Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 441
Filter
1.
Food Chem ; 451: 139295, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38729042

ABSTRACT

Information regarding protein expression and phosphorylation modifications in the bovine milk fat globule membrane is scarce, particularly throughout various lactation periods. This study employed a complete proteome and phosphoproteome between bovine colostrum and mature milk. A total of 11 proteins were seen in both protein expression and phosphorylation levels. There were 400 proteins identified in only protein expression, and 104 phosphoproteins identified in only phosphorylation levels. A total of 232 significant protein characteristics were identified within the proteome and significant phosphorylation sites within 86 phosphoproteins of the phosphoproteome. Biological activities and pathways primarily exhibited associations with the immune system. Simultaneously, a comprehensive analysis of proteins and phosphorylation sites using a multi-omics approach. Hence, the data we have obtained has the potential to expand our understanding of how the bovine milk fat globule membrane might be utilized as a beneficial component in dairy products.


Subject(s)
Glycolipids , Glycoproteins , Lactation , Lipid Droplets , Milk , Phosphoproteins , Proteomics , Animals , Cattle , Glycoproteins/chemistry , Glycoproteins/immunology , Glycoproteins/metabolism , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Glycolipids/chemistry , Glycolipids/metabolism , Female , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Phosphoproteins/genetics , Phosphoproteins/immunology , Milk/chemistry , Milk Proteins/chemistry , Milk Proteins/metabolism , Milk Proteins/immunology , Phosphorylation , Proteome/chemistry , Proteome/immunology , Proteome/analysis
2.
Int J Biol Macromol ; 268(Pt 2): 131999, 2024 May.
Article in English | MEDLINE | ID: mdl-38697416

ABSTRACT

In this paper, effects of preheating-induced denaturation of proteins and oleosomes on protein structure and soymilk quality were studied. The protein in soybeans baked at 55 °C (B-55) and 85 °C (B-85) showed an increase of ß-sheet content by 3.2 % and a decrease of α-helix content by 3.3 %, indicating that proteins were gradually unfolded while oleosomes remained intact. The protein resisted thermal denaturation during secondary heating, and soymilks were stable as reflected by a small d3,2 (0.4 µm). However, raw soymilk from soybeans baked at 115 °C (B-115), steamed for 1 min (ST-1) and 5 min (ST-5) presented oleosomes destruction and lipids aggregates. The proteins were coated around the oil aggregates. The ß-turn content from soybeans steamed for 10 min (ST-10) increased by 9.5 %, with a dense network where the OBs were tightly wrapped, indicating the serious protein denaturation. As a result, the soymilks B-115 or steamed ones were unstable as evidenced by the serious protein aggregation and larger d3,2 (5.65-12.48 µm). Furthermore, the soymilks were graininess and the protein digestion was delayed due to the formation of insoluble protein aggregates. The flavor and early-stage lipid digestion of soymilk from steamed soybeans was improved owing to lipid release.


Subject(s)
Hot Temperature , Protein Denaturation , Soy Milk , Soybean Proteins , Soy Milk/chemistry , Soybean Proteins/chemistry , Lipid Droplets/chemistry , Cooking
3.
FEBS Lett ; 598(10): 1127-1142, 2024 May.
Article in English | MEDLINE | ID: mdl-38726814

ABSTRACT

Electron microscopy (EM), in its various flavors, has significantly contributed to our understanding of lipid droplets (LD) as central organelles in cellular metabolism. For example, EM has illuminated that LDs, in contrast to all other cellular organelles, are uniquely enclosed by a single phospholipid monolayer, revealed the architecture of LD contact sites with different organelles, and provided near-atomic resolution maps of key enzymes that regulate neutral lipid biosynthesis and LD biogenesis. In this review, we first provide a brief history of pivotal findings in LD biology unveiled through the lens of an electron microscope. We describe the main EM techniques used in the context of LD research and discuss their current capabilities and limitations, thereby providing a foundation for utilizing suitable EM methodology to address LD-related questions with sufficient level of structural preservation, detail, and resolution. Finally, we highlight examples where EM has recently been and is expected to be instrumental in expanding the frontiers of LD biology.


Subject(s)
Lipid Droplets , Microscopy, Electron , Lipid Droplets/metabolism , Lipid Droplets/ultrastructure , Lipid Droplets/chemistry , Humans , Animals , Microscopy, Electron/methods , Lipid Metabolism
4.
J Agric Food Chem ; 72(19): 11268-11277, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38695399

ABSTRACT

Buttermilk is a potential material for the production of a milk fat globule membrane (MFGM) and can be mainly classified into two types: whole cream buttermilk and cheese whey cream buttermilk (WCB). Due to the high casein micelle content of whole cream buttermilk, the removal of casein micelles to improve the purity of MFGM materials is always required. This study investigated the effects of rennet and acid coagulation on the lipid profile of buttermilk rennet-coagulated whey (BRW) and buttermilk acid-coagulated whey (BAW) and compared them with WCB. BRW has significantly higher phospholipids (PLs) and ganglioside contents than BAW and WCB. The abundance of arachidonic acid (ARA)- and eicosapentaenoic acid (EPA)-structured PLs was higher in WCB, while docosahexaenoic acid (DHA)-structured PLs were higher in BRW, indicating that BRW and WCB intake might have a greater effect on improving cardiovascular conditions and neurodevelopment. WCB and BRW had a higher abundance of plasmanyl PL and plasmalogen PL, respectively. Phosphatidylcholine (PC) (28:1), LPE (20:5), and PC (26:0) are characteristic lipids among BRW, BAW, and WCB, and they can be used to distinguish MFGM-enriched whey from different sources.


Subject(s)
Buttermilk , Cheese , Goats , Lipidomics , Whey , Animals , Buttermilk/analysis , Cheese/analysis , Whey/chemistry , Phospholipids/analysis , Phospholipids/chemistry , Glycolipids/chemistry , Milk/chemistry , Lipid Droplets/chemistry , Glycoproteins/chemistry , Glycoproteins/analysis , Lipids/chemistry , Lipids/analysis
5.
Cell Rep Methods ; 4(5): 100774, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38749444

ABSTRACT

We present methods for making and testing the membrane biophysics of model lipid droplets (LDs). Methods are described for imaging LDs ranging in size from 0.1 to 40 µm in diameter with high-resolution microscopy and spectroscopy. With known LD compositions, membrane binding, sorting, diffusion, and tension were measured via fluorescence correlation spectroscopy (FCS), fluorescence recovery after photobleaching (FRAP), fluorescence lifetime imaging microscopy (FLIM), atomic force microscopy (AFM), and imaging flow cytometry. Additionally, a custom, small-volume pendant droplet tensiometer is described and used to measure the association of phospholipids to the LD surface. These complementary, cross-validating methods of measuring LD membrane behavior reveal the interplay of biophysical processes on lipid droplet monolayers.


Subject(s)
Lipid Droplets , Lipid Droplets/metabolism , Lipid Droplets/chemistry , Microscopy, Atomic Force/methods , Microscopy, Fluorescence/methods , Fluorescence Recovery After Photobleaching/methods , Humans , Flow Cytometry/methods , Spectrometry, Fluorescence/methods
6.
Talanta ; 275: 126069, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38692042

ABSTRACT

Lipid deposition has been considered one of the key factors in the occurrence of valvular heart disease (VHD) and a great potential target for the diagnosis of VHD. However, the development of lipid imaging technologies and efficient lipid specific probes is in urgent demand. In this work, we have prepared a lipid droplets (LDs) targeted fluorescence probe CPTM based on a push-pull electronic structure for the imaging of diseased aortic valves. CPTM showed obvious twisted intramolecular charge transfer (TICT) effect and its emission changed from 600 nm in water to 508 nm in oil. CPTM not only exhibited good biocompatibility and high photostability, but also impressive LDs specific imaging performance in human primary valvular interstitial cells and human diseased aortic valves. Moreover, the dynamic changes of intracellular LDs could be monitor in real-time after staining with CPTM. These results were expected to offer new ideals for the designing of novel LDs specific probes for further bioimaging applications.


Subject(s)
Aortic Valve , Fluorescent Dyes , Humans , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Aortic Valve/diagnostic imaging , Aortic Valve/pathology , Optical Imaging , Lipid Droplets/chemistry , Color , Aortic Valve Disease/diagnostic imaging , Lipids/chemistry , Lipids/analysis
7.
Anal Chem ; 96(21): 8467-8473, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38723271

ABSTRACT

Lipid droplets (LDs) store energy and supply fatty acids and cholesterol. LDs are a hallmark of chronic nonalcoholic fatty liver disease (NAFLD). Recently, studies have focused on the role of hepatic macrophages in NAFLD. Green fluorescent protein (GFP) is used for labeling the characteristic targets in bioimaging analysis. Cx3cr1-GFP mice are widely used in studying the liver macrophages such as the NAFLD model. Here, we have developed a tool for two-photon microscopic observation to study the interactions between LDs labeled with LD2 and liver capsule macrophages labeled with GFP in vivo. LD2, a small-molecule two-photon excitation fluorescent probe for LDs, exhibits deep-red (700 nm) fluorescence upon excitation at 880 nm, high cell staining ability and photostability, and low cytotoxicity. This probe can clearly observe LDs through two-photon microscopy (TPM) and enables the simultaneous imaging of GFP+ liver capsule macrophages (LCMs) in vivo in the liver capsule of Cx3cr1-GFP mice. In the NAFLD mouse model, Cx3cr1+ LCMs and LDs increased with the progress of fatty liver disease, and spatiotemporal changes in LCMs were observed through intravital 3D TPM images. LD2 will aid in studying the interactions and immunological roles of hepatic macrophages and LDs to better understand NAFLD.


Subject(s)
Lipid Droplets , Liver , Macrophages , Animals , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Mice , Macrophages/metabolism , Liver/diagnostic imaging , Liver/metabolism , Liver/pathology , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/chemistry , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Microscopy, Fluorescence, Multiphoton/methods , Fluorescent Dyes/chemistry , Mice, Inbred C57BL
8.
Anal Chem ; 96(21): 8356-8364, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38753674

ABSTRACT

Lipids are essential for various cellular functions, including energy storage, membrane flexibility, and signaling molecule production. Maintaining proper lipid levels is important to prevent health problems such as cancer, neurodegenerative disorders, cardiovascular diseases, obesity, and diabetes. Monitoring cellular lipid droplets (LDs) in real-time with high resolution can provide insights into LD-related pathways and diseases owing to the dynamic nature of LDs. Fluorescence-based imaging is widely used for tracking LDs in live cells and animal models. However, the current fluorophores have limitations such as poor photostability and high background staining. Herein, we developed a novel fluorogenic probe based on a push-pull interaction combined with aggregation-induced emission enhancement (AIEE) for dynamic imaging of LDs. Probe 1 exhibits favorable membrane permeability and spectroscopic characteristics, allowing specific imaging of cellular LDs and time-lapse imaging of LD accumulation. This probe can also be used to examine LDs in fruit fly tissues in various metabolic states, serving as a highly versatile and specific tool for dynamic LD imaging in cellular and tissue environments.


Subject(s)
Fluorescent Dyes , Lipid Droplets , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Animals , Humans , Optical Imaging , Boron Compounds/chemistry , Mice , HeLa Cells , Drosophila melanogaster
9.
FEBS Lett ; 598(10): 1143-1153, 2024 May.
Article in English | MEDLINE | ID: mdl-38627196

ABSTRACT

Lipid droplets (LDs) are ubiquitous intracellular organelles with a central role in multiple lipid metabolic pathways. However, identifying correlations between their structural properties and their biological activity has proved challenging, owing to their unique physicochemical properties as compared with other cellular membranes. In recent years, molecular dynamics (MD) simulations, a computational methodology allowing the accurate description of molecular assemblies down to their individual components, have been demonstrated to be a useful and powerful approach for studying LD structural and dynamical properties. In this short review, we attempt to highlight, as comprehensively as possible, how MD simulations have contributed to our current understanding of multiple molecular mechanisms involved in LD biology.


Subject(s)
Lipid Droplets , Molecular Dynamics Simulation , Lipid Droplets/metabolism , Lipid Droplets/chemistry , Humans , Animals , Lipid Metabolism
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124356, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38678840

ABSTRACT

Microenvironmental viscosity is a crucial parameter for biological systems, and its abnormal fluctuations are closely associated with various functional disorders and diseases. However, it is still important and urgent to develop improved near-infrared fluorescent probes for micro-viscosity with dual-organelle targeting properties, low background noise, and high sensitivity. Herein, two BODIPY-based small-molecule fluorescent probes were designed and synthesized, which were explored for their viscosity- and polarity-responsive properties, and were further applied to imaging sub-cellular viscosity in living cells. Interestingly, BSZ-Ph and BSZ-R displayed near-infrared fluorescence (more than 650 nm) and were sensitive to environmental viscosity and polarity due to the introduction of a benzothiazole at the 2-position and electron-rich aniline groups at the 5-position of the BODIPY core, respectively. The fluorescence intensity increased exponentially with the viscosity changes. Furthermore, the probe BSZ-Ph could successfully target lipid droplets and image cellular viscosity changes by treating lipopolysaccharides (LPS) and nystatin. Comparatively, the probe BSZ-R could successfully target the dual organelles of lipid droplets and lysosomes and image cellular viscosity changes by treating LPS and monensin. Therefore, in this work, we reported two new BODIPY-based near-infrared fluorescent probes, BSZ-Ph and BSZ-R, for cellular viscosity imaging, which could target lipid droplets and the dual organelles of lysosomes and lipid droplets, respectively. The study could provide a reference for the future development of fluorescent probes for viscosity in lipid droplets and lysosomes.


Subject(s)
Boron Compounds , Fluorescent Dyes , Lipid Droplets , Lysosomes , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Viscosity , Lysosomes/metabolism , Lysosomes/chemistry , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Boron Compounds/chemistry , Boron Compounds/chemical synthesis , Humans , Animals , Mice , HeLa Cells , Optical Imaging
11.
Anal Methods ; 16(18): 2850-2856, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38644726

ABSTRACT

Early diagnostics and therapies for diseases such as cancer are limited by the fact that the inducing factors for the development of cytopathies are not clear. The stable polarity of lipid droplets is a potential biomarker for tumor cells; however, the complex intracellular biological environment poses great difficulties for specific detection of the polarity. Therefore, to meet this pressing challenge, we designed a highly selective fluorescent probe, DCI-Cou-polar, which used the ICT mechanism to differentiate normal cells and tumor cells in tissue sections by detecting changes in the polarities of intracellular lipid droplets. The introduction of a cyclic amine at the 7-position of coumarin (benzoquinolizine coumarin) reduced its ability to donate electrons compared with the diethylamino group, which increased the probe selectivity while retaining the sensitivity to polarity. With NIR emission and large Stokes shifts, DCI-Cou-polar has high sensitivity to polarity, excellent photostability, and biocompatibility, and it tracks lipid droplets with high fidelity. Therefore, we believe that this polarity-sensitive probe provides information on the connection between the polarity of lipid droplets and tumors while improving the development of highly selective polarity probes.


Subject(s)
Coumarins , Fluorescent Dyes , Fluorescent Dyes/chemistry , Humans , Coumarins/chemistry , Animals , Lipid Droplets/chemistry , Neoplasms/pathology , Mice , Cell Polarity , Cell Line, Tumor
12.
J Colloid Interface Sci ; 667: 520-528, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38653073

ABSTRACT

Fluorescent probes that specifically targeting Lipid droplets (LDs) have shown potential in biological imaging. Albeit, their in vivo applications are limited due to the hydrophobicity, low signal-to-noise ratio (SNR) and LDs-specificity. Thus, we designed a novel probe namely MeOND, and a reactive oxygen species (ROS)-responsive nano-platform to improve in vivo LDs-specific imaging. MeOND exhibits a remarkable twisted intramolecular charge transfer (TICT) effect with a strongly enhanced near-infrared emission in low-polarity lipid environment. Also, MeOND demonstrates satisfactory biocompatibility and superior intracellular LDs imaging capabilities. MeOND encapsulated nano-platform (MeOND@PMM) presented favorable water solubility and biocompatibility. MeOND@PMM remains stable in physiological conditions but quickly degrades in the environment of elevated ROS level. The released MeOND could then light up the intracellular LDs in atherosclerotic plaques. The design of the probe and nano-platform is expected to provide a better tool for the scientific research of LDs and LDs-related diseases.


Subject(s)
Atherosclerosis , Fluorescent Dyes , Optical Imaging , Reactive Oxygen Species , Reactive Oxygen Species/metabolism , Atherosclerosis/diagnostic imaging , Atherosclerosis/metabolism , Fluorescent Dyes/chemistry , Animals , Mice , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Nanoparticles/chemistry , Humans , Particle Size , RAW 264.7 Cells , Surface Properties
13.
J Mater Chem B ; 12(20): 4962-4974, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38687117

ABSTRACT

Iron, a crucial biologically active ion essential for metabolic processes in living organisms, plays a vital role in biological functions, and imbalances in iron levels can lead to various diseases. In this study, we have developed two simple "turn-on" fluorescent probes, NOPy and NOCN, for the quick and selective detection of Fe2+ at nanomolar levels (LOD of 35 nM), accompanied by significant absorption and emission shifts, along with colorimetric demarcation. Both fluorophores exhibit an excellent "turn-on" emission response upon encountering Fe2+ in the cells. Flow cytometry and confocal fluorescence imaging studies demonstrate enhanced fluorescence signals in response to labile iron, efficiently detecting heme during erastin-induced ferroptosis. Interestingly, we also observed that the product formed after Fe2+ sensing localizes within the lipid droplets. These water-soluble and highly sensitive reactive probes, NOPy and NOCN, enable investigations of iron-dependent physiological and pathological conditions. The development of these probes represents an advancement in the field, offering a rapid and selective means for detecting Fe2+ with minimal cytotoxicity.


Subject(s)
Ferroptosis , Fluorescent Dyes , Heme , Iron , Lipid Droplets , Ferroptosis/drug effects , Humans , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Iron/metabolism , Iron/chemistry , Iron/analysis , Heme/metabolism , Heme/chemistry , Heme/analysis , Optical Imaging , Fluorescence , Molecular Structure
14.
Talanta ; 274: 126028, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38599126

ABSTRACT

Mechanical forces play a crucial role in cellular processes, including ferroptosis, a form of regulated cell death associated with various diseases. However, the mechanical aspects of organelle lipid droplets (LDs) during ferroptosis are poorly understood. In this study, we designed and synthesized a fluorescent probe, TPE-V1, to enable real-time monitoring of LDs' viscosity using a dual-channel fluorescence-on model (red channel at 617 nm and NIR channel at 710 nm). The fluorescent imaging of using TPE-V1 was achieved due to the integrated mechanisms of the twisted intramolecular charge transfer (TICT) and aggregation-induced emission (AIE). Through dual-emission channel fluorescence imaging, we observed the enhanced mechanical energy of LDs triggering cellular mechanosensing, including ferroptosis and cell deformation. Theoretical calculations confirmed the probe's behavior, showing that high-viscosity media prevented the rotation processes and restored fluorescence quenching in low viscosity. These findings suggest that our TICT-TPE design strategy provides a practical approach to study LDs' mechanical properties during ferroptosis. This development enhances our understanding of the interplay between mechanical forces and LDs, contributing to the knowledge of ferroptotic cell death and potential therapeutic interventions targeting dysregulated cell death processes.


Subject(s)
Ferroptosis , Fluorescent Dyes , Lipid Droplets , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Fluorescent Dyes/chemistry , Humans , Optical Imaging , Viscosity , Fluorescence
15.
Anal Chem ; 96(18): 6968-6977, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38662948

ABSTRACT

The assessment of atherosclerosis (AS) progression has emerged as a prominent area of research. Monitoring various pathological features of foam cell (FC) formation is imperative to comprehensively assess AS progression. Herein, a simple benzospiropyran-julolidine-based probe, BSJD, with switchable dual-color imaging ability was developed. This probe can dynamically and reversibly adjust its molecular structure and fluorescent properties in different polar and pH environments. Such a polarity and pH dual-responsive characteristic makes it superior to single-responsive probes in dual-color imaging of lipid droplets (LDs) and lysosomes as well as monitoring their interaction. By simultaneously tracking various pathological features, including LD accumulation and size changes, lysosome dysfunction, and dynamically regulated lipophagy, more comprehensive information can be obtained for multiparameter assessment of FC formation progression. Using BSJD, not only the activation of lipophagy in the early stages and inhibition in the later phases during FC formation are clearly observed but also the important roles of lipophagy in regulating lipid metabolism and alleviating FC formation are demonstrated. Furthermore, BSJD is demonstrated to be capable of rapidly imaging FC plaque sites in AS mice with fast pharmacokinetics. Altogether, BSJD holds great promise as a dual-color organelle-imaging tool for investigating disease-related LD and lysosome changes and their interactions.


Subject(s)
Fluorescent Dyes , Foam Cells , Lipid Droplets , Fluorescent Dyes/chemistry , Foam Cells/metabolism , Foam Cells/pathology , Animals , Mice , Lipid Droplets/metabolism , Lipid Droplets/chemistry , Lysosomes/metabolism , Atherosclerosis/metabolism , Atherosclerosis/diagnostic imaging , Atherosclerosis/pathology , Optical Imaging , Humans , RAW 264.7 Cells , Hydrogen-Ion Concentration , Color
16.
Luminescence ; 39(4): e4749, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658767

ABSTRACT

Lipid droplet, an intracellular lipid reservoir, is vital for energy metabolism and signal transmission in cells. The viscosity directly affects the metabolism of lipid droplets, and the abnormal viscosity is associated with the occurrence and development of various diseases. Therefore, it is indispensable to develop techniques that can detect viscosity changes in intracellular lipid droplets. Based on twisted intramolecular charge transfer (TICT) mechanism, a novel small-molecule lipid droplet-targeted viscosity fluorescence probe PPF-1 was designed. The probe was easy to synthesize, it had a large Stokes shift, stable optical properties, and low bio-toxicity. Compared to being in methanol solution, the fluorescence intensity of PPF-1 in glycerol solution was increased 26.7-fold, and PPF-1 showed excellent ability to target lipid droplets. Thus, the probe PPF-1 could provide an effective means of detecting viscosity changes of lipid droplets and was of great value for physiological diagnosis of related diseases, pathological analysis, and medical research.


Subject(s)
Fluorescent Dyes , Lipid Droplets , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Viscosity , Lipid Droplets/chemistry , Humans , Molecular Structure , Optical Imaging , Spectrometry, Fluorescence
17.
Ultrason Sonochem ; 105: 106873, 2024 May.
Article in English | MEDLINE | ID: mdl-38608436

ABSTRACT

Starting from the consideration of the structure of human milk fat globule (MFG), this study aimed to investigate the effects of ultrasonic treatment on milk fat globule membrane (MFGM) and soy lecithin (SL) complexes and their role in mimicking human MFG emulsions. Ultrasonic power significantly affected the structure of the MFGM-SL complex, further promoting the unfolding of the molecular structure of the protein, and then increased solubility and surface hydrophobicity. Furthermore, the microstructure of mimicking MFG emulsions without sonication was unevenly distributed, and the average droplet diameter was large. After ultrasonic treatment, the droplets of the emulsion were more uniformly dispersed, the particle size was smaller, and the emulsification properties and stability were improved to varying degrees. Especially when the ultrasonic power was 300 W, the mimicking MFG emulsion had the highest encapsulation rate and emulsion activity index and emulsion stability index were increased by 60.88 % and 117.74 %, respectively. From the microstructure, it was observed that the spherical droplets of the mimicking MFG emulsion after appropriate ultrasonic treatment remain well separated without obvious flocculation. This study can provide a reference for the screening of milk fat globules mimicking membrane materials and the further utilization and development of ultrasound in infant formula.


Subject(s)
Emulsions , Glycolipids , Glycoproteins , Lecithins , Lipid Droplets , Lecithins/chemistry , Glycolipids/chemistry , Lipid Droplets/chemistry , Glycoproteins/chemistry , Glycoproteins/analysis , Humans , Glycine max/chemistry , Milk, Human/chemistry , Chemical Phenomena , Particle Size , Ultrasonic Waves , Sonication
18.
Chemistry ; 30(30): e202400808, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38506349

ABSTRACT

Lipid droplet (LD) degradation provides metabolic energy and important building blocks for various cellular processes. The two major LD degradation pathways include autophagy (lipophagy), which involves delivery of LDs to autolysosomes, and lipolysis, which is mediated by lipases. While abnormalities in LD degradation are associated with various pathological disorders, our understanding of lipophagy is still rudimentary. In this study, we describe the development of a lipophilic dye containing two fluorophores, one of which is pH-sensitive and the other pH-stable. We further demonstrate that this "Lipo-Fluddy" can be used to visualize and quantify lipophagy in living cells, in an easily applicable and protein label-free approach. After estimating the ability of compound candidates to penetrate LDs, we synthesized several BODIPY and (pH-switchable) rhodol dyes, whose fluorescence properties (incl. their photophysical compatibility) were analyzed. Of three Lipo-Fluddy dyes synthesized, one exhibited the desired properties and allowed observation of lipophagy by fluorescence microscopy. Also, this dye proved to be non-toxic and suitable for the examination of various cell lines. Moreover, a method was developed to quantify the lipophagy process using flow cytometry, which could be applied in the future in the identification of lipophagy-related genes or in the screening of potential drugs against lipophagy-related diseases.


Subject(s)
Autophagy , Boron Compounds , Fluorescent Dyes , Lipid Droplets , Fluorescent Dyes/chemistry , Hydrogen-Ion Concentration , Humans , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Boron Compounds/chemistry , Microscopy, Fluorescence , HeLa Cells , Lipolysis
19.
J Oleo Sci ; 73(2): 201-213, 2024.
Article in English | MEDLINE | ID: mdl-38311410

ABSTRACT

Effects of dry and wet grind on peanut oil and protein yield, oil bodies (OBs) stability, fatty acid composition, protein composition and functional characteristics were systematically analyzed. Results showed that peanut oil and protein yields reached highest at dry grind 90 s (92.56% and 83.05%, respectively), while peanut oil and protein yields were 94.58% and 85.36%, respectively, at wet grind 120 s. Peanut oil and protein yields by wet grind was 2.18% and 2.78% higher than that of dry grind, respectively. Surface protein concentration (Г) and absolute value of zeta potential of OBs extracted by wet grind (WOBs) were 11.53 mg/m 2 and 18.51 mV, respectively, which were higher than OBs extracted by dry grind (DOBs), indicating stability of WOBs was higher than DOBs. Relative contents of oleic acid and linoleic acid in peanut oil, essential and hydrophobic amino acids in protein extracted by wet grind were higher than dry grind. There was little difference in protein composition between wet and dry grind, but thermal denaturation degree of protein obtained by wet grind was lower than dry grind. Solubility, oil retention, emulsion stability, foaming and foam stability of protein obtained by wet grind were better than dry grind. Results from this study provided theoretical basis for grind pretreatment selection of aqueous enzymatic method.


Subject(s)
Arachis , Lipid Droplets , Peanut Oil/chemistry , Arachis/chemistry , Lipid Droplets/chemistry , Fatty Acids/analysis , Solubility
20.
J Agric Food Chem ; 72(2): 1405-1417, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38181196

ABSTRACT

Donkey milk fat globule membrane (MFGM) proteins are a class of membrane-bound secreted proteins with broad-spectrum biofunctional activities; however, their site-specific O-glycosylation landscapes have not been systematically mapped. In this study, an in-depth MFGM O-glycoproteome profile of donkey milk during lactation was constructed based on an intact glycopeptide-centered, label-free glycoproteomics pipeline, with 2137 site-specific O-glycans from 1121 MFGM glycoproteins and 619 site-specific O-glycans from 217 MFGM glycoproteins identified in donkey colostrum and donkey mature milk, respectively. As lactation progressed, the number of site-specific O-glycans from three glycoproteins significantly increased, whereas that of 11 site-specific O-glycans from five glycoproteins significantly decreased. Furthermore, donkey MFGM O-glycoproteins with core-1 and core-2 core structures and Lewis and sialylated branch structures may be involved in regulating apoptosis. The findings of this study reveal the differences in the composition of donkey MFGM O-glycoproteins and their site-specific O-glycosylation modification dynamic change rules during lactation, providing a molecular basis for understanding the complexity and biological functions of donkey MFGM protein O-glycosylation.


Subject(s)
Colostrum , Proteome , Animals , Female , Pregnancy , Colostrum/chemistry , Equidae/metabolism , Glycolipids/chemistry , Glycoproteins/chemistry , Glycosylation , Lipid Droplets/chemistry , Membrane Proteins/metabolism , Milk Proteins/chemistry , Polysaccharides/metabolism , Proteome/metabolism , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...