Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.542
Filter
1.
Mol Genet Genomic Med ; 12(6): e2476, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38888203

ABSTRACT

BACKGROUND: The Triggering Receptor Expressed on Myeloid Cells 2 protein (TREM2) plays a crucial role in various biological processes, including osteoclast differentiation, and disease-associated microglia (DAM) activation to regulate neuroinflammation, and phagocytosis in the brain. Genetic variations in TREM2 are implicated in neurodegenerative disorders, such as Nasu-hakola disease (NHD), characterized by bone lesions, neuropsychiatric disorders, and early-onset dementia. METHODS: We studied 3 siblings with suspected NHD. Whole-exome sequencing was conducted on the proband to identify the possible genetic cause(s) and by Sanger sequencing to validate the identified variants in the two other affected siblings, a healthy sister, and the parents. RESULTS: We identified a novel homozygous deletion (c.549del; p.(Leu184Serfs*5)) in TREM2. Our literature review reveals 16 TREM2 mutations causing early-onset dementia and bone lesions. CONCLUSION: These findings, alongside previous research, elucidate the clinical spectrum of TREM2-related diseases, aiding accurate diagnosis and patient care. This knowledge is vital for understanding TREM2-dependent DAM and its involvement in the pathogenesis of neurodevelopmental disorders which can help to develop targeted therapies and improve outcomes for TREM2-affected individuals.


Subject(s)
Homozygote , Lipodystrophy , Membrane Glycoproteins , Osteochondrodysplasias , Receptors, Immunologic , Siblings , Subacute Sclerosing Panencephalitis , Female , Humans , Consanguinity , Lipodystrophy/genetics , Lipodystrophy/pathology , Membrane Glycoproteins/genetics , Osteochondrodysplasias/genetics , Osteochondrodysplasias/pathology , Pedigree , Receptors, Immunologic/genetics , Subacute Sclerosing Panencephalitis/genetics , Subacute Sclerosing Panencephalitis/pathology
2.
Ann Endocrinol (Paris) ; 85(3): 201-204, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38871500

ABSTRACT

Lipodystrophy syndromes are rare diseases of genetic or acquired origin, characterized by quantitative and qualitative defects in adipose tissue. The metabolic consequences of lipodystrophy syndromes, such as insulin resistant diabetes, hypertriglyceridemia and hepatic steatosis, are frequently very difficult to treat, resulting in significant risks of acute and/or chronic complications and of decreased quality of life. The production of leptin by lipodystrophic adipose tissue is decreased, more severely in generalized forms of lipodystrophy, where adipose tissue is absent from almost all body fat depots, than in partial forms of the disease, where lipoatrophy affects only some parts of the body and can be associated with increased body fat in other anatomical regions. Several lines of evidence in preclinical and clinical models have shown that leptin replacement therapy could improve the metabolic complications of lipodystrophy syndromes. Metreleptin, a recombinant leptin analogue, was approved as an orphan drug to treat the metabolic complications of leptin deficiency in patients with generalized lipodystrophy in the USA or with either generalized or partial lipodystrophy in Japan and Europe. In this brief review, we will discuss the benefits and limitations of this therapy, and the new expectations arising from the recent development of a therapeutic monoclonal antibody able to activate the leptin receptor.


Subject(s)
Hormone Replacement Therapy , Leptin , Lipodystrophy , Leptin/therapeutic use , Leptin/analogs & derivatives , Leptin/deficiency , Humans , Lipodystrophy/drug therapy , Hormone Replacement Therapy/methods , Adipose Tissue/metabolism , Adipose Tissue/drug effects , Syndrome , Animals
3.
Ann Endocrinol (Paris) ; 85(3): 190-194, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38871502

ABSTRACT

Primary diseases of adipose tissue are rare disorders resulting from impairments in the physiological functions of adipose tissue (lipid stockage and endocrine function). It mainly refers to lipodystrophy syndromes with subcutaneous adipose tissue atrophy and/or altered body distribution of adipose tissue leading to insulin resistance, diabetes, hepatic steatosis, dyslipidemia, cardiovascular complications and polycystic ovary syndrome in women. Those syndromes are congenital or acquired, and lipoatrophy is partial or generalized. The diagnosis of lipodystrophy syndromes is often unrecognized, delayed and/or inaccurate, while it is of major importance to adapt investigations to search for specific comorbidities, in particular cardiovascular involvement, and set up multidisciplinary care, and in some cases specific treatment. Physicians have to recognize the clinical and biological elements allowing to establish the diagnosis. Lipodystrophic syndromes should be considered, notably, in patients with diabetes at a young age, with a normal or low BMI, negative pancreatic autoantibodies, presenting clinical signs of lipodystrophy and insulin resistance (acanthosis nigricans, hyperandrogenism, hepatic steatosis, high insulin doses). The association of diabetes and a family history of severe and/or early cardiovascular disease (coronary atherosclerosis, cardiomyopathy with rhythm and/or conduction disorders) may reveal Dunnigan syndrome, the most frequent form of familial lipodystrophy, due to LMNA pathogenic variants. Clinical assessment is primarily done through clinical examination: acanthosis nigricans, abnormal adipose tissue distribution, lipoatrophy, muscular hypertrophy, acromegaloid or Cushingoid features, lipomas, highly visible subcutaneous veins, may be revealing signs. The amount of circulating adipokines may reflect of adipose dysfunction with low leptinemia and adiponectinemia. Other biological metabolic parameters (hypertriglyceridemia, hyperinsulinemia, increased glycemia and hepatic enzymes) may also represent markers of insulin resistance. Quantification of total body fat by impedancemetry or dual-photon X-ray absorptiometry (DEXA) reveals decreased total body mass, in correlation with adipose tissue atrophy; metabolic magnetic resonance imaging can also quantify intraperitoneal and abdominal fat and the degree of hepatic steatosis. Histological analysis of adipose tissue showing structural abnormalities should be reserved for clinical research. Acquired lipodystrophic syndromes most often lead to similar clinical phenotype as congenital syndromes with generalized or partial lipoatrophy. The most frequent causes are old anti-HIV therapy or glucocorticoid treatments. Family history, history of treatments and clinical examination, including a careful physical examination, are keys for diagnosis.


Subject(s)
Adipose Tissue , Lipodystrophy , Humans , Lipodystrophy/diagnosis , Adipose Tissue/pathology , Female , Insulin Resistance/physiology , Polycystic Ovary Syndrome/diagnosis , Polycystic Ovary Syndrome/complications
4.
Ann Endocrinol (Paris) ; 85(3): 231-247, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38871514

ABSTRACT

Lipomatoses are benign proliferation of adipose tissue. Lipomas (benign fat tumors) are the most common component of lipomatosis. They may be unique or multiple, encapsulated or not, subcutaneous or sometimes visceral. In some cases, they form large areas of non-encapsulated fat hypertrophy, with a variable degree of fibrosis. They can develop despite the absence of obesity. They may be familial or acquired. At difference with lipodystrophy syndromes, they are not associated with lipoatrophy areas, except in some rare cases such as type 2 familial partial lipodystrophy syndromes (FPLD2). Their metabolic impact is variable in part depending on associated obesity. They may have functional or aesthetic consequences. Lipomatosis may be isolated, be part of a syndrome, or may be visceral. Isolated lipomatoses include multiple symmetrical lipomatosis (Madelung disease or Launois-Bensaude syndrome), familial multiple lipomatosis, the painful Dercum's disease also called Adiposis Dolorosa or Ander syndrome, mesosomatic lipomatosis also called Roch-Leri lipomatosis, familial angiolipomatosis, lipedema and hibernomas. Syndromic lipomatoses include PIK3CA-related disorders, Cowden/PTEN hamartomas-tumor syndrome, some lipodystrophy syndromes, and mitochondrial diseases, especially MERRF, multiple endocrine neoplasia type 1, neurofibromatosis type 1, Wilson disease, Pai or Haberland syndromes. Finally, visceral lipomatoses have been reported in numerous organs and sites: pancreatic, adrenal, abdominal, epidural, mediastinal, epicardial… The aim of this review is to present the main types of lipomatosis and their physiopathological component, when it is known.


Subject(s)
Lipoma , Lipomatosis , Humans , Lipomatosis/pathology , Lipoma/pathology , Lipoma/genetics , Lipomatosis, Multiple Symmetrical/pathology , Lipomatosis, Multiple Symmetrical/diagnosis , Lipodystrophy/pathology , Lipodystrophy/genetics , Adipose Tissue/pathology , Adiposis Dolorosa/pathology , Adiposis Dolorosa/diagnosis
5.
Ann Endocrinol (Paris) ; 85(3): 197-200, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38871513

ABSTRACT

Lipodystrophic syndromes are acquired or genetic rare diseases, characterized by a generalized or partial lack of adipose tissue leading to metabolic alterations linked to strong insulin resistance. They are probably underdiagnosed, especially for partial forms. They are characterized by a lack of adipose tissue or a lack of adipose development leading to metabolic disorders associated with often severe insulin resistance, hypertriglyceridemia and hepatic steatosis. In partial forms of lipodystrophy, these mechanisms are aggravated by excess visceral adipose tissue and/or subcutaneous adipose tissue in the upper part of the body. Diagnosis is based on clinical examination, pathological context and comorbidities, and on results of metabolic investigations and genetic analyses, which together determine management and genetic counseling. Early lifestyle and dietary measures focusing on regular physical activity, and balanced diet avoiding excess energy intake are crucial. They are accompanied by multidisciplinary follow-up adapted to each clinical form. When standard treatments have failed to control metabolic disorders, the orphan drug metreleptin, an analog of leptin, can be effective in certain forms of lipodystrophy syndromes.


Subject(s)
Lipodystrophy , Humans , Lipodystrophy/therapy , Lipodystrophy/diagnosis , Lipodystrophy/etiology , Lipodystrophy/genetics , Insulin Resistance , Lipodystrophy, Familial Partial/therapy , Lipodystrophy, Familial Partial/diagnosis , Lipodystrophy, Familial Partial/genetics , Lipodystrophy, Familial Partial/complications , Adipose Tissue/pathology , Leptin/therapeutic use , Leptin/analogs & derivatives , Life Style
8.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732001

ABSTRACT

Lipodystrophies (LDs) are rare, complex disorders of the adipose tissue characterized by selective fat loss, altered adipokine profile and metabolic impairment. Sirtuins (SIRTs) are class III NAD+-dependent histone deacetylases linked to fat metabolism. SIRT1 plays a critical role in metabolic health by deacetylating target proteins in tissue types including liver, muscle, and adipose. Circulating SIRT1 levels have been found to be reduced in obesity and increased in anorexia nervosa and patients experiencing weight loss. We evaluated circulating SIRT1 levels in relation to fat levels in 32 lipodystrophic patients affected by congenital or acquired LDs compared to non-LD subjects (24 with anorexia nervosa, 22 normal weight, and 24 with obesity). SIRT1 serum levels were higher in LDs than normal weight subjects (mean ± SEM 4.18 ± 0.48 vs. 2.59 ± 0.20 ng/mL) and subjects with obesity (1.7 ± 0.39 ng/mL), whereas they were close to those measured in anorexia nervosa (3.44 ± 0.46 ng/mL). Our findings show that within the LD group, there was no relationship between SIRT1 levels and the amount of body fat. The mechanisms responsible for secretion and regulation of SIRT1 in LD deserve further investigation.


Subject(s)
Lipodystrophy , Sirtuin 1 , Humans , Sirtuin 1/blood , Sirtuin 1/metabolism , Female , Adult , Male , Lipodystrophy/blood , Lipodystrophy/metabolism , Adipose Tissue/metabolism , Obesity/blood , Obesity/metabolism , Young Adult , Adolescent , Middle Aged , Anorexia Nervosa/blood , Anorexia Nervosa/metabolism
9.
Front Endocrinol (Lausanne) ; 15: 1379228, 2024.
Article in English | MEDLINE | ID: mdl-38745956

ABSTRACT

Aims: Individuals with lipodystrophies typically suffer from metabolic disease linked to adipose tissue dysfunction including lipoatrophic diabetes. In the most severe forms of lipodystrophy, congenital generalised lipodystrophy, adipose tissue may be almost entirely absent. Better therapies for affected individuals are urgently needed. Here we performed the first detailed investigation of the effects of a glucagon like peptide-1 receptor (GLP-1R) agonist in lipoatrophic diabetes, using mice with generalised lipodystrophy. Methods: Lipodystrophic insulin resistant and glucose intolerant seipin knockout mice were treated with the GLP-1R agonist liraglutide either acutely preceding analyses of insulin and glucose tolerance or chronically prior to metabolic phenotyping and ex vivo studies. Results: Acute liraglutide treatment significantly improved insulin, glucose and pyruvate tolerance. Once daily injection of seipin knockout mice with liraglutide for 14 days led to significant improvements in hepatomegaly associated with steatosis and reduced markers of liver fibrosis. Moreover, liraglutide enhanced insulin secretion in response to glucose challenge with concomitantly improved glucose control. Conclusions: GLP-1R agonist liraglutide significantly improved lipoatrophic diabetes and hepatic steatosis in mice with generalised lipodystrophy. This provides important insights regarding the benefits of GLP-1R agonists for treating lipodystrophy, informing more widespread use to improve the health of individuals with this condition.


Subject(s)
Disease Models, Animal , Glucagon-Like Peptide-1 Receptor , Insulin Resistance , Lipodystrophy , Liraglutide , Mice, Knockout , Animals , Liraglutide/pharmacology , Liraglutide/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Mice , Lipodystrophy/drug therapy , Lipodystrophy/metabolism , Male , Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism , Blood Glucose/metabolism , Insulin/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Mice, Inbred C57BL
10.
Rev Paul Pediatr ; 42: e2022189, 2024.
Article in English | MEDLINE | ID: mdl-38808865

ABSTRACT

OBJECTIVE: To report the case of a girl presenting a severe phenotype of mandibuloacral dysplasia type A (MADA) characterized by prominent osteolytic changes and ectodermal defects, associated with a rare homozygous LMNA missense mutation (c.1579C>T). CASE DESCRIPTION: A 6-year-old girl was evaluated during hospitalization exhibiting the following dysmorphic signs: subtotal alopecia, dysmorphic facies with prominent eyes, marked micrognathia and retrognathia, small beaked nose, teeth crowding and thin lips, generalized lipodystrophy, narrow and sloping shoulders, generalized joint stiffness and bone reabsorption in the terminal phalanges. In dermatological examination, atrophic skin, loss of cutaneous elasticity, hyperkeratosis, dermal calcinosis, and hyperpigmented and hypochromic patches were observed. Radiology exams performed showed bilateral absence of the mandibular condyles, clavicle resorption with local amorphous bone mass confluence with the scapulae, shoulder joints with subluxation and severe bone dysplasia, hip dysplasia, osteopenia and subcutaneous calcifications. COMMENTS: MADA is a rare autosomal recessive disease caused by mutations in LMNA gene. It is characterized by craniofacial deformities, skeletal anomalies, skin alterations, lipodystrophy in certain regions of the body and premature ageing. Typical MADA is caused by the p.R527H mutation in the LMNA gene. However, molecular analysis performed from oral epithelial cells obtained from the patient showed the rare mutation c.1579C>T, p. R527C in the exon 9 of LMNA. This is the sixth family identified with this mutation described in the literature.


Subject(s)
Lamin Type A , Mutation, Missense , Phenotype , Humans , Female , Lamin Type A/genetics , Child , Mandible/abnormalities , Mandible/diagnostic imaging , Lipodystrophy , Acro-Osteolysis
11.
Nat Commun ; 15(1): 4052, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744820

ABSTRACT

Obesity has emerged as a prominent risk factor for the development of malignant tumors. However, the existing literature on the role of adipocytes in the tumor microenvironment (TME) to elucidate the correlation between obesity and cancer remains insufficient. Here, we aim to investigate the formation of cancer-associated adipocytes (CAAs) and their contribution to tumor growth using mouse models harboring dysfunctional adipocytes. Specifically, we employ adipocyte-specific BECN1 KO (BaKO) mice, which exhibit lipodystrophy due to dysfunctional adipocytes. Our results reveal the activation of YAP/TAZ signaling in both CAAs and BECN1-deficient adipocytes, inducing adipocyte dedifferentiation and formation of a malignant TME. The additional deletion of YAP/TAZ from BaKO mice significantly restores the lipodystrophy and inflammatory phenotypes, leading to tumor regression. Furthermore, mice fed a high-fat diet (HFD) exhibit decreased BECN1 and increased YAP/TAZ expression in their adipose tissues. Treatment with the YAP/TAZ inhibitor, verteporfin, suppresses tumor progression in BaKO and HFD-fed mice, highlighting its efficacy against mice with metabolic dysregulation. Overall, our findings provide insights into the key mediators of CAA and their significance in developing a TME, thereby suggesting a viable approach targeting adipocyte homeostasis to suppress cancer growth.


Subject(s)
Adaptor Proteins, Signal Transducing , Adipocytes , Diet, High-Fat , Mice, Knockout , Tumor Microenvironment , YAP-Signaling Proteins , Animals , YAP-Signaling Proteins/metabolism , Adipocytes/metabolism , Adipocytes/pathology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Mice , Diet, High-Fat/adverse effects , Transcription Factors/metabolism , Transcription Factors/genetics , Obesity/metabolism , Obesity/pathology , Humans , Verteporfin/pharmacology , Signal Transduction , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Disease Progression , Male , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Lipodystrophy/metabolism , Lipodystrophy/pathology , Lipodystrophy/genetics , Mice, Inbred C57BL , Trans-Activators/metabolism , Trans-Activators/genetics
12.
Hum Genet ; 143(5): 683-694, 2024 May.
Article in English | MEDLINE | ID: mdl-38592547

ABSTRACT

Generalized lipodystrophy is a feature of various hereditary disorders, often leading to a progeroid appearance. In the present study we identified a missense and a frameshift variant in a compound heterozygous state in SUPT7L in a boy with intrauterine growth retardation, generalized lipodystrophy, and additional progeroid features. SUPT7L encodes a component of the transcriptional coactivator complex STAGA. By transcriptome sequencing, we showed the predicted missense variant to cause aberrant splicing, leading to exon truncation and thereby to a complete absence of SUPT7L in dermal fibroblasts. In addition, we found altered expression of genes encoding DNA repair pathway components. This pathway was further investigated and an increased rate of DNA damage was detected in proband-derived fibroblasts and genome-edited HeLa cells. Finally, we performed transient overexpression of wildtype SUPT7L in both cellular systems, which normalizes the number of DNA damage events. Our findings suggest SUPT7L as a novel disease gene and underline the link between genome instability and progeroid phenotypes.


Subject(s)
Loss of Function Mutation , Humans , Male , HeLa Cells , Lipodystrophy, Congenital Generalized/genetics , Fibroblasts/metabolism , DNA Damage , Mutation, Missense , DNA Repair/genetics , Lipodystrophy/genetics , Transcription Factors/genetics , Fetal Growth Retardation/genetics
13.
Front Endocrinol (Lausanne) ; 15: 1359025, 2024.
Article in English | MEDLINE | ID: mdl-38633761

ABSTRACT

Introduction: Lipodystrophies are a group of disorders characterized by selective and variable loss of adipose tissue, which can result in an increased risk of insulin resistance and its associated complications. Women with lipodystrophy often have a high frequency of polycystic ovary syndrome (PCOS) and may experience gynecological and obstetric complications. The objective of this study was to describe the gestational outcomes of patients with familial partial lipodystrophy type 2 (FPLD2) at a reference center with the aim of improving the understanding and management of pregnant women affected by this condition. Methods: This was a retrospective analysis of data obtained from questionnaires regarding past pregnancies and a review of medical records from the beginning of follow-up in outpatient clinics. Results: All women diagnosed with FPLD2 who had previously become pregnant were included in this study (n=8). The women in the study experienced pregnancies between the ages of 14 and 38 years, with an average of 1.75 children per woman. The pregnancies in question were either the result of successful conception within 12 months of attempting to conceive or unplanned pregnancies. During pregnancy, two women (25%) were diagnosed with gestational diabetes mellitus (GDM), one (12.5%) with gestational hypothyroidism, and one (12.5%) with preeclampsia. Among the 17 pregnancies, two miscarriages (11.8%) occurred, and five cases (29.4%) of macrosomia were observed. Four instances of premature birth and an equal number of neonatal hypoglycemia cases were recorded. The reported neonatal complications included an unspecified malformation, respiratory infection, and two neonatal deaths related to heart malformation and respiratory distress syndrome. Conclusion: Our data showed a high frequency of fetal complications in women with FPLD2. However, no instances of infertility or prolonged attempts to conceive have been reported, highlighting the significance of employing effective contraception strategies to plan pregnancies at optimal times for managing metabolic comorbidities.


Subject(s)
Diabetes, Gestational , Lipodystrophy, Familial Partial , Lipodystrophy , Infant, Newborn , Child , Pregnancy , Humans , Female , Adolescent , Young Adult , Adult , Retrospective Studies , Diabetes, Gestational/diagnosis , Pregnancy Outcome
14.
Orphanet J Rare Dis ; 19(1): 177, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678257

ABSTRACT

BACKGROUND: Rare syndromes of lipodystrophy and insulin-resistance display heterogeneous clinical expressions. Their early recognition, diagnosis and management are required to avoid long-term complications. OBJECTIVE: We aimed to evaluate the patients' age at referral to our dedicated national reference center in France and their elapsed time from first symptoms to diagnosis and access to specialized care. PATIENTS AND METHODS: We analyzed data from patients with rare lipodystrophy and insulin-resistance syndromes referred to the coordinating PRISIS reference center (Adult Endocrine Department, Saint-Antoine Hospital, AP-HP, Paris), prospectively recorded between 2018 and 2023 in the French National Rare Disease Database (BNDMR, Banque Nationale de Données Maladies Rares). RESULTS: A cohort of 292 patients was analyzed, including 208 women, with the following diagnosis: Familial Partial LipoDystrophy (FPLD, n = 124, including n = 67 FPLD2/Dunnigan Syndrome); Acquired lipodystrophy syndromes (n = 98, with n = 13 Acquired Generalized Lipodystrophy, AGL); Symmetric cervical adenolipomatosis (n = 27, Launois-Bensaude syndrome, LB), Congenital generalized lipodystrophy (n = 18, CGL) and other rare severe insulin-resistance syndromes (n = 25). The median age at referral was 47.6 years [IQR: 31-60], ranging from 25.2 (CGL) to 62.2 years old (LB). The median age at first symptoms of 27.6 years old [IQR: 16.8-42.0]) and the median diagnostic delay of 6.4 years [IQR: 1.3-19.5] varied among diagnostic groups. The gender-specific expression of lipodystrophy is well-illustrated in the FPLD2 group (91% of women), presenting with first signs at 19.3 years [IQR: 14.4-27.8] with a diagnostic delay of 10.5 years [IQR: 1.8-27.0]. CONCLUSION: The national rare disease database provides an important tool for assessment of care pathways in patients with lipodystrophy and rare insulin-resistance syndromes in France. Improving knowledge to reduce diagnostic delay is an important objective of the PRISIS reference center.


Subject(s)
Insulin Resistance , Lipodystrophy , Humans , Female , Male , Insulin Resistance/physiology , Lipodystrophy/diagnosis , Lipodystrophy/metabolism , Adult , Middle Aged , Young Adult , France , Adolescent , Referral and Consultation
15.
Am J Physiol Cell Physiol ; 326(5): C1410-C1422, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38525541

ABSTRACT

Adipose dysfunction in lipodystrophic SEIPIN deficiency is associated with multiple metabolic disorders and increased risks of developing cardiovascular diseases, such as atherosclerosis, cardiac hypertrophy, and heart failure. Recently, adipose transplantation has been found to correct adipose dysfunction and metabolic disorders in lipodystrophic Seipin knockout mice; however, whether adipose transplantation could improve lipodystrophy-associated cardiovascular consequences is still unclear. Here, we aimed to explore the effects of adipose transplantation on lipodystrophy-associated metabolic cardiovascular diseases in Seipin knockout mice crossed into atherosclerosis-prone apolipoprotein E (Apoe) knockout background. At 2 months of age, lipodystrophic Seipin/Apoe double knockout mice and nonlipodystrophic Apoe knockout controls were subjected to adipose transplantation or sham operation. Seven months later, mice were euthanized. Our data showed that although adipose transplantation had no significant impact on endogenous adipose atrophy or gene expression, it remarkably increased plasma leptin but not adiponectin concentration in Seipin/Apoe double knockout mice. This led to significantly reduced hyperlipidemia, hepatic steatosis, and insulin resistance in Seipin/Apoe double knockout mice. Consequently, atherosclerosis burden, intraplaque macrophage infiltration, and aortic inflammatory gene expression were all attenuated in Seipin/Apoe double knockout mice with adipose transplantation. However, adipocyte morphology, macrophage infiltration, or fibrosis of the perivascular adipose tissue was not altered in Seipin/Apoe double knockout mice with adipose transplantation, followed by no significant improvement of vasoconstriction or relaxation. In conclusion, we demonstrate that adipose transplantation could alleviate lipodystrophy-associated metabolic disorders and atherosclerosis but has an almost null impact on perivascular adipose abnormality or vascular dysfunction in lipodystrophic Seipin/Apoe double knockout mice.NEW & NOTEWORTHY Adipose transplantation (AT) reverses multiply metabolic derangements in lipodystrophy, but whether it could improve lipodystrophy-related cardiovascular consequences is unknown. Here, using Seipin/Apoe double knockout mice as a lipodystrophy disease model, we showed that AT partially restored adipose functionality, which translated into significantly reduced atherosclerosis. However, AT was incapable of reversing perivascular adipose abnormality or vascular dysfunction. The current study provides preliminary experimental evidence on the therapeutic potential of AT on lipodystrophy-related metabolic cardiovascular diseases.


Subject(s)
Adipose Tissue , Atherosclerosis , GTP-Binding Protein gamma Subunits , Lipodystrophy , Mice, Knockout , Animals , Mice , Adipose Tissue/metabolism , Adipose Tissue/transplantation , Apolipoproteins E/genetics , Apolipoproteins E/deficiency , Apolipoproteins E/metabolism , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , GTP-Binding Protein gamma Subunits/deficiency , GTP-Binding Protein gamma Subunits/genetics , GTP-Binding Protein gamma Subunits/metabolism , Heterotrimeric GTP-Binding Proteins/genetics , Heterotrimeric GTP-Binding Proteins/metabolism , Insulin Resistance , Leptin/blood , Leptin/metabolism , Lipodystrophy/metabolism , Lipodystrophy/genetics , Lipodystrophy/pathology , Mice, Inbred C57BL
17.
Dis Model Mech ; 17(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38454882

ABSTRACT

Seipin (BSCL2), a conserved endoplasmic reticulum protein, plays a critical role in lipid droplet (LD) biogenesis and in regulating LD morphology, pathogenic variants of which are associated with Berardinelli-Seip congenital generalized lipodystrophy type 2 (BSCL2). To model BSCL2 disease, we generated an orthologous BSCL2 variant, seip-1(A185P), in Caenorhabditis elegans. In this study, we conducted an unbiased chemical mutagenesis screen to identify genetic suppressors that restore embryonic viability in the seip-1(A185P) mutant background. A total of five suppressor lines were isolated and recovered from the screen. The defective phenotypes of seip-1(A185P), including embryonic lethality and impaired eggshell formation, were significantly suppressed in each suppressor line. Two of the five suppressor lines also alleviated the enlarged LDs in the oocytes. We then mapped a suppressor candidate gene, lmbr-1, which is an ortholog of human limb development membrane protein 1 (LMBR1). The CRISPR/Cas9 edited lmbr-1 suppressor alleles, lmbr-1(S647F) and lmbr-1(P314L), both significantly suppressed embryonic lethality and defective eggshell formation in the seip-1(A185P) background. The newly identified suppressor lines offer valuable insights into potential genetic interactors and pathways that may regulate seipin in the lipodystrophy model.


Subject(s)
GTP-Binding Protein gamma Subunits , Heterotrimeric GTP-Binding Proteins , Lipodystrophy, Congenital Generalized , Lipodystrophy , Animals , Humans , Lipodystrophy, Congenital Generalized/genetics , Lipodystrophy, Congenital Generalized/metabolism , Heterotrimeric GTP-Binding Proteins/genetics , Heterotrimeric GTP-Binding Proteins/metabolism , GTP-Binding Protein gamma Subunits/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Lipodystrophy/genetics
18.
Orphanet J Rare Dis ; 19(1): 118, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38481246

ABSTRACT

BACKGROUND: Congenital generalized lipodystrophy (CGL) is a rare inherited disease characterized by a near-total absence of adipose tissue and is associated with organ system abnormalities and severe metabolic complications. Here, we have analyzed the disease characteristics of the largest CGL cohort from the Middle East and North Africa (MENA) who have not received lipodystrophy-specific treatment. METHODS: CGL was diagnosed clinically by treating physicians through physical assessment and supported by genetic analysis, fat loss patterns, family history, and the presence of parental consanguinity. Data were obtained at the time of patient diagnosis and during leptin-replacement naïve follow-up visits as permitted by available medical records. RESULTS: Data from 43 patients with CGL (37 females, 86%) were collected from centers located in eight countries. The mean (median, range) age at diagnosis was 5.1 (1.0, at birth-37) years. Genetic analysis of the overall cohort showed that CGL1 (n = 14, 33%) and CGL2 (n = 18, 42%) were the predominant CGL subtypes followed by CGL4 (n = 10, 23%); a genetic diagnosis was unavailable for one patient (2%). There was a high prevalence of parental consanguinity (93%) and family history (67%) of lipodystrophy, with 64% (n = 25/39) and 51% (n = 20/39) of patients presenting with acromegaloid features and acanthosis nigricans, respectively. Eighty-one percent (n = 35/43) of patients had at least one organ abnormality; the most frequently affected organs were the liver (70%, n = 30/43), the cardiovascular system (37%, n = 16/43) and the spleen (33%, n = 14/43). Thirteen out of 28 (46%) patients had HbA1c > 5.7% and 20/33 (61%) had triglyceride levels > 2.26 mmol/L (200 mg/dl). Generally, patients diagnosed in adolescence or later had a greater severity of metabolic disease versus those diagnosed during childhood; however, metabolic and organ system abnormalities were observed in a subset of patients diagnosed before or at 1 year of age. CONCLUSIONS: This analysis suggests that in addition to the early onset of fat loss, family history and high consanguinity enable the identification of young patients with CGL in the MENA region. In patients with CGL who have not received lipodystrophy-specific treatment, severe metabolic disease and organ abnormalities can develop by late childhood and worsen with age.


Subject(s)
Lipodystrophy, Congenital Generalized , Lipodystrophy , Female , Adolescent , Infant, Newborn , Humans , Child , Lipodystrophy, Congenital Generalized/epidemiology , Lipodystrophy, Congenital Generalized/genetics , Lipodystrophy, Congenital Generalized/complications , Lipodystrophy/epidemiology , Lipodystrophy/genetics , Adipose Tissue , Africa, Northern/epidemiology , Middle East/epidemiology
19.
Theranostics ; 14(5): 2246-2264, 2024.
Article in English | MEDLINE | ID: mdl-38505620

ABSTRACT

Aim: Adipose tissue (AT) dysfunction that occurs in both obesity and lipodystrophy is associated with the development of cardiomyopathy. However, it is unclear how dysfunctional AT induces cardiomyopathy due to limited animal models available. We have identified vacuolar H+-ATPase subunit Vod1, encoded by Atp6v0d1, as a master regulator of adipogenesis, and adipose-specific deletion of Atp6v0d1 (Atp6v0d1AKO) in mice caused generalized lipodystrophy and spontaneous cardiomyopathy. Using this unique animal model, we explore the mechanism(s) underlying lipodystrophy-related cardiomyopathy. Methods and Results: Atp6v0d1AKO mice developed cardiac hypertrophy at 12 weeks, and progressed to heart failure at 28 weeks. The Atp6v0d1AKO mouse hearts exhibited excessive lipid accumulation and altered lipid and glucose metabolism, which are typical for obesity- and diabetes-related cardiomyopathy. The Atp6v0d1AKO mice developed cardiac insulin resistance evidenced by decreased IRS-1/2 expression in hearts. Meanwhile, the expression of forkhead box O1 (FoxO1), a transcription factor which plays critical roles in regulating cardiac lipid and glucose metabolism, was increased. RNA-seq data and molecular biological assays demonstrated reduced expression of myocardin, a transcription coactivator, in Atp6v0d1AKO mouse hearts. RNA interference (RNAi), luciferase reporter and ChIP-qPCR assays revealed the critical role of myocardin in regulating IRS-1 transcription through the CArG-like element in IRS-1 promoter. Reducing IRS-1 expression with RNAi increased FoxO1 expression, while increasing IRS-1 expression reversed myocardin downregulation-induced FoxO1 upregulation in cardiomyocytes. In vivo, restoring myocardin expression specifically in Atp6v0d1AKO cardiomyocytes increased IRS-1, but decreased FoxO1 expression. As a result, the abnormal expressions of metabolic genes in Atp6v0d1AKO hearts were reversed, and cardiac dysfunctions were ameliorated. Myocardin expression was also reduced in high fat diet-induced diabetic cardiomyopathy and palmitic acid-treated cardiomyocytes. Moreover, increasing systemic insulin resistance with rosiglitazone restored cardiac myocardin expression and improved cardiac functions in Atp6v0d1AKO mice. Conclusion: Atp6v0d1AKO mice are a novel animal model for studying lipodystrophy- or metabolic dysfunction-related cardiomyopathy. Moreover, myocardin serves as a key regulator of cardiac insulin sensitivity and metabolic homeostasis, highlighting myocardin as a potential therapeutic target for treating lipodystrophy- and diabetes-related cardiomyopathy.


Subject(s)
Diabetic Cardiomyopathies , Heart Failure , Insulin Resistance , Lipodystrophy , Nuclear Proteins , Trans-Activators , Vacuolar Proton-Translocating ATPases , Animals , Mice , Diabetic Cardiomyopathies/genetics , Disease Models, Animal , Glucose/metabolism , Insulin Resistance/genetics , Lipids , Obesity/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Insulin Receptor Substrate Proteins/metabolism
20.
Exp Dermatol ; 33(3): e15054, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38519432

ABSTRACT

Fibrosis is primarily described as the deposition of excessive extracellular matrix, but in many tissues it also involves a loss of lipid or lipid-filled cells. Lipid-filled cells are critical to tissue function and integrity in many tissues including the skin and lungs. Thus, loss or depletion of lipid-filled cells during fibrogenesis, has implications for tissue function. In some contexts, lipid-filled cells can impact ECM composition and stability, highlighting their importance in fibrotic transformation. Recent papers in fibrosis address this newly recognized fibrotic lipodystrophy phenomenon. Even in disparate tissues, common mechanisms are emerging to explain fibrotic lipodystrophy. These findings have implications for fibrosis in tissues composed of fibroblast and lipid-filled cell populations such as skin, lung, and liver. In this review, we will discuss the roles of lipid-containing cells, their reduction/loss during fibrotic transformation, and the mechanisms of that loss in the skin and lungs.


Subject(s)
Lipodystrophy , Skin , Humans , Fibrosis , Skin/pathology , Lung/pathology , Extracellular Matrix/pathology , Fibroblasts/pathology , Lipodystrophy/pathology , Lipids
SELECTION OF CITATIONS
SEARCH DETAIL
...