans-11 and trans-10,cis-12 CLA, 4.6 g/d each), (4) or EFA+CLA. The initial dosage was doubled every 2 wk, resulting in 3 dosages (dosage 1, 2, and 3). Cows were fed a corn silage-based total mixed ration with a high n-6/n-3 FA ratio. Dry matter intake and milk yield were recorded daily, and milk composition was measured weekly. The FA compositions of milk fat and blood plasma were analyzed at wk 0, 2, 4, and 6. The plasma concentration and hepatic mRNA abundance of parameters linked to the antioxidative and inflammatory response were analyzed at wk 0 and 6 of each treatment period. Infused FA increased in blood plasma and milk of the respective treatment groups in a dose-dependent manner. The n-6/n-3 FA ratio in milk fat was higher in CTRL and CLA than in EFA and EFA+CLA. The sum of FA

Subject(s)
Antioxidants/metabolism , Cattle , Fatty Acids/administration & dosage , Inflammation/veterinary , Linoleic Acids, Conjugated/administration & dosage , Abomasum/metabolism , Animals , Diet/veterinary , Dietary Supplements , Drug Administration Routes , Energy Metabolism , Fatty Acids/metabolism , Female , Inflammation/prevention & control , Injections , Lactation/physiology , Linoleic Acids, Conjugated/pharmacology , Milk/metabolism
18.
Biochimie ; 169: 144-160, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31837411

ABSTRACT

Since the early 2010s, dietary trans-palmitoleic acid (trans-9-hexadecenoic acid, trans-9-C16:1 in the Δ-nomenclature, trans-C16:1 n-7 in the Ω-nomenclature, TPA) has been epidemiologically associated with a lower risk of type 2 diabetes in humans. Thanks to these findings, TPA has become a nutrient of interest. However, there is a lot of unresolved crucial questions about this dietary fatty acid. Is TPA a natural trans fatty acid? What kind of foods ensures intakes in TPA? What about its metabolism? How does dietary TPA act to prevent type 2 diabetes? What are the biological mechanisms involved in this physiological effect? Clearly, it is high time to answer all these questions with the very first review specifically dedicated to this intriguing fatty acid. Aiming at getting an overview, we shall try to give an answer to all these questions, relying on appropriate and accurate scientific results. Briefly, this review underlines that TPA is indeed a natural trans fatty acid which is metabolically linked to other well-known natural trans fatty acids. Knowledge on physiological impacts of dietary TPA is limited so far to epidemiological data, awaiting for supplementation studies. In this multidisciplinary review, we also emphasize on methodological topics related to TPA, particularly when it comes to the quantification of TPA in foods and human plasma. As a conclusion, we highlight promising health benefits of dietary TPA; however, there is a strong lack in well-designed studies in both the nutritional and the analytical area.


Subject(s)
Cardiovascular Diseases/metabolism , Diabetes Mellitus, Type 2/metabolism , Dietary Supplements , Fatty Acids, Monounsaturated/metabolism , Obesity/metabolism , Trans Fatty Acids/metabolism , Animals , Cardiovascular Diseases/physiopathology , Cardiovascular Diseases/prevention & control , Clinical Trials as Topic , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/prevention & control , Diet/methods , Fatty Acids, Monounsaturated/administration & dosage , Fatty Acids, Monounsaturated/chemical synthesis , Fatty Acids, Monounsaturated/isolation & purification , Humans , Hydrogenation , Linoleic Acids, Conjugated/administration & dosage , Linoleic Acids, Conjugated/metabolism , Meat/analysis , Milk/chemistry , Obesity/physiopathology , Obesity/prevention & control , Ruminants/metabolism , Stereoisomerism , Trans Fatty Acids/administration & dosage , Trans Fatty Acids/chemical synthesis , Trans Fatty Acids/isolation & purification
19.
Sci Rep ; 9(1): 18437, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31804596

ABSTRACT

Deregulation of Cyclin-dependent kinase 5 (CDK5) by binding to the activated calpain product p25, is associated with the onset of neurodegenerative diseases, such as Alzheimer's disease (AD). Conjugated Linoleic Acid (CLA), a calpain inhibitor, is a metabolite of Punicic Acid (PA), the main component of Pomegranate seed oil (PSO). We have shown recently that long-term administration of Nano-PSO, a nanodroplet formulation of PSO, delays mitochondrial damage and disease advance in a mouse model of genetic Creutzfeldt Jacob disease (CJD). In this project, we first demonstrated that treatment of mice with Nano-PSO, but not with natural PSO, results in the accumulation of CLA in their brains. Next, we tested the cognitive, biochemical and pathological effects of long-term administration of Nano-PSO to 5XFAD mice, modeling for Alzheimer's disease. We show that Nano-PSO treatment prevented age-related cognitive deterioration and mitochondrial oxidative damage in 5XFAD mice. Also, brains of the Nano-PSO treated mice presented reduced accumulation of Aß and of p25, a calpain product, and increased expression of COX IV-1, a key mitochondrial enzyme. We conclude that administration of Nano-PSO results in the brain targeting of CLA, and suggest that this treatment may prevent/delay the onset of neurodegenerative diseases, such as AD and CJD.


Subject(s)
Alzheimer Disease/drug therapy , Cognition/drug effects , Glycoproteins/administration & dosage , Linoleic Acids, Conjugated/administration & dosage , Memory/drug effects , Plant Oils/administration & dosage , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Brain/cytology , Brain/drug effects , Brain/pathology , Calpain/antagonists & inhibitors , Calpain/metabolism , Disease Models, Animal , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Female , Humans , Male , Mice , Mice, Transgenic , Mitochondria/drug effects , Mitochondria/pathology , Oxidative Stress/drug effects , Phosphotransferases/metabolism , Plant Oils/chemistry , Presenilin-1/genetics
20.
J Agric Food Chem ; 67(48): 13282-13298, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31690068

ABSTRACT

Dietary supplementation with conjugated linoleic acid (CLA) has been reported to alleviate the effect of colitis in mice, but the mechanisms involved need further exploration. The study aimed to investigate how orally administered CLA alleviates dextran sulfate sodium (DSS)-induced colitis in mice. CLA was administered in five different doses: 40, 20, 10, 5, and 2.5 mg/day. Doses of CLA at 10 mg/day and higher alleviated colitis symptoms and reduced inflammation induced by DSS, in which 40, 20, and 10 mg/day CLA significantly increased the concentration of mucin2 and goblet cells, but neither 5 mg/day CLA nor 2.5 mg/day CLA had any effects. Meanwhile, 40 and 20 mg/day CLA treatments significantly upregulated the concentration of tight junction proteins (ZO-1, occludin, and claudin-3) and ameliorated epithelial apoptosis caused by DSS. Moreover, oxidative-stress-related enzymes (superoxide dismutase, glutathione peroxidase, and catalase) and inflammatory cytokines [tumor necrosis factor-α, interleukin (IL)-10, and IL-6] were modulated by 40 and 20 mg/day CLA. Furthermore, 40 mg/day CLA rebalanced the gut microbiota damaged by DSS, including reducing Bacteroides and increasing Bifidobacterium and Odoribacter. In conclusion, CLA supplementation alleviated DSS-induced colitis in a dose-dependent manner by modulating inflammatory cytokines and oxidation stress, maintaining the mucosal barrier, and reverting microbiota changes.


Subject(s)
Colitis/drug therapy , Cytokines/metabolism , Gastrointestinal Microbiome/drug effects , Linoleic Acids, Conjugated/administration & dosage , Oxidative Stress/drug effects , Animals , Bacteria/classification , Bacteria/drug effects , Bacteria/genetics , Bacteria/isolation & purification , Colitis/chemically induced , Colitis/metabolism , Colitis/microbiology , Cytokines/genetics , Dextran Sulfate/adverse effects , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...