Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.115
Filter
1.
Cell Death Dis ; 15(6): 385, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824126

ABSTRACT

Drusen, the yellow deposits under the retina, are composed of lipids and proteins, and represent a hallmark of age-related macular degeneration (AMD). Lipid droplets are also reported in the retinal pigment epithelium (RPE) from AMD donor eyes. However, the mechanisms underlying these disease phenotypes remain elusive. Previously, we showed that Pgc-1α repression, combined with a high-fat diet (HFD), induce drastic AMD-like phenotypes in mice. We also reported increased PGC-1α acetylation and subsequent deactivation in the RPE derived from AMD donor eyes. Here, through a series of in vivo and in vitro experiments, we sought to investigate the molecular mechanisms by which PGC-1α repression could influence RPE and retinal function. We show that PGC-1α plays an important role in RPE and retinal lipid metabolism and function. In mice, repression of Pgc-1α alone induced RPE and retinal degeneration and drusen-like deposits. In vitro inhibition of PGC1A by CRISPR-Cas9 gene editing in human RPE (ARPE19- PGC1A KO) affected the expression of genes responsible for lipid metabolism, fatty acid ß-oxidation (FAO), fatty acid transport, low-density lipoprotein (LDL) uptake, cholesterol esterification, cholesterol biosynthesis, and cholesterol efflux. Moreover, inhibition of PGC1A in RPE cells caused lipid droplet accumulation and lipid peroxidation. ARPE19-PGC1A KO cells also showed reduced mitochondrial biosynthesis, impaired mitochondrial dynamics and activity, reduced antioxidant enzymes, decreased mitochondrial membrane potential, loss of cardiolipin, and increased susceptibility to oxidative stress. Our data demonstrate the crucial role of PGC-1α in regulating lipid metabolism. They provide new insights into the mechanisms involved in lipid and drusen accumulation in the RPE and retina during aging and AMD, which may pave the way for developing novel therapeutic strategies targeting PGC-1α.


Subject(s)
Lipid Droplets , Lipid Metabolism , Macular Degeneration , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Retinal Pigment Epithelium , Retinal Pigment Epithelium/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Animals , Humans , Mice , Lipid Droplets/metabolism , Macular Degeneration/metabolism , Macular Degeneration/pathology , Macular Degeneration/genetics , Mice, Inbred C57BL , Mitochondria/metabolism , Male , Oxidative Stress
2.
FASEB J ; 38(11): e23710, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38822676

ABSTRACT

Steroidogenic tissues contain cytosolic lipid droplets that are important for steroidogenesis. Perilipin 2 (PLIN2), a structural coat protein located on the surface of lipid droplets in mammalian cells, plays a crucial role in regulating lipid droplet formation and contributing to various cellular processes such as lipid storage and energy homeostasis. Herein, we examine the role that PLIN2 plays in regulating progesterone synthesis in the bovine corpus luteum. Utilizing gene array databases and Western blotting, we have delineated the expression pattern of PLIN2 throughout the follicular to luteal transition. Our findings reveal the presence of PLIN2 in both ovarian follicular and steroidogenic luteal cells, demonstrating an increase in its levels as follicular cells transition into the luteal phase. Moreover, the depletion of PLIN2 via siRNA enhanced progesterone production in small luteal cells, whereas adenovirus-mediated overexpression of both PLIN2 and Perilipin 3 (PLIN3) induced an increase in cytosolic lipid droplet accumulation and decreased hormone-induced progesterone synthesis in these cells. Lastly, in vivo administration of the luteolytic hormone prostaglandin F2α resulted in an upregulation of PLIN2 mRNA and protein expression, accompanied by a decline in serum progesterone. Our findings highlight the pivotal role of PLIN2 in regulating progesterone synthesis in the bovine corpus luteum, as supported by its dynamic expression pattern during the follicular to luteal transition and its responsiveness to luteotropic and luteolytic hormones. We suggest PLIN2 as a potential therapeutic target for modulating luteal function.


Subject(s)
Luteal Cells , Perilipin-2 , Progesterone , Animals , Female , Cattle , Progesterone/metabolism , Perilipin-2/metabolism , Perilipin-2/genetics , Luteal Cells/metabolism , Lipid Droplets/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Perilipin-3/metabolism , Corpus Luteum/metabolism , Cells, Cultured
3.
Nat Commun ; 15(1): 4504, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802378

ABSTRACT

Lipid droplet (LD) function relies on proteins partitioning between the endoplasmic reticulum (ER) phospholipid bilayer and the LD monolayer membrane to control cellular adaptation to metabolic changes. It has been proposed that these hairpin proteins integrate into both membranes in a similar monotopic topology, enabling their passive lateral diffusion during LD emergence at the ER. Here, we combine biochemical solvent-accessibility assays, electron paramagnetic resonance spectroscopy and intra-molecular crosslinking experiments with molecular dynamics simulations, and determine distinct intramembrane positionings of the ER/LD protein UBXD8 in ER bilayer and LD monolayer membranes. UBXD8 is deeply inserted into the ER bilayer with a V-shaped topology and adopts an open-shallow conformation in the LD monolayer. Major structural rearrangements are required to enable ER-to-LD partitioning. Free energy calculations suggest that such structural transition is unlikely spontaneous, indicating that ER-to-LD protein partitioning relies on more complex mechanisms than anticipated and providing regulatory means for this trans-organelle protein trafficking.


Subject(s)
Endoplasmic Reticulum , Lipid Droplets , Molecular Dynamics Simulation , Endoplasmic Reticulum/metabolism , Lipid Droplets/metabolism , Electron Spin Resonance Spectroscopy , Humans , Lipid Bilayers/metabolism , Lipid Bilayers/chemistry , Protein Transport , Animals , Lipid Droplet Associated Proteins/metabolism , Lipid Droplet Associated Proteins/chemistry , Lipid Droplet Associated Proteins/genetics
4.
Cell Rep Methods ; 4(5): 100774, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38749444

ABSTRACT

We present methods for making and testing the membrane biophysics of model lipid droplets (LDs). Methods are described for imaging LDs ranging in size from 0.1 to 40 µm in diameter with high-resolution microscopy and spectroscopy. With known LD compositions, membrane binding, sorting, diffusion, and tension were measured via fluorescence correlation spectroscopy (FCS), fluorescence recovery after photobleaching (FRAP), fluorescence lifetime imaging microscopy (FLIM), atomic force microscopy (AFM), and imaging flow cytometry. Additionally, a custom, small-volume pendant droplet tensiometer is described and used to measure the association of phospholipids to the LD surface. These complementary, cross-validating methods of measuring LD membrane behavior reveal the interplay of biophysical processes on lipid droplet monolayers.


Subject(s)
Lipid Droplets , Lipid Droplets/metabolism , Lipid Droplets/chemistry , Microscopy, Atomic Force/methods , Microscopy, Fluorescence/methods , Fluorescence Recovery After Photobleaching/methods , Humans , Flow Cytometry/methods , Spectrometry, Fluorescence/methods
5.
Reprod Domest Anim ; 59(5): e14595, 2024 May.
Article in English | MEDLINE | ID: mdl-38773768

ABSTRACT

Oocyte maturation involves both nuclear and cytoplasmic maturation. Mogroside V (MV) has been shown to enhance nuclear maturation, mitochondrial content, and developmental potential of porcine oocyte during in vitro maturation (IVM). However, the impact of MV on cytoplasmic maturation and its underlying mechanisms are not understood. This study aimed to assess the effect of MV on cytoplasmic maturation. Germinal vesicle (GV) oocytes treated with MV exhibited a noticeable increase in cortical granules (CGs) formation. Additionally, MV enhanced the expression of NNAT and improved glucose uptake in mature oocytes. Further insights were gained through Smart-seq2 analysis of RNA isolated from 100 oocytes. A total of 11,274 and 11,185 transcripts were identified in oocytes treated with and without MV, respectively. Among quantified genes, 438 differentially expressed genes (DEGs) were identified for further analysis. Gene Ontology (GO) enrichment analysis indicated that these DEGs were primarily involved in DNA repair regulation, cellular response to DNA damage, intracellular components, and organelles. Furthermore, the DEGs were significantly enriched in three KEGG pathways: fatty acid synthesis, pyruvate metabolism, and WNT signalling. To validate the results, lipid droplets (LD) and triglyceride (TG) were examined. MV led to an increase in the accumulation of LD and TG production in mature oocytes. These findings suggest that MV enhances cytoplasmic maturation by promoting lipid droplet synthesis. Overall, this study provides valuable insights into the mechanisms through which MV improves oocyte quality during IVM. The results have significant implications for research in livestock reproduction and offer guidance for future studies in this field.


Subject(s)
In Vitro Oocyte Maturation Techniques , Oocytes , Animals , In Vitro Oocyte Maturation Techniques/veterinary , Oocytes/drug effects , Female , Swine , Lipid Droplets/metabolism , Diterpenes/pharmacology , Triglycerides/metabolism , Triterpenes
6.
Nat Commun ; 15(1): 3767, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704407

ABSTRACT

Tools for accessing and studying organelles remain underdeveloped. Here, we present a method by which giant organelle vesicles (GOVs) are generated by submitting cells to a hypotonic medium followed by plasma membrane breakage. By this means, GOVs ranging from 3 to over 10 µm become available for micromanipulation. GOVs are made from organelles such as the endoplasmic reticulum, endosomes, lysosomes and mitochondria, or in contact with one another such as giant mitochondria-associated ER membrane vesicles. We measure the mechanical properties of each organelle-derived GOV and find that they have distinct properties. In GOVs procured from Cos7 cells, for example, bending rigidities tend to increase from the endoplasmic reticulum to the plasma membrane. We also found that the mechanical properties of giant endoplasmic reticulum vesicles (GERVs) vary depending on their interactions with other organelles or the metabolic state of the cell. Lastly, we demonstrate GERVs' biochemical activity through their capacity to synthesize triglycerides and assemble lipid droplets. These findings underscore the potential of GOVs as valuable tools for studying the biophysics and biology of organelles.


Subject(s)
Endoplasmic Reticulum , Intracellular Membranes , Animals , Chlorocebus aethiops , COS Cells , Endoplasmic Reticulum/metabolism , Intracellular Membranes/metabolism , Cell Membrane/metabolism , Mitochondria/metabolism , Organelles/metabolism , Lipid Droplets/metabolism , Triglycerides/metabolism , Humans , Lysosomes/metabolism
7.
Nat Commun ; 15(1): 2869, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693144

ABSTRACT

Only ~20% of heavy drinkers develop alcohol cirrhosis (AC). While differences in metabolism, inflammation, signaling, microbiome signatures and genetic variations have been tied to the pathogenesis of AC, the key underlying mechanisms for this interindividual variability, remain to be fully elucidated. Induced pluripotent stem cell-derived hepatocytes (iHLCs) from patients with AC and healthy controls differ transcriptomically, bioenergetically and histologically. They include a greater number of lipid droplets (LDs) and LD-associated mitochondria compared to control cells. These pre-pathologic indicators are effectively reversed by Aramchol, an inhibitor of stearoyl-CoA desaturase. Bioenergetically, AC iHLCs have lower spare capacity, slower ATP production and their mitochondrial fuel flexibility towards fatty acids and glutamate is weakened. MARC1 and PNPLA3, genes implicated by GWAS in alcohol cirrhosis, show to correlate with lipid droplet-associated and mitochondria-mediated oxidative damage in AC iHLCs. Knockdown of PNPLA3 expression exacerbates mitochondrial deficits and leads to lipid droplets alterations. These findings suggest that differences in mitochondrial bioenergetics and lipid droplet formation are intrinsic to AC hepatocytes and can play a role in its pathogenesis.


Subject(s)
Acyltransferases , Energy Metabolism , Hepatocytes , Induced Pluripotent Stem Cells , Lipase , Lipid Droplets , Liver Cirrhosis, Alcoholic , Mitochondria , Phospholipases A2, Calcium-Independent , Humans , Hepatocytes/metabolism , Hepatocytes/pathology , Induced Pluripotent Stem Cells/metabolism , Lipid Droplets/metabolism , Liver Cirrhosis, Alcoholic/metabolism , Liver Cirrhosis, Alcoholic/pathology , Liver Cirrhosis, Alcoholic/genetics , Lipase/metabolism , Lipase/genetics , Mitochondria/metabolism , Male , Membrane Proteins/metabolism , Membrane Proteins/genetics , Female , Middle Aged , Adult , Oxidative Stress
8.
FEBS Lett ; 598(10): 1113-1115, 2024 May.
Article in English | MEDLINE | ID: mdl-38785190
9.
FEBS Lett ; 598(10): 1116-1126, 2024 May.
Article in English | MEDLINE | ID: mdl-38785192

ABSTRACT

Lipid droplets (LDs) are dynamic organelles essential for cellular lipid homeostasis. Assembly of LDs occurs in the endoplasmic reticulum (ER), and the conserved ER membrane protein seipin emerged as a key player in this process. Here, we review recent advances provided by structural, biochemical, and in silico analysis that revealed mechanistic insights into the molecular role of the seipin complexes and led to an updated model for LD biogenesis. We further discuss how other ER components cooperate with seipin during LD biogenesis. Understanding the molecular mechanisms underlying seipin-mediated LD assembly is important to uncover the fundamental aspects of lipid homeostasis and organelle biogenesis and to provide hints on the pathogenesis of lipid storage disorders.


Subject(s)
Endoplasmic Reticulum , GTP-Binding Protein gamma Subunits , Lipid Droplets , Lipid Droplets/metabolism , GTP-Binding Protein gamma Subunits/metabolism , GTP-Binding Protein gamma Subunits/chemistry , GTP-Binding Protein gamma Subunits/genetics , Humans , Endoplasmic Reticulum/metabolism , Animals , Lipid Metabolism
10.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791484

ABSTRACT

Lipid droplet (LD) accumulation in hepatocytes is one of the major symptoms associated with fatty liver disease. Mitochondria play a key role in catabolizing fatty acids for energy production through ß-oxidation. The interplay between mitochondria and LD assumes a crucial role in lipid metabolism, while it is obscure how mitochondrial morphology affects systemic lipid metabolism in the liver. We previously reported that cilnidipine, an already existing anti-hypertensive drug, can prevent pathological mitochondrial fission by inhibiting protein-protein interaction between dynamin-related protein 1 (Drp1) and filamin, an actin-binding protein. Here, we found that cilnidipine and its new dihydropyridine (DHP) derivative, 1,4-DHP, which lacks Ca2+ channel-blocking action of cilnidipine, prevent the palmitic acid-induced Drp1-filamin interaction, LD accumulation and cytotoxicity of human hepatic HepG2 cells. Cilnidipine and 1,4-DHP also suppressed the LD accumulation accompanied by reducing mitochondrial contact with LD in obese model and high-fat diet-fed mouse livers. These results propose that targeting the Drp1-filamin interaction become a new strategy for the prevention or treatment of fatty liver disease.


Subject(s)
Dihydropyridines , Dynamins , Lipid Droplets , Liver , Animals , Dynamins/metabolism , Humans , Lipid Droplets/metabolism , Lipid Droplets/drug effects , Mice , Hep G2 Cells , Liver/metabolism , Liver/drug effects , Liver/pathology , Dihydropyridines/pharmacology , Mitochondria/metabolism , Mitochondria/drug effects , Lipid Metabolism/drug effects , Male , Mitochondrial Dynamics/drug effects , Mice, Inbred C57BL , Diet, High-Fat/adverse effects , Hepatocytes/metabolism , Hepatocytes/drug effects
11.
Anal Chem ; 96(21): 8467-8473, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38723271

ABSTRACT

Lipid droplets (LDs) store energy and supply fatty acids and cholesterol. LDs are a hallmark of chronic nonalcoholic fatty liver disease (NAFLD). Recently, studies have focused on the role of hepatic macrophages in NAFLD. Green fluorescent protein (GFP) is used for labeling the characteristic targets in bioimaging analysis. Cx3cr1-GFP mice are widely used in studying the liver macrophages such as the NAFLD model. Here, we have developed a tool for two-photon microscopic observation to study the interactions between LDs labeled with LD2 and liver capsule macrophages labeled with GFP in vivo. LD2, a small-molecule two-photon excitation fluorescent probe for LDs, exhibits deep-red (700 nm) fluorescence upon excitation at 880 nm, high cell staining ability and photostability, and low cytotoxicity. This probe can clearly observe LDs through two-photon microscopy (TPM) and enables the simultaneous imaging of GFP+ liver capsule macrophages (LCMs) in vivo in the liver capsule of Cx3cr1-GFP mice. In the NAFLD mouse model, Cx3cr1+ LCMs and LDs increased with the progress of fatty liver disease, and spatiotemporal changes in LCMs were observed through intravital 3D TPM images. LD2 will aid in studying the interactions and immunological roles of hepatic macrophages and LDs to better understand NAFLD.


Subject(s)
Lipid Droplets , Liver , Macrophages , Animals , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Mice , Macrophages/metabolism , Liver/diagnostic imaging , Liver/metabolism , Liver/pathology , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/chemistry , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Microscopy, Fluorescence, Multiphoton/methods , Fluorescent Dyes/chemistry , Mice, Inbred C57BL
12.
Anal Chem ; 96(21): 8356-8364, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38753674

ABSTRACT

Lipids are essential for various cellular functions, including energy storage, membrane flexibility, and signaling molecule production. Maintaining proper lipid levels is important to prevent health problems such as cancer, neurodegenerative disorders, cardiovascular diseases, obesity, and diabetes. Monitoring cellular lipid droplets (LDs) in real-time with high resolution can provide insights into LD-related pathways and diseases owing to the dynamic nature of LDs. Fluorescence-based imaging is widely used for tracking LDs in live cells and animal models. However, the current fluorophores have limitations such as poor photostability and high background staining. Herein, we developed a novel fluorogenic probe based on a push-pull interaction combined with aggregation-induced emission enhancement (AIEE) for dynamic imaging of LDs. Probe 1 exhibits favorable membrane permeability and spectroscopic characteristics, allowing specific imaging of cellular LDs and time-lapse imaging of LD accumulation. This probe can also be used to examine LDs in fruit fly tissues in various metabolic states, serving as a highly versatile and specific tool for dynamic LD imaging in cellular and tissue environments.


Subject(s)
Fluorescent Dyes , Lipid Droplets , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Animals , Humans , Optical Imaging , Boron Compounds/chemistry , Mice , HeLa Cells , Drosophila melanogaster
13.
Hepatol Commun ; 8(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38780316

ABSTRACT

BACKGROUND: Previous reports suggest that lipid droplets (LDs) in the hepatocyte can be catabolized by a direct engulfment from nearby endolysosomes (microlipophagy). Further, it is likely that this process is compromised by chronic ethanol (EtOH) exposure leading to hepatic steatosis. This study investigates the hepatocellular machinery supporting microlipophagy and EtOH-induced alterations in this process with a focus on the small, endosome-associated, GTPase Rab5. METHODS AND RESULTS: Here we report that this small Ras-related GTPase is a resident component of LDs, and its activity is important for hepatocellular LD-lysosome proximity and physical interactions. We find that Rab5 siRNA knockdown causes an accumulation of LDs in hepatocytes by inhibiting lysosome dependent LD catabolism. Importantly, Rab5 appears to support this process by mediating the recruitment of early endosomal and or multivesicular body compartments to the LD surface before lysosome fusion. Interestingly, while wild-type or a constituently active GTPase form (Q79L) of Rab5 supports LD-lysosome transport, this process is markedly reduced in cells expressing a GTPase dead (S34N) Rab5 protein or in hepatocytes exposed to chronic EtOH. CONCLUSIONS: These findings support the novel premise of an early endosomal/multivesicular body intermediate compartment on the LD surface that provides a "docking" site for lysosomal trafficking, not unlike the process that occurs during the hepatocellular degradation of endocytosed ligands that is also known to be compromised by EtOH exposure.


Subject(s)
Ethanol , Hepatocytes , Lysosomes , rab5 GTP-Binding Proteins , rab5 GTP-Binding Proteins/metabolism , rab5 GTP-Binding Proteins/genetics , Lysosomes/metabolism , Lysosomes/drug effects , Ethanol/pharmacology , Hepatocytes/metabolism , Hepatocytes/drug effects , Humans , Lipid Droplets/metabolism , Autophagy/drug effects , Animals , Endosomes/metabolism
14.
Biomolecules ; 14(5)2024 May 04.
Article in English | MEDLINE | ID: mdl-38785962

ABSTRACT

Here, we describe GS-9, a novel water-soluble fatty acid-based formulation comprising L-lysine and arachidonic acid, that we have shown to induce ferroptosis. GS-9 forms vesicle-like structures in solution and mediates lipid peroxidation, as evidenced by increased C11-BODIPY fluorescence and an accumulation of toxic malondialdehyde, a downstream product of lipid peroxidation. Ferroptosis inhibitors counteracted GS-9-induced cell death, whereas caspase 3 and 7 or MLKL knock-out cell lines are resistant to GS-9-induced cell death, eliminating other cell death processes such as apoptosis and necroptosis as the mechanism of action of GS-9. We also demonstrate that through their role of sequestering fatty acids, lipid droplets play a protective role against GS-9-induced ferroptosis, as inhibition of lipid droplet biogenesis enhanced GS-9 cytotoxicity. In addition, Fatty Acid Transport Protein 2 was implicated in GS-9 uptake. Overall, this study identifies and characterises the mechanism of GS-9 as a ferroptosis inducer. This formulation of arachidonic acid offers a novel tool for investigating and manipulating ferroptosis in various cellular and anti-cancer contexts.


Subject(s)
Arachidonic Acid , Ferroptosis , Ferroptosis/drug effects , Arachidonic Acid/metabolism , Arachidonic Acid/pharmacology , Humans , Lipid Peroxidation/drug effects , Cell Line, Tumor , Water/chemistry , Solubility , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/genetics , Lipid Droplets/metabolism , Lipid Droplets/drug effects
15.
Biomolecules ; 14(5)2024 May 20.
Article in English | MEDLINE | ID: mdl-38786008

ABSTRACT

Epidemiological and clinical evidence have extensively documented the role of obesity in the development of endometrial cancer. However, the effect of fatty acids on cell growth in endometrial cancer has not been widely studied. Here, we reported that palmitic acid significantly inhibited cell proliferation of endometrial cancer cells and primary cultures of endometrial cancer and reduced tumor growth in a transgenic mouse model of endometrial cancer, in parallel with increased cellular stress and apoptosis and decreased cellular adhesion and invasion. Inhibition of cellular stress by N-acetyl-L-cysteine effectively reversed the effects of palmitic acid on cell proliferation, apoptosis, and invasive capacity in endometrial cancer cells. Palmitic acid increased the intracellular formation of lipid droplets in a time- and dose-dependent manner. Depletion of lipid droplets by blocking DGAT1 and DGAT2 effectively increased the ability of palmitic acid to inhibit cell proliferation and induce cleaved caspase 3 activity. Collectively, this study provides new insight into the effect of palmitic acid on cell proliferation and invasion and the formation of lipid droplets that may have potential clinical relevance in the treatment of obesity-driven endometrial cancer.


Subject(s)
Apoptosis , Cell Proliferation , Endometrial Neoplasms , Lipid Droplets , Palmitic Acid , Female , Palmitic Acid/pharmacology , Endometrial Neoplasms/metabolism , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/pathology , Humans , Lipid Droplets/metabolism , Lipid Droplets/drug effects , Animals , Cell Proliferation/drug effects , Mice , Apoptosis/drug effects , Cell Line, Tumor , Diacylglycerol O-Acyltransferase/metabolism , Mice, Transgenic
16.
FEBS Lett ; 598(10): 1127-1142, 2024 May.
Article in English | MEDLINE | ID: mdl-38726814

ABSTRACT

Electron microscopy (EM), in its various flavors, has significantly contributed to our understanding of lipid droplets (LD) as central organelles in cellular metabolism. For example, EM has illuminated that LDs, in contrast to all other cellular organelles, are uniquely enclosed by a single phospholipid monolayer, revealed the architecture of LD contact sites with different organelles, and provided near-atomic resolution maps of key enzymes that regulate neutral lipid biosynthesis and LD biogenesis. In this review, we first provide a brief history of pivotal findings in LD biology unveiled through the lens of an electron microscope. We describe the main EM techniques used in the context of LD research and discuss their current capabilities and limitations, thereby providing a foundation for utilizing suitable EM methodology to address LD-related questions with sufficient level of structural preservation, detail, and resolution. Finally, we highlight examples where EM has recently been and is expected to be instrumental in expanding the frontiers of LD biology.


Subject(s)
Lipid Droplets , Microscopy, Electron , Lipid Droplets/metabolism , Lipid Droplets/ultrastructure , Lipid Droplets/chemistry , Humans , Animals , Microscopy, Electron/methods , Lipid Metabolism
17.
FEBS Lett ; 598(10): 1252-1273, 2024 May.
Article in English | MEDLINE | ID: mdl-38774950

ABSTRACT

Over the past two decades, we have witnessed a growing appreciation for the importance of membrane contact sites (CS) in facilitating direct communication between organelles. CS are tiny regions where the membranes of two organelles meet but do not fuse and allow the transfer of metabolites between organelles, playing crucial roles in the coordination of cellular metabolic activities. The significant advancements in imaging techniques and molecular and cell biology research have revealed that CS are more complex than what originally thought, and as they are extremely dynamic, they can remodel their shape, composition, and functions in accordance with metabolic and environmental changes and can occur between more than two organelles. Here, we describe how recent studies led to the identification of a three-way mitochondria-ER-lipid droplet CS and discuss the emerging functions of these contacts in maintaining lipid storage, homeostasis, and balance. We also summarize the properties and functions of key protein components localized at the mitochondria-ER-lipid droplet interface, with a special focus on lipid transfer proteins. Understanding tripartite CS is essential for unraveling the complexities of inter-organelle communication and cooperation within cells.


Subject(s)
Endoplasmic Reticulum , Lipid Droplets , Lipid Metabolism , Mitochondria , Mitochondria/metabolism , Humans , Lipid Droplets/metabolism , Animals , Endoplasmic Reticulum/metabolism
18.
CNS Neurosci Ther ; 30(5): e14758, 2024 May.
Article in English | MEDLINE | ID: mdl-38757390

ABSTRACT

AIMS: Sepsis-associated encephalopathy (SAE) is manifested as a spectrum of disturbed cerebral function ranging from mild delirium to coma. However, the pathogenesis of SAE has not been clearly elucidated. Astrocytes play important roles in maintaining the function and metabolism of the brain. Most recently, it has been demonstrated that disorders of lipid metabolism, especially lipid droplets (LDs) dyshomeostasis, are involved in a variety of neurodegenerative diseases. The aim of this study was to investigate whether LDs are involved in the underlying mechanism of SAE. METHODS: The open field test, Y-maze test, and contextual fear conditioning test (CFCT) were used to test cognitive function in SAE mice. Lipidomics was utilized to investigate alterations in hippocampal lipid metabolism in SAE mice. Western blotting and immunofluorescence labeling were applied for the observation of related proteins. RESULTS: In the current study, we found that SAE mice showed severe cognitive dysfunction, including spatial working and contextual memory. Meanwhile, we demonstrated that lipid metabolism was widely dysregulated in the hippocampus by using lipidomic analysis. Furthermore, western blotting and immunofluorescence confirmed that LDs accumulation in hippocampal astrocytes was involved in the pathological process of cognitive dysfunction in SAE mice. We verified that LDs can be inhibited by specifically suppress hypoxia-inducible lipid droplet-associated protein (HILPDA) in astrocytes. Meanwhile, cognitive dysfunction in SAE was ameliorated by reducing A1 astrocyte activation and inhibiting presynaptic membrane transmitter release. CONCLUSION: The accumulation of astrocytic lipid droplets plays a crucial role in the pathological process of SAE. HILPDA is an attractive therapeutic target for lipid metabolism regulation and cognitive improvement in septic patients.


Subject(s)
Astrocytes , Cognitive Dysfunction , Lipid Droplets , Mice, Inbred C57BL , Sepsis-Associated Encephalopathy , Animals , Lipid Droplets/metabolism , Sepsis-Associated Encephalopathy/metabolism , Astrocytes/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/etiology , Mice , Male , Hippocampus/metabolism , Lipid Metabolism/physiology , Maze Learning/physiology
19.
Elife ; 122024 May 28.
Article in English | MEDLINE | ID: mdl-38805376

ABSTRACT

Drosophila is a powerful model to study how lipids affect spermatogenesis. Yet, the contribution of neutral lipids, a major lipid group which resides in organelles called lipid droplets (LD), to sperm development is largely unknown. Emerging evidence suggests LD are present in the testis and that loss of neutral lipid- and LD-associated genes causes subfertility; however, key regulators of testis neutral lipids and LD remain unclear. Here, we show LD are present in early-stage somatic and germline cells within the Drosophila testis. We identified a role for triglyceride lipase brummer (bmm) in regulating testis LD, and found that whole-body loss of bmm leads to defects in sperm development. Importantly, these represent cell-autonomous roles for bmm in regulating testis LD and spermatogenesis. Because lipidomic analysis of bmm mutants revealed excess triglyceride accumulation, and spermatogenic defects in bmm mutants were rescued by genetically blocking triglyceride synthesis, our data suggest that bmm-mediated regulation of triglyceride influences sperm development. This identifies triglyceride as an important neutral lipid that contributes to Drosophila sperm development, and reveals a key role for bmm in regulating testis triglyceride levels during spermatogenesis.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Lipase , Spermatogenesis , Testis , Triglycerides , Animals , Male , Triglycerides/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Testis/metabolism , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Lipase/metabolism , Lipase/genetics , Lipid Droplets/metabolism , Spermatozoa/metabolism
20.
Anal Chim Acta ; 1311: 342734, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38816163

ABSTRACT

Photodynamic therapy (PDT), characterized by high treatment efficiency, absence of drug resistance, minimal trauma, and few side effects, has gradually emerged as a novel and alternative clinical approach compared to traditional surgical resection, chemotherapy and radiation. Whereas, considering the limited diffusion distance and short lifespan of reactive oxygen species (ROS), as well as the hypoxic tumor microenvironment, it is crucial to design photosensitizers (PSs) with suborganelle specific targeting ability and low-oxygen dependence for accurate and highly efficient photodynamic therapy. In this study, we have meticulously designed three PSs, namely CIH, CIBr, and CIPh, based on molecular engineering. Theoretical calculation demonstrate that the three compounds possess good molecular planarity with calculated S1-T1 energy gaps (ΔES1-T1) of 1.04 eV for CIH, 0.92 eV for CIBr, and 0.84 eV for CIPh respectively. Notably, CIPh showcases remarkable dual subcellular targeting capability towards lipid droplets (LDs) and mitochondria owing to the synergistic effect of lipophilicity derived from coumarin's inherent properties combined with electropositivity conferred by indole salt cations. Furthermore, CIPh demonstrates exclusive release of singlet oxygen (1O2)and highly efficient superoxide anion free radicals(O2⦁-) upon light irradiation supported by its smallest S1-T1 energy gap (ΔES1-T1 = 0.84 eV). This leads to compromised integrity of LDs along with mitochondrial membrane potential, resulting in profound apoptosis induction in HepG2 cells. This successful example of molecular engineering guided by density functional theory (DFT) provides valuable experience for the development of more effective PSs with superior dual targeting specificity. It also provides a new idea for the development of advanced PSs with efficient and accurate ROS generation ability towards fluorescence imaging-guided hypoxic tumor therapy.


Subject(s)
Lipid Droplets , Mitochondria , Photosensitizing Agents , Reactive Oxygen Species , Humans , Reactive Oxygen Species/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photochemotherapy , Cell Survival/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...