Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.653
Filter
1.
Nat Commun ; 15(1): 4827, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844451

ABSTRACT

Adipose progenitor cells (APCs) are heterogeneous stromal cells and help to maintain metabolic homeostasis. However, the influence of obesity on human APC heterogeneity and the role of APC subpopulations on regulating glucose homeostasis remain unknown. Here, we find that APCs in human visceral adipose tissue contain four subsets. The composition and functionality of APCs are altered in patients with type 2 diabetes (T2D). CD9+CD55low APCs are the subset which is significantly increased in T2D patients. Transplantation of these cells from T2D patients into adipose tissue causes glycemic disturbance. Mechanistically, CD9+CD55low APCs promote T2D development through producing bioactive proteins to form a detrimental niche, leading to upregulation of adipocyte lipolysis. Depletion of pathogenic APCs by inducing intracellular diphtheria toxin A expression or using a hunter-killer peptide improves obesity-related glycemic disturbance. Collectively, our data provide deeper insights in human APC functionality and highlights APCs as a potential therapeutic target to combat T2D. All mice utilized in this study are male.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose , Homeostasis , Obesity , Single-Cell Analysis , Stem Cells , Humans , Animals , Single-Cell Analysis/methods , Diabetes Mellitus, Type 2/metabolism , Male , Mice , Stem Cells/metabolism , Glucose/metabolism , Obesity/metabolism , Obesity/pathology , Adipocytes/metabolism , Intra-Abdominal Fat/metabolism , Intra-Abdominal Fat/cytology , Adipose Tissue/metabolism , Adipose Tissue/cytology , Mice, Inbred C57BL , Lipolysis , Female , Middle Aged
2.
Nat Commun ; 15(1): 4847, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844467

ABSTRACT

The I148M variant of PNPLA3 is closely associated with hepatic steatosis. Recent evidence indicates that the I148M mutant functions as an inhibitor of PNPLA2/ATGL-mediated lipolysis, leaving the role of wild-type PNPLA3 undefined. Despite showing a triglyceride hydrolase activity in vitro, PNPLA3 has yet to be established as a lipase in vivo. Here, we show that PNPLA3 preferentially hydrolyzes polyunsaturated triglycerides, mobilizing polyunsaturated fatty acids for phospholipid desaturation and enhancing hepatic secretion of triglyceride-rich lipoproteins. Under lipogenic conditions, mice with liver-specific knockout or acute knockdown of PNPLA3 exhibit aggravated liver steatosis and reduced plasma VLDL-triglyceride levels. Similarly, I148M-knockin mice show decreased hepatic triglyceride secretion during lipogenic stimulation. Our results highlight a specific context whereby the wild-type PNPLA3 facilitates the balance between hepatic triglyceride storage and secretion, and suggest the potential contribution of a loss-of-function by the I148M variant to the development of fatty liver disease in humans.


Subject(s)
Fatty Acids, Unsaturated , Lipase , Lipoproteins, VLDL , Liver , Mice, Knockout , Triglycerides , Animals , Lipase/metabolism , Lipase/genetics , Liver/metabolism , Triglycerides/metabolism , Mice , Lipoproteins, VLDL/metabolism , Humans , Fatty Acids, Unsaturated/metabolism , Male , Fatty Liver/metabolism , Fatty Liver/genetics , Mice, Inbred C57BL , Lipolysis , Membrane Proteins/metabolism , Membrane Proteins/genetics , Acyltransferases , Phospholipases A2, Calcium-Independent
3.
J Agric Food Chem ; 72(22): 12582-12595, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38788215

ABSTRACT

Renal tubular ectopic lipid deposition (ELD) plays a significant role in the development of chronic kidney disease, posing a great threat to human health. The present work aimed to explore the intervention effect and potential molecular mechanism of a purified tea polysaccharide (TPS3A) on renal tubular ELD. The results demonstrated that TPS3A effectively improved kidney function and slowed the progression of tubulointerstitial fibrosis in high-fat-diet (HFD)-exposed ApoE-/- mice. Additionally, TPS3A notably suppressed lipogenesis and enhanced lipolysis, as shown by the downregulation of lipogenesis markers (SREBP-1 and FAS) and the upregulation of lipolysis markers (HSL and ATGL), thereby reducing renal tubular ELD in HFD-fed ApoE-/- mice and palmitic-acid-stimulated HK-2 cells. The AMPK-SIRT1-FoxO1 axis is a core signal pathway in regulating lipid deposition. Consistently, TPS3A significantly increased the levels of phosphorylated-AMPK, SIRT1, and deacetylation of Ac-FoxO1. However, these effects of TPS3A on lipogenesis and lipolysis were abolished by AMPK siRNA, SIRT1 siRNA, and FoxO1 inhibitor, resulting in exacerbated lipid deposition. Taken together, TPS3A shows promise in ameliorating renal tubular ELD by inhibiting lipogenesis and promoting lipolysis through the AMPK-SIRT1-FoxO1 signaling pathway.


Subject(s)
Diet, High-Fat , Lipogenesis , Lipolysis , Mice, Inbred C57BL , Polysaccharides , Animals , Lipogenesis/drug effects , Mice , Lipolysis/drug effects , Male , Diet, High-Fat/adverse effects , Humans , Polysaccharides/pharmacology , Polysaccharides/administration & dosage , Sirtuin 1/metabolism , Sirtuin 1/genetics , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Kidney Tubules/metabolism , Kidney Tubules/drug effects , Camellia sinensis/chemistry , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Tea/chemistry , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics
4.
Sci Rep ; 14(1): 12430, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816541

ABSTRACT

Dietary trans 10, cis 12-conjugated linoleic acid (t10c12-CLA) is a potential candidate in anti-obesity trials. A transgenic mouse was previously successfully established to determine the anti-obesity properties of t10c12-CLA in male mice that could produce endogenous t10c12-CLA. To test whether there is a different impact of t10c12-CLA on lipid metabolism in both sexes, this study investigated the adiposity and metabolic profiles of female Pai mice that exhibited a dose-dependent expression of foreign Pai gene and a shift of t10c12-CLA content in tested tissues. Compared to their gender-match wild-type littermates, Pai mice had no fat reduction but exhibited enhanced lipolysis and thermogenesis by phosphorylated hormone-sensitive lipase and up-regulating uncoupling proteins in brown adipose tissue. Simultaneously, Pai mice showed hepatic steatosis and hypertriglyceridemia by decreasing gene expression involved in lipid and glucose metabolism. Further investigations revealed that t10c10-CLA induced excessive prostaglandin E2, adrenaline, corticosterone, glucagon and inflammatory factors in a dose-dependent manner, resulting in less heat release and oxygen consumption in Pai mice. Moreover, fibroblast growth factor 21 overproduction only in monoallelic Pai/wt mice indicates that it was sensitive to low doses of t10c12-CLA. These results suggest that chronic t10c12-CLA has system-wide effects on female health via synergistic actions of various hormones.


Subject(s)
Corticosterone , Dinoprostone , Epinephrine , Fibroblast Growth Factors , Glucagon , Linoleic Acids, Conjugated , Mice, Transgenic , Animals , Female , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Mice , Linoleic Acids, Conjugated/pharmacology , Linoleic Acids, Conjugated/metabolism , Corticosterone/metabolism , Dinoprostone/metabolism , Glucagon/metabolism , Epinephrine/metabolism , Thermogenesis/drug effects , Thermogenesis/genetics , Male , Lipid Metabolism/drug effects , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/drug effects , Fatty Liver/metabolism , Fatty Liver/genetics , Lipolysis/drug effects , Hypertriglyceridemia/metabolism , Hypertriglyceridemia/genetics , Adiposity/drug effects
5.
Food Res Int ; 187: 114421, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763671

ABSTRACT

This study focused on the protein-stabilised triglyceride (TG)/water interfaces and oil-in-water emulsions, and explored the influence of varying molar ratios of bile salts (BSs) and phospholipids (PLs) on the intestinal lipolysis of TGs. The presence of these two major groups of biosurfactants delivered with human bile to the physiological environment of intestinal digestion was replicated in our experiments by using mixtures of individual BSs and PLs under in vitro small intestinal lipolysis conditions. Conducted initially, retrospective analysis of available scientific literature revealed that an average molar ratio of 9:4 for BSs to PLs (BS/PL) can be considered physiological in the postprandial adult human small intestine. Our experimental data showed that combining BSs and PLs synergistically enhanced interfacial activity, substantially reducing oil-water interfacial tension (IFT) during interfacial lipolysis experiments with pancreatic lipase, especially at the BS/PL-9:4 ratio. Other BS/PL molar proportions (BS/PL-6.5:6.5 and BS/PL-4:9) and an equimolar amount of BSs (BS-13) followed in IFT reduction efficiency, while using PLs alone as biosurfactants was the least efficient. In the following emulsion lipolysis experiments, BS/PL-9:4 outperformed other BS/PL mixtures in terms of enhancing the TG digestion extent. The degree of TG conversion and the desorption efficiency of interfacial material post-lipolysis correlated directly with the BS/PL ratio, decreasing as the PL proportion increased. In conclusion, this study highlights the crucial role of biliary PLs, alongside BSs, in replicating the physiological function of bile in intestinal lipolysis of emulsified TGs. Our results showed different contributions of PLs and BSs to lipolysis, strongly suggesting that any future in vitro studies aiming to simulate the human digestion conditions should take into account the impact of biliary PLs - not just BSs - to accurately mimic the physiological role of bile in intestinal lipolysis. This is particularly crucial given the fact that existing in vitro digestion protocols typically focus solely on applying specific concentrations and/or compositions of BSs to simulate the action of human bile during intestinal digestion, while overlooking the presence and concentration of biliary PLs under physiological gut conditions.


Subject(s)
Bile Acids and Salts , Digestion , Emulsions , Lipolysis , Phospholipids , Triglycerides , Emulsions/chemistry , Triglycerides/metabolism , Triglycerides/chemistry , Bile Acids and Salts/metabolism , Humans , Phospholipids/chemistry , Phospholipids/metabolism , Digestion/physiology , Lipase/metabolism , Intestine, Small/metabolism , Surface-Active Agents/chemistry
6.
Free Radic Biol Med ; 221: 155-168, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38777204

ABSTRACT

Transient receptor potential vanilloid (TRPV) ion channels play a crucial role in various cellular functions by regulating intracellular Ca2+ levels and have been extensively studied in the context of several metabolic diseases. However, the regulatory effects of TRPV3 in obesity and lipolysis are not well understood. In this study, utilizing a TRPV3 gain-of-function mouse model (TRPV3G568V/G568V), we assessed the metabolic phenotype of both TRPV3G568V/G568V mice and their control littermates, which were randomly assigned to either a 12-week high-fat diet or a control diet. We investigated the potential mechanisms underlying the role of TRPV3 in restraining obesity and promoting lipolysis both in vivo and in vitro. Our findings indicate that a high-fat diet led to significant obesity, characterized by increased epididymal and inguinal white adipose tissue weight and higher fat mass. However, the gain-of-function mutation in TRPV3 appeared to counteract these adverse effects by enhancing lipolysis in visceral fat through the upregulation of the major lipolytic enzyme, adipocyte triglyceride lipase (ATGL). In vitro experiments using carvacrol, a TRPV3 agonist, demonstrated the promotion of lipolysis and antioxidation in 3T3-L1 adipocytes after TRPV3 activation. Notably, carvacrol failed to stimulate Ca2+ influx, lipolysis, and antioxidation in 3T3-L1 adipocytes treated with BAPTA-AM, a cell-permeable calcium chelator. Our results revealed that TRPV3 activation induced the action of transcriptional factor nuclear factor erythroid 2-related factor 2 (NRF2), resulting in increased expression of ferroptosis suppressor protein 1 (FSP1) and superoxide dismutase2 (SOD2). Moreover, the inhibition of NRF2 impeded carvacrol-induced lipolysis and antioxidation in 3T3-L1 adipocytes, with downregulation of ATGL, FSP1, and SOD2. In summary, our study suggests that TRPV3 promotes visceral fat lipolysis and inhibits diet-induced obesity through the activation of the NRF2/FSP1 signaling axis. We propose that TRPV3 may be a potential therapeutic target in the treatment of obesity.


Subject(s)
Diet, High-Fat , Lipolysis , NF-E2-Related Factor 2 , Obesity , Signal Transduction , TRPV Cation Channels , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Obesity/metabolism , Obesity/genetics , Obesity/pathology , Obesity/etiology , Mice , Diet, High-Fat/adverse effects , Male , Lipase/metabolism , Lipase/genetics , Adipocytes/metabolism , Adipocytes/pathology , Mice, Inbred C57BL , 3T3-L1 Cells , Gain of Function Mutation , Acyltransferases
7.
Sci Rep ; 14(1): 10789, 2024 05 11.
Article in English | MEDLINE | ID: mdl-38734719

ABSTRACT

Brown adipocytes are potential therapeutic targets for the prevention of obesity-associated metabolic diseases because they consume circulating glucose and fatty acids for heat production. Angiotensin II (Ang II) peptide is involved in the pathogenesis of obesity- and cold-induced hypertension; however, the mechanism underlying the direct effects of Ang II on human brown adipocytes remains unclear. Our transcriptome analysis of chemical compound-induced brown adipocytes (ciBAs) showed that the Ang II type 1 receptor (AGTR1), but not AGTR2 and MAS1 receptors, was expressed. The Ang II/AGTR1 axis downregulated the expression of mitochondrial uncoupling protein 1 (UCP1). The simultaneous treatment with ß-adrenergic receptor agonists and Ang II attenuated UCP1 expression, triglyceride lipolysis, and cAMP levels, although cAMP response element-binding protein (CREB) phosphorylation was enhanced by Ang II mainly through the protein kinase C pathway. Despite reduced lipolysis, both coupled and uncoupled mitochondrial respiration was enhanced in Ang II-treated ciBAs. Instead, glycolysis and glucose uptake were robustly activated upon treatment with Ang II without a comprehensive transcriptional change in glucose metabolic genes. Elevated mitochondrial energy status induced by Ang II was likely associated with UCP1 repression. Our findings suggest that the Ang II/AGTR1 axis participates in mitochondrial thermogenic functions via glycolysis.


Subject(s)
Adipocytes, Brown , Angiotensin II , Glycolysis , Mitochondria , Thermogenesis , Uncoupling Protein 1 , Humans , Adipocytes, Brown/metabolism , Adipocytes, Brown/drug effects , Glycolysis/drug effects , Angiotensin II/pharmacology , Angiotensin II/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Thermogenesis/drug effects , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Lipolysis/drug effects , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 1/genetics , Glucose/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism
8.
J Diabetes Res ; 2024: 5511454, 2024.
Article in English | MEDLINE | ID: mdl-38736904

ABSTRACT

Adipose tissue dysfunction is seen among obese and type 2 diabetic individuals. Adipocyte proliferation and hypertrophy are the root causes of adipose tissue expansion. Solute carrier family 25 member 28 (SLC25A28) is an iron transporter in the inner mitochondrial membrane. This study is aimed at validating the involvement of SLC25A28 in adipose accumulation by tail vein injection of adenovirus (Ad)-SLC25A28 and Ad-green fluorescent protein viral particles into C57BL/6J mice. After 16 weeks, the body weight of the mice was measured. Subsequently, morphological analysis was performed to establish a high-fat diet (HFD)-induced model. SLC25A28 overexpression accelerated lipid accumulation in white and brown adipose tissue (BAT), enhanced body weight, reduced serum triglyceride (TG), and impaired serum glucose tolerance. The protein expression level of lipogenesis, lipolysis, and serum adipose secretion hormone was evaluated by western blotting. The results showed that adipose TG lipase (ATGL) protein expression was reduced significantly in white and BAT after overexpression SLC25A28 compared to the control group. Moreover, SLC25A28 overexpression inhibited the BAT formation by downregulating UCP-1 and the mitochondrial biosynthesis marker PGC-1α. Serum adiponectin protein expression was unregulated, which was consistent with the expression in inguinal white adipose tissue (iWAT). Remarkably, serum fibroblast growth factor (FGF21) protein expression was negatively related to the expansion of adipose tissue after administrated by Ad-SLC25A28. Data from the current study indicate that SLC25A28 overexpression promotes diet-induced obesity and accelerates lipid accumulation by regulating hormone secretion and inhibiting lipolysis in adipose tissue.


Subject(s)
Adipogenesis , Adipose Tissue, Brown , Adipose Tissue, White , Diet, High-Fat , Lipase , Mice, Inbred C57BL , Animals , Mice , Male , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Lipase/metabolism , Lipase/genetics , Obesity/metabolism , Lipolysis , Uncoupling Protein 1/metabolism , Fibroblast Growth Factors/metabolism , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Adipocytes/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Lipogenesis , Acyltransferases
9.
Int J Mol Sci ; 25(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38732183

ABSTRACT

The impact of microplastics (MPs) on the metabolic functions of the liver is currently unclear and not completely understood. To investigate the effects of the administration of MPs on the hepatic metabolism of normal and obese mice, alterations in the lipid, glucose (Glu), and amino acid regulation pathways were analyzed in the liver and adipose tissues of C57BL/6Korl (wild type, WT) or C57BL/6-Lepem1hwl/Korl mice (leptin knockout, Lep KO) orally administered polystyrene (PS) MPs for 9 weeks. Significant alterations in the lipid accumulation, adipogenesis, lipogenesis, and lipolysis pathways were detected in the liver tissue of MP-treated WT and Lep KO mice compared to the vehicle-treated group. These alterations in their liver tissues were accompanied by an upregulation of the serum lipid profile, as well as alterations in the adipogenesis, lipogenesis, and lipolysis pathways in the adipose tissues of MP-treated WT and Lep KO mice. Specifically, the level of leptin was increased in the adipose tissues of MP-treated WT mice without any change in their food intake. Also, MP-induced disruptions in the glycogenolysis, Glu transporter type 4 (GLUT4)-5' AMP-activated protein kinase (AMPK) signaling pathway, levels of lipid intermediates, and the insulin resistance of the liver tissues of WT and Lep KO mice were observed. Furthermore, the levels of seven endogenous metabolites were remarkably changed in the serum of WT and Lep KO mice after MP administrations. Finally, the impact of the MP administration observed in both types of mice was further verified in differentiated 3T3-L1 adipocytes and HepG2 cells. Thus, these results suggest that the oral administration of MPs for 9 weeks may be associated with the disruption of lipid, Glu, and amino acid metabolism in the liver tissue of obese WT and Lep KO mice.


Subject(s)
Amino Acids , Glucose , Lipid Metabolism , Liver , Mice, Inbred C57BL , Mice, Knockout , Microplastics , Polystyrenes , Animals , Liver/metabolism , Liver/drug effects , Mice , Glucose/metabolism , Lipid Metabolism/drug effects , Amino Acids/metabolism , Administration, Oral , Leptin/metabolism , Adipose Tissue/metabolism , Adipose Tissue/drug effects , Adipogenesis/drug effects , Male , Lipogenesis/drug effects , Obesity/metabolism , Obesity/etiology , Obesity/genetics , Humans , Lipolysis/drug effects
10.
Food Res Int ; 186: 114350, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729698

ABSTRACT

In this study, three types of ß-sitosterol-based oleogels (ß-sitosterol + Î³-oryzanol oleogels, ß-sitosterol + lecithin, oleogels and ß-sitosterol + monostearate oleogels), loaded with astaxanthin, were employed as the oil phase to create oleogel-based emulsions (SO, SL, and SM) using high-pressure homogenization. The microstructure revealed that fine-scale crystals were dispersed within the oil phase of the droplets in the ß-sitosterol oleogel-based emulsion. The bioaccessibility of astaxanthin was found to be 58.13 %, 51.24 %, 36.57 %, and 45.72 % for SM, SL, SO, and the control group, respectively. Interestingly, the release of fatty acids was positively correlated with the availability of astaxanthin (P = 0.981). Further analysis of FFAs release and kinetics indicated that the structural strength of the oil-phase in the emulsions influenced the degree and rate of lipolysis. Additionally, the micellar fraction analysis suggested that the nature and composition of the oleogelators in SM and SL also impacted lipolysis and the bioaccessibility of astaxanthin. Furthermore, interfacial binding of lipase and isothermal titration calorimetry (ITC) measurements revealed that the oleogel network within the oil phase of the emulsion acted as a physical barrier, hindering the interaction between lipase and lipid. Overall, ß-sitosterol oleogel-based emulsions offer a versatile platform for delivering hydrophobic molecules, enhancing the bioavailability of active compounds, and achieving sustained release.


Subject(s)
Emulsions , Organic Chemicals , Sitosterols , Xanthophylls , Sitosterols/chemistry , Xanthophylls/chemistry , Organic Chemicals/chemistry , Biological Availability , Lipolysis , Lecithins/chemistry , Fatty Acids/chemistry , Phenylpropionates
11.
Food Res Int ; 186: 114376, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729723

ABSTRACT

Commercial beef burgers and vegan analogues were purchased and, after a microwave treatment, they were submitted to an in vitro digestion (INFOGEST). Vegan cooked burgers showed similar protein content (16-17 %) but lower amounts of total peptides than beef burgers. The protein digestibility was higher in beef burgers. Peptide amounts increased during in vitro digestion, reaching similar amounts in both types of products in the micellar phase (bioaccessible fraction). The fat content in cooked vegan burgers was significantly lower than in beef burgers (16.7 and 21.2 %, respectively), with a higher amount of PUFAs and being the lipolysis activity, measure by FFA, less intense both after cooking and after the gastrointestinal process. Both types of cooked samples showed high carbonyl amounts (34.18 and 25.51 nmol/mg protein in beef and vegan samples, respectively), that decreased during in vitro digestion. On the contrary, lipid oxidation increased during gastrointestinal digestion, particularly in vegan samples. The antioxidant capacity (ABTS and DPPH) showed higher values for vegan products in cooked samples, but significantly decreased during digestion, reaching similar values for both types of products.


Subject(s)
Cooking , Digestion , Microwaves , Red Meat , Cooking/methods , Red Meat/analysis , Animals , Cattle , Antioxidants/analysis , Meat Products/analysis , Lipolysis , Diet, Vegan
12.
JCI Insight ; 9(9)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602778

ABSTRACT

BACKGROUND: Upper-body obesity (UBO) results in insulin resistance with regards to free fatty acid (FFA) release; how this differs by fat depot and sex between adults with UBO and lean adults is unknown. We tested the hypothesis that insulin suppression of FFA release from the splanchnic bed, leg fat, and upper-body nonsplanchnic (UBNS) adipose tissue would be impaired in UBO. METHODS: Fourteen volunteers with UBO (7 men and 7 women) and 14 healthy volunteers with normal weight (7 men and 7 women) participated in studies that included femoral artery, femoral vein, and hepatic vein catheterization. We then measured leg and splanchnic plasma flow as well as FFA kinetics (using isotopic tracers) under overnight fasting as well as low- and high-dose insulin infusion using the insulin clamp technique. RESULTS: We found the expected insulin resistance in UBO; the most quantitatively important difference between adults with UBO and lean adults was greater FFA release from UBNS adipose tissue when plasma insulin concentrations were in the postprandial, physiological range. There were obesity, but not sex, differences in the regulation of splanchnic FFA release and sex differences in the regulation of leg FFA release. CONCLUSION: Reversing the defects in insulin-regulated UBNS adipose tissue FFA release would have the greatest effect on systemic FFA abnormalities in UBO. FUNDING: These studies were supported by the US Public Health Service (grants DK45343 and DK40484), the Novo Nordic Foundation (grant NNF18OC0031804 and NNF16OC0021406), and the Independent Research Fund Denmark (grant 8020-00420B).


Subject(s)
Adipose Tissue , Fatty Acids, Nonesterified , Insulin Resistance , Insulin , Lipolysis , Obesity , Adult , Female , Humans , Male , Young Adult , Adipose Tissue/metabolism , Fatty Acids, Nonesterified/metabolism , Fatty Acids, Nonesterified/blood , Insulin/metabolism , Obesity/metabolism , Postprandial Period , Thinness/metabolism
13.
Mol Cell Endocrinol ; 589: 112249, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38604550

ABSTRACT

Using a three-dimensional (3-D) in vitro culture model, we report the dose dependent effect of 17ß-estradiol and testosterone on the adipogenic differentiation and maturation of human adipose derived stem cells (hASCs) obtained from female and male patients. Considering sexual dimorphism, we expected male and female adipocytes to respond differently to the sex steroids. Both male and female hASC spheroids were exposed to 100 nM and 500 nM of 17ß-estradiol and testosterone either at the beginning of the adipogenic maturation (Phase I) to discourage intracellular triglyceride accumulation or exposed after adipogenic maturation (Phase II) to reduce the intracellular triglyceride accumulation. The results show that 17ß-estradiol leads to a dose dependent reduction in intracellular triglyceride accumulation in female hASC spheroids compared to the both untreated and testosterone-treated cells. Affirming our hypothesis, 17ß-estradiol prevented intracellular triglyceride accumulation during Phase I, while it stimulated lipolysis during Phase II. PPAR-γ and adiponectin gene expression also reduced upon 17ß-estradiol treatment in female cells. Interestingly, 17ß-estradiol and testosterone had only a modest effect on the male hASC spheroids. Collectively, our findings suggest that 17ß-estradiol can prevent fat accumulation in adipocytes during early and late stages of maturation in females.


Subject(s)
Adipogenesis , Adiponectin , Estradiol , Sex Characteristics , Testosterone , Humans , Adipogenesis/drug effects , Male , Female , Estradiol/pharmacology , Testosterone/pharmacology , Adiponectin/metabolism , Triglycerides/metabolism , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Spheroids, Cellular/cytology , Cells, Cultured , PPAR gamma/metabolism , PPAR gamma/genetics , Adipocytes/drug effects , Adipocytes/metabolism , Adipocytes/cytology , Stem Cells/metabolism , Stem Cells/drug effects , Stem Cells/cytology , Adipose Tissue/cytology , Adipose Tissue/metabolism , Adipose Tissue/drug effects , Lipolysis/drug effects
14.
Cell Rep Med ; 5(5): 101525, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38663398

ABSTRACT

Spinal cord injury (SCI) increases the risk of cardiometabolic disorders, including hypertension, dyslipidemia, and insulin resistance. Not only does SCI lead to pathological expansion of adipose tissue, but it also leads to ectopic lipid accumulation in organs integral to glucose and insulin metabolism. The pathophysiological changes that underlie adipose tissue dysfunction after SCI are unknown. Here, we find that SCI exacerbates lipolysis in epididymal white adipose tissue (eWAT). Whereas expression of the α2δ1 subunit of voltage-gated calcium channels increases in calcitonin gene-related peptide-positive dorsal root ganglia neurons that project to eWAT, conditional deletion of the gene encoding α2δ1 in these neurons normalizes eWAT lipolysis after SCI. Furthermore, α2δ1 pharmacological blockade through systemic administration of gabapentin also normalizes eWAT lipolysis after SCI, preventing ectopic lipid accumulation in the liver. Thus, our study provides insight into molecular causes of maladaptive sensory processing in eWAT, facilitating the development of strategies to reduce metabolic and cardiovascular complications after SCI.


Subject(s)
Adipose Tissue, White , Homeostasis , Lipolysis , Spinal Cord Injuries , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Animals , Lipolysis/drug effects , Male , Mice , Adipose Tissue, White/metabolism , Neuronal Plasticity/drug effects , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , Adipose Tissue/metabolism , Mice, Inbred C57BL , Neurons/metabolism , Neurons/pathology , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide/genetics
15.
Mol Cell Endocrinol ; 589: 112250, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38663485

ABSTRACT

The most common form of hypercortisolism is iatrogenic Cushing's syndrome. Lipodystrophy and metabolic disorders can result from the use of exogenous glucocorticoids (GC). Adipocytes play an important role in the production of circulating exosomal microRNAs, and knockdown of Dicer promotes lipodystrophy. The aim of this study is to investigate the effect of GCs on epididymal fat and to assess their influence on circulating microRNAs associated with fat turnover. The data indicate that despite the reduction in adipocyte volume due to increased lipolysis and apoptosis, there is no difference in tissue mass, suggesting that epididymal fat pad, related to animal size, is not affected by GC treatment. Although high concentrations of GC have no direct effect on epididymal microRNA-150-5p expression, GC can induce epididymal adipocyte uptake of microRNA-150-5p, which regulates transcription factor Ppar gamma during adipocyte maturation. In addition, GC treatment increased lipolysis and decreased glucose-derived lipid and glycerol incorporation. In conclusion, the similar control and GC epididymal fat mass results from increased dense fibrogenic tissue and decreased adipocyte volume induced by the lipolytic effect of GC. These findings demonstrate the complexity of epididymal fat. They also highlight how this disease alters fat distribution. This study is the first in a series published by our laboratory showing the detailed mechanism of adipocyte turnover in this disease.


Subject(s)
Adipocytes , Epididymis , Glucocorticoids , Lipolysis , MicroRNAs , Male , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Epididymis/drug effects , Epididymis/metabolism , Epididymis/pathology , Adipocytes/drug effects , Adipocytes/metabolism , Glucocorticoids/adverse effects , Glucocorticoids/pharmacology , Lipolysis/drug effects , Mice , Apoptosis/drug effects , Mice, Inbred C57BL , PPAR gamma/metabolism , PPAR gamma/genetics
16.
FEBS Lett ; 598(10): 1199-1204, 2024 May.
Article in English | MEDLINE | ID: mdl-38664338

ABSTRACT

Distinct pools of lipid droplets (LDs) exist in individual cells and are demarcated both by their unique proteomes and lipid compositions. Focusing on yeast-based work, we briefly review the state of understanding of LD subsets, and how specific proteins can dictate their identities and fates through lipophagy and lipolysis-mediated turnover.


Subject(s)
Lipid Droplets , Lipolysis , Lipid Droplets/metabolism , Humans , Animals , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Autophagy , Lipid Metabolism
17.
J Endocrinol ; 261(3)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38579777

ABSTRACT

Adipose tissue was once known as a reservoir for energy storage but is now considered a crucial organ for hormone and energy flux with important effects on health and disease. Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone secreted from the small intestinal K cells, responsible for augmenting insulin release, and has gained attention for its independent and amicable effects with glucagon-like peptide 1 (GLP-1), another incretin hormone secreted from the small intestinal L cells. The GIP receptor (GIPR) is found in whole adipose tissue, whereas the GLP-1 receptor (GLP-1R) is not, and some studies suggest that GIPR action lowers body weight and plays a role in lipolysis, glucose/lipid uptake/disposal, adipose tissue blood flow, lipid oxidation, and free-fatty acid (FFA) re-esterification, which may or may not be influenced by other hormones such as insulin. This review summarizes the research on the effects of GIP in adipose tissue (distinct depots of white and brown) using cellular, rodent, and human models. In doing so, we explore the mechanisms of GIPR-based medications for treating metabolic disorders, such as type 2 diabetes and obesity, and how GIPR agonism and antagonism contribute to improvements in metabolic health outcomes, potentially through actions in adipose tissues.


Subject(s)
Adipose Tissue , Gastric Inhibitory Polypeptide , Receptors, Gastrointestinal Hormone , Humans , Gastric Inhibitory Polypeptide/metabolism , Animals , Adipose Tissue/metabolism , Receptors, Gastrointestinal Hormone/metabolism , Glucose/metabolism , Lipolysis , Obesity/metabolism
18.
Biochim Biophys Acta Rev Cancer ; 1879(3): 189103, 2024 May.
Article in English | MEDLINE | ID: mdl-38679401

ABSTRACT

Cancer-associated cachexia (CAC) is a complex multiple organ syndrome that significantly contributes to reduced quality of life and increased mortality among many cancer patients. Its multifactorial nature makes its early diagnosis and effective therapeutic interventions challenging. Adipose tissue is particularly impacted by cachexia, typically through increased lipolysis, browning and thermogenesis, mainly at the onset of the disease. These processes lead to depletion of fat mass and contribute to the dysfunction of other organs. The ß-adrenergic signalling pathways are classical players in the regulation of adipose tissue metabolism. They are activated upon sympathetic stimulation inducing lipolysis, browning and thermogenesis, therefore contributing to energy expenditure. Despite accumulating evidence suggesting that ß3-adrenergic receptor stimulation may be crucial to the adipose tissue remodelling during cachexia, the literature remains controversial. Moreover, there is limited knowledge regarding sexual dimorphism of adipose tissue in the context of cachexia. This review paper aims to present the current knowledge regarding adipose tissue wasting during CAC, with a specific focus on the role of the ß3-adrenergic receptor, placing it as a potential therapeutic target against cachexia.


Subject(s)
Adipose Tissue , Cachexia , Lipolysis , Neoplasms , Receptors, Adrenergic, beta-3 , Signal Transduction , Cachexia/metabolism , Cachexia/pathology , Cachexia/etiology , Humans , Neoplasms/complications , Neoplasms/metabolism , Neoplasms/pathology , Receptors, Adrenergic, beta-3/metabolism , Adipose Tissue/metabolism , Adipose Tissue/pathology , Energy Metabolism , Thermogenesis , Animals
19.
Cell Rep ; 43(5): 114132, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38656871

ABSTRACT

Insulin-PI3K signaling controls insulin secretion. Understanding this feedback mechanism is crucial for comprehending how insulin functions. However, the role of adipocyte insulin-PI3K signaling in controlling insulin secretion in vivo remains unclear. Using adipocyte-specific PI3Kα knockout mice (PI3KαAdQ) and a panel of isoform-selective PI3K inhibitors, we show that PI3Kα and PI3Kß activities are functionally redundant in adipocyte insulin signaling. PI3Kß-selective inhibitors have no effect on adipocyte AKT phosphorylation in control mice but blunt it in adipocytes of PI3KαAdQ mice, demonstrating adipocyte-selective pharmacological PI3K inhibition in the latter. Acute adipocyte-selective PI3K inhibition increases serum free fatty acid (FFA) and potently induces insulin secretion. We name this phenomenon the adipoincretin effect. The adipoincretin effect operates in fasted mice with increasing FFA and decreasing glycemia, indicating that it is not primarily a control system for blood glucose. This feedback control system defines the rates of adipose tissue lipolysis and chiefly controls basal insulin secretion during fasting.


Subject(s)
Adipocytes , Fasting , Insulin Secretion , Insulin , Mice, Knockout , Phosphatidylinositol 3-Kinases , Animals , Adipocytes/metabolism , Insulin/metabolism , Mice , Fasting/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Fatty Acids, Nonesterified/metabolism , Fatty Acids, Nonesterified/blood , Lipolysis , Male , Proto-Oncogene Proteins c-akt/metabolism , Mice, Inbred C57BL , Phosphorylation , Phosphoinositide-3 Kinase Inhibitors/pharmacology
20.
Proc Natl Acad Sci U S A ; 121(15): e2321255121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38564632

ABSTRACT

Omega-3 polyunsaturated fatty acids (PUFA) found primarily in fish oil have been a popular supplement for cardiovascular health because they can substantially reduce circulating triglyceride levels in the bloodstream to prevent atherosclerosis. Beyond this established extracellular activity, here, we report a mode of action of PUFA, regulating intracellular triglyceride metabolism and lipid droplet (LD) dynamics. Real-time imaging of the subtle and highly dynamic changes of intracellular lipid metabolism was enabled by a fluorescence lifetime probe that addressed the limitations of intensity-based fluorescence quantifications. Surprisingly, we found that among omega-3 PUFA, only docosahexaenoic acid (DHA) promoted the lipolysis in LDs and reduced the overall fat content by approximately 50%, and consequently helped suppress macrophage differentiation into foam cells, one of the early steps responsible for atherosclerosis. Eicosapentaenoic acid, another omega-3 FA in fish oil, however, counteracted the beneficial effects of DHA on lipolysis promotion and cell foaming prevention. These in vitro findings warrant future validation in vivo.


Subject(s)
Atherosclerosis , Fatty Acids, Omega-3 , Humans , Lipolysis , Fluorescence , Fatty Acids, Omega-3/metabolism , Fish Oils/pharmacology , Docosahexaenoic Acids/metabolism , Macrophages/metabolism , Triglycerides
SELECTION OF CITATIONS
SEARCH DETAIL
...