Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 167
Filter
1.
Mol Genet Metab ; 142(1): 108350, 2024 May.
Article in English | MEDLINE | ID: mdl-38458123

ABSTRACT

Major clinical events (MCEs) related to long-chain fatty acid oxidation disorders (LC-FAOD) in triheptanoin clinical trials include inpatient or emergency room (ER) visits for three major clinical manifestations: rhabdomyolysis, hypoglycemia, and cardiomyopathy. However, outcomes data outside of LC-FAOD clinical trials are limited. The non-interventional cohort LC-FAOD Odyssey study examines data derived from US medical records and patient reported outcomes to quantify LC-FAOD burden according to management strategy including MCE frequency and healthcare resource utilization (HRU). Thirty-four patients were analyzed of which 21 and 29 patients had received triheptanoin and/or medium chain triglycerides (MCT), respectively. 36% experienced MCEs while receiving triheptanoin versus 54% on MCT. Total mean annualized MCE rates on triheptanoin and MCT were 0.1 and 0.7, respectively. Annualized disease-related inpatient and ER events were lower on triheptanoin (0.2, 0.3, respectively) than MCT (1.2, 1.0, respectively). Patients were managed more in an outpatient setting on triheptanoin (8.9 annualized outpatient visits) vs MCT (7.9). Overall, this shows that those with LC-FAOD in the Odyssey program experienced fewer MCEs and less HRU in inpatient and ER settings during triheptanoin-treated periods compared with the MCT-treated periods. The MCE rate was lower after initiation of triheptanoin, consistent with clinical trials.


Subject(s)
Fatty Acids , Lipid Metabolism, Inborn Errors , Triglycerides , Humans , Male , Female , United States , Lipid Metabolism, Inborn Errors/genetics , Lipid Metabolism, Inborn Errors/drug therapy , Fatty Acids/metabolism , Adolescent , Oxidation-Reduction , Child , Adult , Child, Preschool , Rhabdomyolysis/genetics , Rhabdomyolysis/drug therapy , Hypoglycemia , Cardiomyopathies/drug therapy , Cardiomyopathies/genetics , Infant , Young Adult , Health Resources , Middle Aged
2.
Int J Mol Sci ; 25(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38338819

ABSTRACT

Sitosterolemia is a rare genetic lipid disorder characterized by elevated plant sterols in the serum. A 24-year-old Japanese woman was referred to our hospital due to a high serum low-density lipoprotein cholesterol (LDL-C) level of 332 mg/dL. At first, she was suspected to suffer from familial hypercholesterolemia, and thus received lipid-lowering agents. Although her LDL-C level remained high (220 mg/dL) with diet therapy plus 10 mg/day rosuvastatin, it was drastically decreased to 46 mg/dL with the addition of 10 mg/day ezetimibe. Finally, her LDL-C level was well-controlled at about 70 mg/dL with 10 mg/day ezetimibe alone. Furthermore, while her serum sitosterol level was elevated at 10.5 µg/mL during the first visit to our hospital, it decreased to 3.6 µg/mL with the 10 mg/day ezetimibe treatment alone. These observations suggest that she might probably suffer from sitosterolemia. Therefore, targeted gene sequencing analysis was performed using custom panels focusing on the exome regions of 21 lipid-associated genes, including ABCG5, ABCG8, and familial hypercholesterolemia-causing genes (LDL receptor, LDLRAP1, PCSK9, and apolipoprotein B). We finally identified a heterozygous ABCG8 variant (NM_022437.2:c.1285A>G or NP_071882.1:p.Met429Val) in our patient. The same gene mutation was detected in her mother. We report here a rare case exhibiting probable sitosterolemia caused by a heterozygous Met429Val variant in the ABCG8 gene and additional unknown variants.


Subject(s)
Hypercholesterolemia , Hyperlipoproteinemia Type II , Intestinal Diseases , Lipid Metabolism, Inborn Errors , Phytosterols , Phytosterols/adverse effects , Humans , Female , Young Adult , Adult , Proprotein Convertase 9 , Cholesterol, LDL , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/drug therapy , Lipid Metabolism, Inborn Errors/genetics , Phytosterols/genetics , Ezetimibe/therapeutic use , Hyperlipoproteinemia Type II/genetics
3.
Mol Genet Metab ; 140(3): 107689, 2023 11.
Article in English | MEDLINE | ID: mdl-37660571

ABSTRACT

Triheptanoin (triheptanoylglycerol) has shown value as anaplerotic therapy for patients with long chain fatty acid oxidation disorders but is contraindicated in medium-chain acyl-CoA dehydrogenase (MCAD) deficiency. In search for anaplerotic therapy for patients with MCAD deficiency, fibroblasts from three patients homozygous for the most common mutation, ACADMG985A/G985A, were treated with fatty acids hypothesized not to require MCAD for their metabolism, including heptanoic (C7; the active component of triheptanoin), 2,6-dimethylheptanoic (dMC7), 6-amino-2,4-dimethylheptanoic (AdMC7), or 4,8-dimethylnonanoic (dMC9) acids. Their effectiveness as anaplerotic fatty acids was assessed in live cells by monitoring changes in cellular oxygen consumption rate (OCR) and mitochondrial protein lysine succinylation, which reflects cellular succinyl-CoA levels, using immunofluorescence (IF) staining. Krebs cycle intermediates were also quantitated in these cells using targeted metabolomics. The four fatty acids induced positive changes in OCR parameters, consistent with their oxidative catalysis and utilization. Increases in cellular IF staining of succinylated lysines were observed, indicating that the fatty acids were effective sources of succinyl-CoA in the absence of media glucose, pyruvate, and lipids. The ability of MCAD deficient cells to metabolize C7 was confirmed by the ability of extracts to enzymatically utilize C7-CoA as substrate but not C8-CoA. To evaluate C7 therapeutic potential in vivo, Acadm-/- mice were treated with triheptanoin for seven days. Dose dependent increase in plasma levels of heptanoyl-, valeryl-, and propionylcarnitine indicated efficient metabolism of the medication. The pattern of the acylcarnitine profile paralleled resolution of liver pathology including reversing hepatic steatosis, increasing hepatic glycogen content, and increasing hepatocyte protein succinylation, all indicating improved energy homeostasis in the treated mice. These results provide the impetus to evaluate triheptanoin and the medium branched chain fatty acids as potential therapeutic agents for patients with MCAD deficiency.


Subject(s)
Acyl-CoA Dehydrogenases , Lipid Metabolism, Inborn Errors , Humans , Animals , Mice , Acyl-CoA Dehydrogenase/genetics , Lipid Metabolism, Inborn Errors/drug therapy , Lipid Metabolism, Inborn Errors/genetics , Lipid Metabolism, Inborn Errors/metabolism , Fatty Acids/metabolism , Liver/metabolism , Acyl-CoA Dehydrogenases/genetics
4.
Neuromuscul Disord ; 33(4): 315-318, 2023 04.
Article in English | MEDLINE | ID: mdl-36893607

ABSTRACT

Early-onset long-chain 3-hydroxyacyl-coenzyme A dehydrogenase (LCHAD) deficiency is a fatty acid ß-oxidation disorder with a poor prognosis. Triheptanoin, an anaplerotic oil with odd-chain fatty acids can improve the disease course. The female patient presented here was diagnosed at the age of 4 months, and treatment was started as fat restriction, frequent feeding, and standard medium-chain triglyceride supplementation. In follow-up, she had frequent rhabdomyolysis episodes (∼8 per year). At the age of six, she had 13 episodes in 6 months, and triheptanoin was started as part of a compassionate use program. Following unrelated hospital stays due to multisystem inflammatory syndrome in children and a bloodstream infection, she had only 3 rhabdomyolysis episodes, and hospitalized days decreased from 73 to 11 during her first year with triheptanoin. Triheptanoin drastically decreased the frequency and severity of rhabdomyolysis, but progression of retinopathy was not altered.


Subject(s)
Lipid Metabolism, Inborn Errors , Rhabdomyolysis , Humans , Child , Female , Infant , 3-Hydroxyacyl CoA Dehydrogenases/metabolism , Oxidation-Reduction , Triglycerides/therapeutic use , Lipid Metabolism, Inborn Errors/complications , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/drug therapy , Rhabdomyolysis/drug therapy , Coenzyme A
5.
Curr Opin Endocrinol Diabetes Obes ; 30(2): 123-127, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36597814

ABSTRACT

PURPOSE OF REVIEW: The aim of this study was to assess the potential value of the measurement of plasma xenosterols (or phytosterols) concentrations in clinical practice. RECENT FINDINGS: Recent genetic studies suggest that individuals with elevated plasma phytosterol concentrations due to monogenic and polygenic variants are at an increased risk of coronary artery disease. This supports early observations that elevated plasma phytosterol concentrations are per se atherogenic. SUMMARY: Measurement of plasma phytosterols can identify individuals with xenosterolemia (or phytosterolemia). This may be clinically useful in four ways: Establishing a diagnosis and informing management of patients with homozygous phytosterolemia; Providing a comprehensive differential diagnosis for familial hypercholesterolemia; Providing an index of cholesterol absorption that may inform personalized pharmacotherapy; and Informing more precise assessment of risk of cardiovascular disease.


Subject(s)
Hypercholesterolemia , Intestinal Diseases , Lipid Metabolism, Inborn Errors , Phytosterols , Humans , Hypercholesterolemia/chemically induced , Hypercholesterolemia/drug therapy , Lipid Metabolism, Inborn Errors/chemically induced , Lipid Metabolism, Inborn Errors/drug therapy , Lipid Metabolism, Inborn Errors/genetics , Phytosterols/adverse effects , Intestinal Diseases/chemically induced , Intestinal Diseases/drug therapy
6.
J Diabetes Investig ; 13(11): 1934-1938, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35730985

ABSTRACT

Plant sterol intake is widely recommended for patients with cardiovascular risk factors based on the inhibitory effect on intestinal cholesterol absorption. Although plant sterols, once absorbed, can promote atherosclerosis, their intake is believed to be safe because of poor absorption, except in rare hyperabsorbers with homozygous ABCG5/8 mutations. We report a case of new-onset type 1 diabetes accompanied by hypercholesterolemia. At the initial presentation with diabetic ketoacidosis, the patient showed marked hypercholesterolemia. Whole-exome sequencing revealed a heterozygous pathogenic variant in ABCG5 (p.R419H). The initial serum plant sterol levels were markedly high (sitosterol 32.5 µg/mL, campesterol 66.0 µg/mL), close to the range observed in patients with homozygous ABCG5/8 mutations, which were largely reduced by insulin treatment without ezetimibe. The addition of ezetimibe normalized plant sterol levels. These findings provide the first evidence that uncontrolled diabetes plays a causal role in the pathogenesis of phytosterolemia.


Subject(s)
Diabetes Mellitus , Hypercholesterolemia , Intestinal Diseases , Lipid Metabolism, Inborn Errors , Phytosterols , Humans , Phytosterols/adverse effects , Phytosterols/genetics , Lipid Metabolism, Inborn Errors/complications , Lipid Metabolism, Inborn Errors/drug therapy , Lipid Metabolism, Inborn Errors/genetics , Ezetimibe , Intestinal Diseases/complications , Intestinal Diseases/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , Lipoproteins/genetics
7.
J Clin Lipidol ; 16(1): 40-51, 2022.
Article in English | MEDLINE | ID: mdl-34969652

ABSTRACT

BACKGROUND: Sitosterolemia is a rare autosomal recessive disease characterized by phytosterol accumulation in the blood and tissues. However, the detailed clinical and genetic spectra are lacking. OBJECTIVE: To describe and compare the clinical, biochemical, genetic, therapeutic, and follow-up characteristics of 55 pediatric and five adult sitosterolemia patients. METHODS: Clinical, genetic and therapeutic data from 60 patients at Xinhua Hospital from January 2016 to June 2021 were retrospectively collected. RESULTS: Pediatric patients' manifestations included xanthomas(93%), hematological disorders(30%), arthralgia(24%), splenomegaly(11%), atherosclerosis(10%). Adult patients had symptoms such as atherosclerosis(5/5), xanthomas(4/5), hematological disorders(3/5), arthralgia(3/5), splenomegaly(3/5). Elevated total cholesterol(TC) and low-density lipoprotein cholesterol(LDL-C) were observed in 96% patients (pediatric 98%, adult 3/4), and phytosterol levels in 100% patients. The age of onset was also negatively correlated with blood TC (P < 0.0001, r = -0.5548) and LDL-C (P = 0.0001, r = -0.4859) levels. Targeted treatments resulted in symptomatic remission(pediatric 96%, adult 4/5), and significantly decreased lipid and phytosterol levels(all P<0.05). In the dietary-therapy cohort(n=34), blood lipid levels decreased(all P<0.05). In the 13 pediatric patients from the dietary-therapy cohort who switched from dietary to combination therapy with ezetimibe, dietary therapy decreased TC and LDL-C levels by 54% and 52%, and ezetimibe further decreased them by 18% and 20%, respectively. Further, we identified 15 novel ABCG5/ABCG8 variants. CONCLUSIONS: This study expands the clinical and genetic spectra of sitosterolemia. The low-phytosterol diet is the cornerstone of sitosterolemia treatment. Ezetimibe can further decrease blood lipid levels and increase daily dietary phytosterol tolerance.


Subject(s)
Atherosclerosis , Intestinal Diseases , Lipid Metabolism, Inborn Errors , Phytosterols , Xanthomatosis , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , Adult , Arthralgia/chemically induced , Arthralgia/drug therapy , Atherosclerosis/drug therapy , Child , Cholesterol, LDL , Ezetimibe/therapeutic use , Genetic Profile , Humans , Hypercholesterolemia , Intestinal Diseases/diagnosis , Intestinal Diseases/drug therapy , Intestinal Diseases/genetics , Lipid Metabolism, Inborn Errors/drug therapy , Lipid Metabolism, Inborn Errors/genetics , Lipoproteins/genetics , Phytosterols/adverse effects , Phytosterols/genetics , Retrospective Studies , Splenomegaly/chemically induced , Splenomegaly/drug therapy , Xanthomatosis/drug therapy
8.
Medicine (Baltimore) ; 100(38): e27231, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34559118

ABSTRACT

BACKGROUND: Hepatitis B cirrhosis with hyperalphafetoproteinemia is the intermediate stage of liver cirrhosis progressing to hepatocellular carcinoma (HCC), there is no effective way to treat precancerous lesions of liver in modern medicine. In recent decades, clinical and experimental evidence shows that Chinese medicine (CM) has a certain beneficial effect on Hepatitis B Cirrhosis. Therefore, this trial aims to evaluate the efficacy and safety of a CM erzhu jiedu recipe (EZJDR) for the treatment of Hepatitis B Cirrhosis with Hyperalphafetoproteinemia. METHODS: We designed a randomized, double blind, placebo-controlled clinical trial. A total of 72 patients of Hepatitis B Cirrhosis with hyperalphafetoproteinemia were randomized in 2 parallel groups. Patients in the control group received placebo granules similar to the EZJDR. In the EZJDR group, patients received EZJDR twice a day, after meals, for 48 weeks. The primary efficacy measures were changes in serum alpha-fetoprotein (AFP) and alpha-fetoprotein alloplasm (AFP-L3); The secondary indicators of efficacy are changes in liver function indicators, HBV-DNA level; Liver stiffness measurement (LSM); Hepatic portal vein diameter; T lymphocyte subgroup indexes during treatment. All data will be recorded in case report forms and analyzed by Statistical Analysis System software. Adverse events will also be evaluated. RESULTS: The results showed that EZJDR can significantly inhibit the levels of AFP and AFP-L3 in patients with hepatitis B cirrhosis and hyperalphafetoproteinemia and have good security. ETHICS AND DISSEMINATION: The study protocol was approved by the Medical Ethics Committee of Shuguang Hospital, affiliated with University of Traditional Chinese Medicine, Shanghai (NO.2018-579-08-01). TRIAL REGISTRATION: This trial was registered on Chinese Clinical Trial Center (NO.ChiCTR1800017165).


Subject(s)
Cholesterol Ester Transfer Proteins/deficiency , Lipid Metabolism, Inborn Errors/drug therapy , Lipid Metabolism, Inborn Errors/etiology , Medicine, Chinese Traditional/standards , Chi-Square Distribution , Double-Blind Method , Fibrosis/complications , Fibrosis/drug therapy , Hepatitis B/complications , Hepatitis B/drug therapy , Humans , Medicine, Chinese Traditional/methods , Medicine, Chinese Traditional/statistics & numerical data , Placebos
9.
Clin Pharmacol Drug Dev ; 10(11): 1325-1334, 2021 11.
Article in English | MEDLINE | ID: mdl-33789001

ABSTRACT

Long-chain fatty acid oxidation disorders (LC-FAODs) are a group of life-threatening autosomal recessive disorders caused by defects in nuclear genes encoding mitochondrial enzymes involved in the conversion of dietary long-chain fatty acids into energy. Triheptanoin is an odd-carbon, medium-chain triglyceride consisting of 3 fatty acids with 7 carbons each on a glycerol backbone developed to treat adult and pediatric patients with LC-FAODs. The pharmacokinetics of triheptanoin and circulating metabolites were explored in healthy subjects and patients with LC-FAODs using noncompartmental analyses. Systemic exposure to triheptanoin following an oral administration was negligible, as triheptanoin is extensively hydrolyzed to glycerol and heptanoate in the gastrointestinal tract. Multiple peaks for triheptanoin metabolites were observed in the plasma following oral administration of triheptanoin, generally coinciding with the time that meals were served. Heptanoate, the pharmacologically active metabolite of triheptanoin supplementing energy sources in patients with LC-FAODs, showed the greatest exposure among the metabolites of triheptanoin in human plasma following oral administration of triheptanoin. The exposure of heptanoate was approximately 10-fold greater than that of beta-hydroxypentoate, a downstream metabolite of heptanoate. Exposure to triheptanoin metabolites appeared to increase following multiple doses as compared with the single dose, and with the increase in triheptanoin dose levels.


Subject(s)
3-Hydroxybutyric Acid/metabolism , Fatty Acids/metabolism , Heptanoates/metabolism , Lipid Metabolism, Inborn Errors/drug therapy , Triglycerides/pharmacokinetics , Adolescent , Adult , Child , Cross-Over Studies , Female , Healthy Volunteers , Humans , Lipid Metabolism, Inborn Errors/metabolism , Male , Middle Aged , Oxidation-Reduction , Young Adult
11.
J Inherit Metab Dis ; 44(4): 903-915, 2021 07.
Article in English | MEDLINE | ID: mdl-33634872

ABSTRACT

Carnitine acyl-carnitine translocase deficiency (CACTD) is a rare autosomal recessive disorder of mitochondrial long-chain fatty-acid transport. Most patients present in the first 2 days of life, with hypoketotic hypoglycaemia, hyperammonaemia, cardiomyopathy or arrhythmia, hepatomegaly and elevated liver enzymes. Multi-centre international retrospective chart review of clinical presentation, biochemistry, treatment modalities including diet, subsequent complications, and mode of death of all patients. Twenty-three patients from nine tertiary metabolic units were identified. Seven attenuated patients of Pakistani heritage, six of these homozygous c.82G>T, had later onset manifestations and long-term survival without chronic hyperammonemia. Of the 16 classical cases, 15 had cardiac involvement at presentation comprising cardiac arrhythmias (9/15), cardiac arrest (7/15), and cardiac hypertrophy (9/15). Where recorded, ammonia levels were elevated in all but one severe case (13/14 measured) and 14/16 had hypoglycaemia. Nine classical patients survived longer-term-most with feeding difficulties and cognitive delay. Hyperammonaemia appears refractory to ammonia scavenger treatment and carglumic acid, but responds well to high glucose delivery during acute metabolic crises. High-energy intake seems necessary to prevent decompensation. Anaplerosis utilising therapeutic d,l-3-hydroxybutyrate, Triheptanoin and increased protein intake, appeared to improve chronic hyperammonemia and metabolic stability where trialled in individual cases. CACTD is a rare disorder of fatty acid oxidation with a preponderance to severe cardiac dysfunction. Long-term survival is possible in classical early-onset cases with long-chain fat restriction, judicious use of glucose infusions, and medium chain triglyceride supplementation. Adjunctive therapies supporting anaplerosis may improve longer-term outcomes.


Subject(s)
Carnitine Acyltransferases/deficiency , Carnitine/therapeutic use , Diet, Fat-Restricted , Lipid Metabolism, Inborn Errors/diet therapy , Lipid Metabolism, Inborn Errors/drug therapy , Dietary Supplements , Humans , Infant, Newborn , Internationality , Retrospective Studies , Survival Rate
12.
Biochim Biophys Acta Mol Basis Dis ; 1867(6): 166100, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33549744

ABSTRACT

Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is the most common inborn long-chain fatty acid oxidation (FAO) disorder. VLCAD deficiency is characterized by distinct phenotypes. The severe phenotypes are potentially life-threatening and affect the heart or liver, with a comparatively milder phenotype characterized by myopathic symptoms. There is an unmet clinical need for effective treatment options for the myopathic phenotype. The molecular mechanisms driving the gradual decrease in mitochondrial function and associated alterations of muscle fibers are unclear. The peroxisome proliferator-activated receptor (PPAR) pan-agonist bezafibrate is a potent modulator of FAO and multiple other mitochondrial functions and has been proposed as a potential medication for myopathic cases of long-chain FAO disorders. In vitro experiments have demonstrated the ability of bezafibrate to increase VLCAD expression and activity. However, the outcome of small-scale clinical trials has been controversial. We found VLCAD deficient patient fibroblasts to have an increased oxidative stress burden and deranged mitochondrial bioenergetic capacity, compared to controls. Applying heat stress under fasting conditions to bezafibrate pretreated patient cells, caused a marked further increase of mitochondrial superoxide levels. Patient cells failed to maintain levels of the essential thiol peptide antioxidant glutathione and experienced a decrease in cellular viability. Our findings indicate that chronic PPAR activation is a plausible initiator of long-term pathogenesis in VLCAD deficiency. Our findings further implicate disruption of redox homeostasis as a key pathogenic mechanism in VLCAD deficiency and support the notion that a deranged thiol metabolism might be an important pathogenic factor in VLCAD deficiency.


Subject(s)
Bezafibrate/pharmacology , Congenital Bone Marrow Failure Syndromes/drug therapy , Energy Metabolism , Fibroblasts/drug effects , Hypolipidemic Agents/pharmacology , Lipid Metabolism, Inborn Errors/drug therapy , Mitochondria/drug effects , Mitochondrial Diseases/drug therapy , Muscular Diseases/drug therapy , Peroxisome Proliferator-Activated Receptors/metabolism , Congenital Bone Marrow Failure Syndromes/metabolism , Congenital Bone Marrow Failure Syndromes/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Lipid Metabolism, Inborn Errors/metabolism , Lipid Metabolism, Inborn Errors/pathology , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Muscular Diseases/metabolism , Muscular Diseases/pathology , Oxidative Stress , Peroxisome Proliferator-Activated Receptors/genetics
13.
J Inherit Metab Dis ; 44(1): 253-263, 2021 01.
Article in English | MEDLINE | ID: mdl-32885845

ABSTRACT

Long-chain fatty acid oxidation disorders (LC-FAOD) are autosomal recessive conditions that impair conversion of long-chain fatty acids into energy, leading to significant clinical symptoms. Triheptanoin is a highly purified, 7-carbon chain triglyceride approved in the United States as a source of calories and fatty acids for treatment of pediatric and adult patients with molecularly confirmed LC-FAOD. CL202 is an open-label, long-term extension study evaluating triheptanoin (Dojolvi) safety and efficacy in patients with LC-FAOD. Patients rolled over from the CL201 triheptanoin clinical trial (rollover); were triheptanoin-naïve (naïve); or had participated in investigator-sponsored trials/expanded access programs (IST/other). Results focus on rollover and naïve groups, as pretreatment data allow comparison. Primary outcomes were annual rate and duration of major clinical events (MCEs; rhabdomyolysis, hypoglycemia, and cardiomyopathy events). Seventy-five patients were enrolled (24 rollover, 20 naïve, 31 IST/other). Mean study duration was 23.0 months for rollover, 15.7 months for naïve, and 34.7 months for IST/other. In the rollover group, mean annualized MCE rate decreased from 1.76 events/year pre-triheptanoin to 0.96 events/year with triheptanoin (P = .0319). Median MCE duration was reduced by 66%. In the naïve group, median annualized MCE rate decreased from 2.33 events/year pre-triheptanoin to 0.71 events/year with triheptanoin (P = .1072). Median MCE duration was reduced by 80%. The most common related adverse events (AEs) were diarrhea, abdominal pain/discomfort, and vomiting, most mild to moderate. Three patients had serious AEs (diverticulitis, ileus, rhabdomyolysis) possibly related to drug; all resolved. Two patients had AEs leading to death; neither drug related. Triheptanoin reduced rate and duration of MCEs. Safety was consistent with previous observations.


Subject(s)
Fatty Acids/metabolism , Lipid Metabolism, Inborn Errors/drug therapy , Oxidation-Reduction/drug effects , Triglycerides/administration & dosage , Adolescent , Adult , Cardiomyopathies/metabolism , Child , Child, Preschool , Female , Humans , Hypoglycemia/metabolism , Infant , Lipid Metabolism, Inborn Errors/metabolism , Male , Middle Aged , Rhabdomyolysis/metabolism , United Kingdom , United States , Young Adult
14.
Brain Dev ; 43(2): 214-219, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32798077

ABSTRACT

BACKGROUND: Very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) is a mitochondrial fatty acid oxidation disorder that causes episodic attacks, such as general fatigue, hypotonia, myalgia, and rhabdomyolysis accompanied by lack of energy. As yet, there are no preventative drugs for these VLCADD-associated metabolic attacks. PATIENTS AND METHODS: We conducted an open-label, non-randomized, multi-center study into the effects of bezafibrate on five patients with VLCADD. Bezafibrate was administered for 4 years, and we analyzed the number of myopathic attacks requiring hospitalization and treatment infusions. RESULTS: The number of myopathic attacks requiring infusions of 24 h or longer significantly decreased during the study period. The patients' ability to conduct everyday activities was also improved by the treatment. CONCLUSION: Our findings show the potential long-term efficacy of bezafibrate in preventing myopathic attacks for patients with VLCADD.


Subject(s)
Bezafibrate/therapeutic use , Congenital Bone Marrow Failure Syndromes/drug therapy , Lipid Metabolism, Inborn Errors/drug therapy , Mitochondrial Diseases/drug therapy , Muscular Diseases/drug therapy , Acyl-CoA Dehydrogenase, Long-Chain/deficiency , Acyl-CoA Dehydrogenase, Long-Chain/genetics , Adult , Bezafibrate/metabolism , Child , Congenital Bone Marrow Failure Syndromes/physiopathology , Female , Humans , Lipid Metabolism, Inborn Errors/physiopathology , Male , Mitochondrial Diseases/physiopathology , Muscular Diseases/physiopathology
15.
JPEN J Parenter Enteral Nutr ; 45(2): 230-238, 2021 02.
Article in English | MEDLINE | ID: mdl-33085788

ABSTRACT

BACKGROUND: Patients with severe long-chain fatty acid oxidation disorders (LC-FAODs) experience serious morbidity and mortality despite traditional dietary management including medium-chain triglyceride (MCT)-supplemented, low-fat diets. Triheptanoin is a triglyceride oil that is broken down to acetyl-coenzyme A (CoA) and propionyl-CoA, which replenishes deficient tricarboxylic acid cycle intermediates. We report the complex medical and nutrition management of triheptanoin therapy initiated emergently for 3 patients with LC-FAOD. METHODS: Triheptanoin (Ultragenyx Pharmaceutical, Inc, Novato, CA, USA) was administered to 3 patients with LC-FAOD on a compassionate-use basis. Triheptanoin was mixed with non-MCT-containing low-fat formula. Patients were closely followed with regular cardiac and laboratory monitoring. RESULTS: Cardiac ejection fraction normalized after triheptanoin initiation. Patients experienced fewer hospitalizations related to metabolic crises while on triheptanoin. Patient 1 has tolerated oral administration without difficulty since birth. Patients 2 and 3 experienced increased diarrhea. Recurrent breakdown of the silicone gastrostomy tube occurred in patient 3, whereas the polyurethane nasogastric tube for patient 2 remained intact. Patient 3 experiences recurrent episodes of elevated creatine kinase levels and muscle weakness associated with illness. Patient 3 had chronically elevated C10-acylcarnitines while on MCT supplementation, which normalized after initiation of triheptanoin and discontinuation of MCT oil. CONCLUSIONS: Triheptanoin can ameliorate acute cardiomyopathy and increase survival in patients with severe LC-FAOD. Substituting triheptanoin for traditional MCT-based treatment improves clinical outcomes. MCT oil might be less effective in carnitine-acylcarnitine translocase deficiency patients compared with other FAODs and needs further investigation.


Subject(s)
Lipid Metabolism, Inborn Errors , Carnitine , Fatty Acids , Humans , Lipid Metabolism, Inborn Errors/drug therapy , Oxidation-Reduction , Triglycerides
16.
Endocr J ; 67(11): 1099-1105, 2020 Nov 28.
Article in English | MEDLINE | ID: mdl-32641618

ABSTRACT

Sitosterolemia is caused by homozygous or compound heterozygous gene mutations in either ATP-binding cassette subfamily G member 5 (ABCG5) or 8 (ABCG8). Since ABCG5 and ABCG8 play pivotal roles in the excretion of neutral sterols into feces and bile, patients with sitosterolemia present elevated levels of serum plant sterols and in some cases also hypercholesterolemia. A 48-year-old woman was referred to our hospital for hypercholesterolemia. She had been misdiagnosed with familial hypercholesterolemia at the age of 20 and her serum low-density lipoprotein cholesterol (LDL-C) levels had remained about 200-300 mg/dL at the former clinic. Although the treatment of hydroxymethylglutaryl-CoA (HMG-CoA) reductase inhibitors was ineffective, her serum LDL-C levels were normalized by ezetimibe, a cholesterol transporter inhibitor. We noticed that her serum sitosterol and campesterol levels were relatively high. Targeted analysis sequencing identified a novel heterozygous ABCG5 variant (c.203A>T; p.Ile68Asn) in the patient, whereas no mutations were found in low-density lipoprotein receptor (LDLR), proprotein convertase subtilisin/kexin type 9 (PCSK9), or Niemann-Pick C1-like intracellular cholesterol transporter 1 (NPC1L1). While sitosterolemia is a rare disease, a recent study has reported that the incidence of loss-of-function mutation in the ABCG5 or ABCG8 gene is higher than we thought at 1 in 220 individuals. The present case suggests that serum plant sterol levels should be examined and ezetimibe treatment should be considered in patients with hypercholesterolemia who are resistant to HMG-CoA reductase inhibitors.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , Anticholesteremic Agents/therapeutic use , Ezetimibe/therapeutic use , Hypercholesterolemia/drug therapy , Intestinal Diseases/drug therapy , Lipid Metabolism, Inborn Errors/drug therapy , Lipoproteins/genetics , Phytosterols/adverse effects , Cholesterol/analogs & derivatives , Cholesterol/blood , Cholesterol, LDL/blood , Diagnostic Errors , Female , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hypercholesterolemia/diagnosis , Hypercholesterolemia/genetics , Hyperlipoproteinemia Type II/diagnosis , Intestinal Diseases/diagnosis , Intestinal Diseases/genetics , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/genetics , Loss of Function Mutation , Middle Aged , Phytosterols/blood , Phytosterols/genetics , Sitosterols/blood , Treatment Failure
17.
Intern Med ; 59(23): 3033-3037, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32713907

ABSTRACT

We herein report a rare case presenting with severe hypercholesterolemia, massive Achilles tendon xanthomas, and multi-vessel coronary artery disease. Initially, the patient was misdiagnosed with familial hypercholesterolemia. However, a genetic analysis using our custom sequencing panel covering genes associated with Mendelian lipid disorders revealed him to have a genetic basis of sitosterolemia with compound heterozygous mutations in the adenosine triphosphate binding cassette subfamily G5 (ABCG5) gene. A comprehensive genetic analysis can be particularly useful for diagnosing cases with severe phenotypes, leading to appropriate and medical therapies. Our patient was refractory to statins, whereas ezetimibe and PCSK9 inhibitor with a low-plant-sterol diet successfully reduced his serum levels of low-density lipoprotein cholesterol.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , Antibodies, Monoclonal, Humanized/therapeutic use , Ezetimibe/therapeutic use , Hypercholesterolemia/drug therapy , Intestinal Diseases/drug therapy , Intestinal Diseases/genetics , Lipid Metabolism, Inborn Errors/drug therapy , Lipid Metabolism, Inborn Errors/genetics , Phytosterols/adverse effects , Xanthomatosis/drug therapy , Achilles Tendon/physiopathology , Anticholesteremic Agents/therapeutic use , Cholesterol, LDL/blood , Cholesterol, LDL/drug effects , Humans , Hypercholesterolemia/complications , Hypercholesterolemia/diagnosis , Hypercholesterolemia/etiology , Hypercholesterolemia/genetics , Intestinal Diseases/complications , Intestinal Diseases/diagnosis , Lipid Metabolism, Inborn Errors/complications , Lipid Metabolism, Inborn Errors/diagnosis , Male , Middle Aged , Mutation , Phytosterols/genetics , Treatment Outcome , Xanthomatosis/etiology , Xanthomatosis/physiopathology
18.
Adv Exp Med Biol ; 1276: 171-188, 2020.
Article in English | MEDLINE | ID: mdl-32705600

ABSTRACT

Rare diseases are gathering increasing attention in last few years, not only for its effects on innovation scientific research, but also for its propounding influence on common diseases. One of the most famous milestones made by Michael Brown and Joseph Goldstein in metabolism field is the discovery of the defective gene in familial hypercholesterolemia, a rare human genetic disease manifested with extreme high level of serum cholesterol (Goldstein JL, Brown MS, Proc Natl Acad Sci USA 70:2804-2808, 1973; Brown MS, Dana SE, Goldstein JL, J Biol Chem 249:789-796, 1974). Follow-up work including decoding the gene function, mapping-related pathways, and screening therapeutic targets are all based on the primary finding (Goldstein JL, Brown MS Arterioscler Thromb Vasc Biol 29:431-438, 2009). A series of succession win the two brilliant scientists the 1985 Nobel Prize, and bring about statins widely used for lipid management and decreasing cardiovascular disease risks. Translating the clinical extreme phenotypes into laboratory bench work has turned out to be the first important step in the paradigm conducting translational and precise medical research. Here we review the main categories of rare disorders related with lipoprotein metabolism, aiming to strengthen the notion that human rare inheritable genetic diseases would be the window to know ourselves better, to treat someone more efficiently, and to lead a healthy life longer. Few rare diseases related with lipoprotein metabolism were clustered into six sections based on changes in lipid profile, namely, hyper- or hypocholesterolemia, hypo- or hyperalphalipoproteinemia, abetalipoproteinemia, hypobetalipoproteinemia, and sphingolipid metabolism diseases. Each section consists of a brief introduction, followed by a summary of well-known disease-causing genes in one table, and supplemented with one or two diseases as example for detailed description. Here we aimed to raise more attention on rare lipoprotein metabolism diseases, calling for more work from basic research and clinical trials.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Lipid Metabolism , Lipoproteins/metabolism , Rare Diseases/metabolism , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Lipid Metabolism/drug effects , Lipid Metabolism, Inborn Errors/drug therapy , Rare Diseases/drug therapy
19.
Saudi Med J ; 41(6): 590-596, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32518924

ABSTRACT

OBJECTIVES: To describe the clinical and molecular characteristics of patients with very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency.   Methods: A retrospective observational cross-sectional analysis was conducted on all patients with VLCAD deficiency at  (Genetic/Metabolic Section), Prince Sultan Military Medical City (PSMMC), Riyadh, Saudi Arabia from 2000 to 2019. Demographic, clinical, and laboratory data were abstracted from the electronic hospital records using a case report form. Results: A total of 14 children were analyzed. Six presented with hypoglycemia, 4 with cardiomyopathy, and 10 had rhabdomyolysis. Five patients had early onset severe phenotype, while 9 had mild form. The molecular study revealed homozygous mutations in ACADVL in all 14 patients. Three variants were not reported before. All patients were treated with medium-chain triglyceride and carnitine. Ten patients are alive and have normal development, while 4 died. Conclusion: Most of the patients in this cohort presented in the neonatal period either by newborn screening or clinically with hypoglycemia, cardiomyopathy, and rhabdomyolysis. The new molecular variants detected in this study broaden the genetic spectrum of VLCAD deficiency in Saudi Arabia.


Subject(s)
Acyl-CoA Dehydrogenase, Long-Chain/deficiency , Congenital Bone Marrow Failure Syndromes , Lipid Metabolism, Inborn Errors , Mitochondrial Diseases , Muscular Diseases , Acyl-CoA Dehydrogenase, Long-Chain/genetics , Cardiomyopathies/etiology , Carnitine/therapeutic use , Cohort Studies , Congenital Bone Marrow Failure Syndromes/diagnosis , Congenital Bone Marrow Failure Syndromes/drug therapy , Congenital Bone Marrow Failure Syndromes/genetics , Cross-Sectional Studies , Homozygote , Humans , Hypoglycemia/etiology , Infant, Newborn , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/drug therapy , Lipid Metabolism, Inborn Errors/genetics , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/genetics , Muscular Diseases/diagnosis , Muscular Diseases/drug therapy , Muscular Diseases/genetics , Mutation , Neonatal Screening , Rhabdomyolysis/etiology , Saudi Arabia , Triglycerides/therapeutic use
20.
Cell Chem Biol ; 27(5): 551-559.e4, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32169163

ABSTRACT

X-linked adrenoleukodystrophy (X-ALD) is a rare, genetic disease in which increased very long chain fatty acids (VLCFAs) in the central nervous system (CNS) cause demyelination and axonopathy, leading to neurological deficits. Sobetirome, a potent thyroid hormone agonist, has been shown to lower VLCFAs in the periphery and CNS. In this study, two pharmacological strategies for enhancing the effects of sobetirome were tested in Abcd1 KO mice, a murine model with the same inborn error of metabolism as X-ALD patients. First, a sobetirome prodrug (Sob-AM2) with increased CNS penetration lowered CNS VLCFAs more potently than sobetirome and was better tolerated with reduced peripheral exposure. Second, co-administration of thyroid hormone with sobetirome enhanced VLCFA lowering in the periphery but did not produce greater lowering in the CNS. These data support the conclusion that CNS VLCFA lowering in Abcd1 knockout mice is limited by a mechanistic threshold related to slow lipid turnover.


Subject(s)
Acetates/therapeutic use , Adrenoleukodystrophy/drug therapy , Phenols/therapeutic use , Prodrugs/therapeutic use , Thyroid Hormones/therapeutic use , ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics , Adrenoleukodystrophy/genetics , Adrenoleukodystrophy/metabolism , Animals , Disease Models, Animal , Fatty Acids/metabolism , Female , Humans , Lipid Metabolism, Inborn Errors/drug therapy , Lipid Metabolism, Inborn Errors/genetics , Lipid Metabolism, Inborn Errors/metabolism , Male , Mice , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...