Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.265
Filter
1.
Sci Rep ; 14(1): 10789, 2024 05 11.
Article in English | MEDLINE | ID: mdl-38734719

ABSTRACT

Brown adipocytes are potential therapeutic targets for the prevention of obesity-associated metabolic diseases because they consume circulating glucose and fatty acids for heat production. Angiotensin II (Ang II) peptide is involved in the pathogenesis of obesity- and cold-induced hypertension; however, the mechanism underlying the direct effects of Ang II on human brown adipocytes remains unclear. Our transcriptome analysis of chemical compound-induced brown adipocytes (ciBAs) showed that the Ang II type 1 receptor (AGTR1), but not AGTR2 and MAS1 receptors, was expressed. The Ang II/AGTR1 axis downregulated the expression of mitochondrial uncoupling protein 1 (UCP1). The simultaneous treatment with ß-adrenergic receptor agonists and Ang II attenuated UCP1 expression, triglyceride lipolysis, and cAMP levels, although cAMP response element-binding protein (CREB) phosphorylation was enhanced by Ang II mainly through the protein kinase C pathway. Despite reduced lipolysis, both coupled and uncoupled mitochondrial respiration was enhanced in Ang II-treated ciBAs. Instead, glycolysis and glucose uptake were robustly activated upon treatment with Ang II without a comprehensive transcriptional change in glucose metabolic genes. Elevated mitochondrial energy status induced by Ang II was likely associated with UCP1 repression. Our findings suggest that the Ang II/AGTR1 axis participates in mitochondrial thermogenic functions via glycolysis.


Subject(s)
Adipocytes, Brown , Angiotensin II , Glycolysis , Mitochondria , Thermogenesis , Uncoupling Protein 1 , Humans , Adipocytes, Brown/metabolism , Adipocytes, Brown/drug effects , Glycolysis/drug effects , Angiotensin II/pharmacology , Angiotensin II/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Thermogenesis/drug effects , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Lipolysis/drug effects , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 1/genetics , Glucose/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism
2.
Int J Mol Sci ; 25(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38732183

ABSTRACT

The impact of microplastics (MPs) on the metabolic functions of the liver is currently unclear and not completely understood. To investigate the effects of the administration of MPs on the hepatic metabolism of normal and obese mice, alterations in the lipid, glucose (Glu), and amino acid regulation pathways were analyzed in the liver and adipose tissues of C57BL/6Korl (wild type, WT) or C57BL/6-Lepem1hwl/Korl mice (leptin knockout, Lep KO) orally administered polystyrene (PS) MPs for 9 weeks. Significant alterations in the lipid accumulation, adipogenesis, lipogenesis, and lipolysis pathways were detected in the liver tissue of MP-treated WT and Lep KO mice compared to the vehicle-treated group. These alterations in their liver tissues were accompanied by an upregulation of the serum lipid profile, as well as alterations in the adipogenesis, lipogenesis, and lipolysis pathways in the adipose tissues of MP-treated WT and Lep KO mice. Specifically, the level of leptin was increased in the adipose tissues of MP-treated WT mice without any change in their food intake. Also, MP-induced disruptions in the glycogenolysis, Glu transporter type 4 (GLUT4)-5' AMP-activated protein kinase (AMPK) signaling pathway, levels of lipid intermediates, and the insulin resistance of the liver tissues of WT and Lep KO mice were observed. Furthermore, the levels of seven endogenous metabolites were remarkably changed in the serum of WT and Lep KO mice after MP administrations. Finally, the impact of the MP administration observed in both types of mice was further verified in differentiated 3T3-L1 adipocytes and HepG2 cells. Thus, these results suggest that the oral administration of MPs for 9 weeks may be associated with the disruption of lipid, Glu, and amino acid metabolism in the liver tissue of obese WT and Lep KO mice.


Subject(s)
Amino Acids , Glucose , Lipid Metabolism , Liver , Mice, Inbred C57BL , Mice, Knockout , Microplastics , Polystyrenes , Animals , Liver/metabolism , Liver/drug effects , Mice , Glucose/metabolism , Lipid Metabolism/drug effects , Amino Acids/metabolism , Administration, Oral , Leptin/metabolism , Adipose Tissue/metabolism , Adipose Tissue/drug effects , Adipogenesis/drug effects , Male , Lipogenesis/drug effects , Obesity/metabolism , Obesity/etiology , Obesity/genetics , Humans , Lipolysis/drug effects
3.
Sci Rep ; 14(1): 12430, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816541

ABSTRACT

Dietary trans 10, cis 12-conjugated linoleic acid (t10c12-CLA) is a potential candidate in anti-obesity trials. A transgenic mouse was previously successfully established to determine the anti-obesity properties of t10c12-CLA in male mice that could produce endogenous t10c12-CLA. To test whether there is a different impact of t10c12-CLA on lipid metabolism in both sexes, this study investigated the adiposity and metabolic profiles of female Pai mice that exhibited a dose-dependent expression of foreign Pai gene and a shift of t10c12-CLA content in tested tissues. Compared to their gender-match wild-type littermates, Pai mice had no fat reduction but exhibited enhanced lipolysis and thermogenesis by phosphorylated hormone-sensitive lipase and up-regulating uncoupling proteins in brown adipose tissue. Simultaneously, Pai mice showed hepatic steatosis and hypertriglyceridemia by decreasing gene expression involved in lipid and glucose metabolism. Further investigations revealed that t10c10-CLA induced excessive prostaglandin E2, adrenaline, corticosterone, glucagon and inflammatory factors in a dose-dependent manner, resulting in less heat release and oxygen consumption in Pai mice. Moreover, fibroblast growth factor 21 overproduction only in monoallelic Pai/wt mice indicates that it was sensitive to low doses of t10c12-CLA. These results suggest that chronic t10c12-CLA has system-wide effects on female health via synergistic actions of various hormones.


Subject(s)
Corticosterone , Dinoprostone , Epinephrine , Fibroblast Growth Factors , Glucagon , Linoleic Acids, Conjugated , Mice, Transgenic , Animals , Female , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Mice , Linoleic Acids, Conjugated/pharmacology , Linoleic Acids, Conjugated/metabolism , Corticosterone/metabolism , Dinoprostone/metabolism , Glucagon/metabolism , Epinephrine/metabolism , Thermogenesis/drug effects , Thermogenesis/genetics , Male , Lipid Metabolism/drug effects , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/drug effects , Fatty Liver/metabolism , Fatty Liver/genetics , Lipolysis/drug effects , Hypertriglyceridemia/metabolism , Hypertriglyceridemia/genetics , Adiposity/drug effects
4.
J Agric Food Chem ; 72(22): 12582-12595, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38788215

ABSTRACT

Renal tubular ectopic lipid deposition (ELD) plays a significant role in the development of chronic kidney disease, posing a great threat to human health. The present work aimed to explore the intervention effect and potential molecular mechanism of a purified tea polysaccharide (TPS3A) on renal tubular ELD. The results demonstrated that TPS3A effectively improved kidney function and slowed the progression of tubulointerstitial fibrosis in high-fat-diet (HFD)-exposed ApoE-/- mice. Additionally, TPS3A notably suppressed lipogenesis and enhanced lipolysis, as shown by the downregulation of lipogenesis markers (SREBP-1 and FAS) and the upregulation of lipolysis markers (HSL and ATGL), thereby reducing renal tubular ELD in HFD-fed ApoE-/- mice and palmitic-acid-stimulated HK-2 cells. The AMPK-SIRT1-FoxO1 axis is a core signal pathway in regulating lipid deposition. Consistently, TPS3A significantly increased the levels of phosphorylated-AMPK, SIRT1, and deacetylation of Ac-FoxO1. However, these effects of TPS3A on lipogenesis and lipolysis were abolished by AMPK siRNA, SIRT1 siRNA, and FoxO1 inhibitor, resulting in exacerbated lipid deposition. Taken together, TPS3A shows promise in ameliorating renal tubular ELD by inhibiting lipogenesis and promoting lipolysis through the AMPK-SIRT1-FoxO1 signaling pathway.


Subject(s)
Diet, High-Fat , Lipogenesis , Lipolysis , Mice, Inbred C57BL , Polysaccharides , Animals , Lipogenesis/drug effects , Mice , Lipolysis/drug effects , Male , Diet, High-Fat/adverse effects , Humans , Polysaccharides/pharmacology , Polysaccharides/administration & dosage , Sirtuin 1/metabolism , Sirtuin 1/genetics , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Kidney Tubules/metabolism , Kidney Tubules/drug effects , Camellia sinensis/chemistry , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Tea/chemistry , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics
5.
Mol Cell Endocrinol ; 588: 112225, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38570133

ABSTRACT

Although Liraglutide (Lira) increases serum irisin levels in type 2 diabetes mellitus (T2DM), it is unclear whether it induces expression of uncoupling protein 1 (UCP1) of adipocytes via promoting irisin secretion from skeletal muscle. Male T2DM rats were treated with 0.4 mg/kg/d Lira twice a day for 8 weeks, and the protein expression of phosphorylated AMP kinase (p-AMPK), phosphorylated acetyl-CoA carboxylase 1 (p-ACC1) and UCP1 in white adipose tissues were detected. Differentiated C2C12 cells were treated with palmitic acid (PA) and Lira to detect the secretion of irisin. Differentiated 3T3-L1 cells were treated with irisin, supernatant from Lira-treated C2C12 cells, Compound C or siAMPKα1, the triglyceride (TG) content and the related gene expression were measured. The transcriptome in irisin-treated differentiated 3T3-L1 cells was analyzed. Lira elevated serum irisin levels, decreased the adipocyte size and increased the protein expression of UCP1, p-AMPK and p-ACC1 in WAT. Moreover, it promoted the expression of PGC1α and FNDC5, the secretion of irisin in PA-treated differentiated C2C12 cells. The irisin and supernatant decreased TG synthesis and promoted the expression of browning- and lipolysis-related genes in differentiated 3T3-L1 cells. While Compound C and siAMPKα1 blocked AMPK activities and expression, irisin partly reversed the pathway. Finally, the transcriptome analysis indicated that differently expressed genes are mainly involved in browning and lipid metabolism. Overall, our findings showed that Lira modulated muscle-to-adipose signaling pathways in diabetes via irisin-mediated AMPKα/ACC1/UCP1/PPARα pathway. Our results suggest a new mechanism for the treatment of T2DM by Lira.


Subject(s)
3T3-L1 Cells , Adipocytes , Fibronectins , Lipolysis , Liraglutide , Uncoupling Protein 1 , Animals , Fibronectins/metabolism , Fibronectins/genetics , Mice , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Male , Adipocytes/metabolism , Adipocytes/drug effects , Lipolysis/drug effects , Liraglutide/pharmacology , Rats , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , AMP-Activated Protein Kinases/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Rats, Sprague-Dawley , Cell Differentiation/drug effects , Gene Expression Regulation/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects
6.
Mol Cell Endocrinol ; 589: 112249, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38604550

ABSTRACT

Using a three-dimensional (3-D) in vitro culture model, we report the dose dependent effect of 17ß-estradiol and testosterone on the adipogenic differentiation and maturation of human adipose derived stem cells (hASCs) obtained from female and male patients. Considering sexual dimorphism, we expected male and female adipocytes to respond differently to the sex steroids. Both male and female hASC spheroids were exposed to 100 nM and 500 nM of 17ß-estradiol and testosterone either at the beginning of the adipogenic maturation (Phase I) to discourage intracellular triglyceride accumulation or exposed after adipogenic maturation (Phase II) to reduce the intracellular triglyceride accumulation. The results show that 17ß-estradiol leads to a dose dependent reduction in intracellular triglyceride accumulation in female hASC spheroids compared to the both untreated and testosterone-treated cells. Affirming our hypothesis, 17ß-estradiol prevented intracellular triglyceride accumulation during Phase I, while it stimulated lipolysis during Phase II. PPAR-γ and adiponectin gene expression also reduced upon 17ß-estradiol treatment in female cells. Interestingly, 17ß-estradiol and testosterone had only a modest effect on the male hASC spheroids. Collectively, our findings suggest that 17ß-estradiol can prevent fat accumulation in adipocytes during early and late stages of maturation in females.


Subject(s)
Adipogenesis , Adiponectin , Estradiol , Sex Characteristics , Testosterone , Humans , Adipogenesis/drug effects , Male , Female , Estradiol/pharmacology , Testosterone/pharmacology , Adiponectin/metabolism , Triglycerides/metabolism , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Spheroids, Cellular/cytology , Cells, Cultured , PPAR gamma/metabolism , PPAR gamma/genetics , Adipocytes/drug effects , Adipocytes/metabolism , Adipocytes/cytology , Stem Cells/metabolism , Stem Cells/drug effects , Stem Cells/cytology , Adipose Tissue/cytology , Adipose Tissue/metabolism , Adipose Tissue/drug effects , Lipolysis/drug effects
7.
Mol Cell Endocrinol ; 589: 112250, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38663485

ABSTRACT

The most common form of hypercortisolism is iatrogenic Cushing's syndrome. Lipodystrophy and metabolic disorders can result from the use of exogenous glucocorticoids (GC). Adipocytes play an important role in the production of circulating exosomal microRNAs, and knockdown of Dicer promotes lipodystrophy. The aim of this study is to investigate the effect of GCs on epididymal fat and to assess their influence on circulating microRNAs associated with fat turnover. The data indicate that despite the reduction in adipocyte volume due to increased lipolysis and apoptosis, there is no difference in tissue mass, suggesting that epididymal fat pad, related to animal size, is not affected by GC treatment. Although high concentrations of GC have no direct effect on epididymal microRNA-150-5p expression, GC can induce epididymal adipocyte uptake of microRNA-150-5p, which regulates transcription factor Ppar gamma during adipocyte maturation. In addition, GC treatment increased lipolysis and decreased glucose-derived lipid and glycerol incorporation. In conclusion, the similar control and GC epididymal fat mass results from increased dense fibrogenic tissue and decreased adipocyte volume induced by the lipolytic effect of GC. These findings demonstrate the complexity of epididymal fat. They also highlight how this disease alters fat distribution. This study is the first in a series published by our laboratory showing the detailed mechanism of adipocyte turnover in this disease.


Subject(s)
Adipocytes , Epididymis , Glucocorticoids , Lipolysis , MicroRNAs , Male , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Epididymis/drug effects , Epididymis/metabolism , Epididymis/pathology , Adipocytes/drug effects , Adipocytes/metabolism , Glucocorticoids/adverse effects , Glucocorticoids/pharmacology , Lipolysis/drug effects , Mice , Apoptosis/drug effects , Mice, Inbred C57BL , PPAR gamma/metabolism , PPAR gamma/genetics
8.
Cell Rep Med ; 5(5): 101525, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38663398

ABSTRACT

Spinal cord injury (SCI) increases the risk of cardiometabolic disorders, including hypertension, dyslipidemia, and insulin resistance. Not only does SCI lead to pathological expansion of adipose tissue, but it also leads to ectopic lipid accumulation in organs integral to glucose and insulin metabolism. The pathophysiological changes that underlie adipose tissue dysfunction after SCI are unknown. Here, we find that SCI exacerbates lipolysis in epididymal white adipose tissue (eWAT). Whereas expression of the α2δ1 subunit of voltage-gated calcium channels increases in calcitonin gene-related peptide-positive dorsal root ganglia neurons that project to eWAT, conditional deletion of the gene encoding α2δ1 in these neurons normalizes eWAT lipolysis after SCI. Furthermore, α2δ1 pharmacological blockade through systemic administration of gabapentin also normalizes eWAT lipolysis after SCI, preventing ectopic lipid accumulation in the liver. Thus, our study provides insight into molecular causes of maladaptive sensory processing in eWAT, facilitating the development of strategies to reduce metabolic and cardiovascular complications after SCI.


Subject(s)
Adipose Tissue, White , Homeostasis , Lipolysis , Spinal Cord Injuries , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Animals , Lipolysis/drug effects , Male , Mice , Adipose Tissue, White/metabolism , Neuronal Plasticity/drug effects , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , Adipose Tissue/metabolism , Mice, Inbred C57BL , Neurons/metabolism , Neurons/pathology , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide/genetics
9.
Nature ; 625(7993): 175-180, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38093006

ABSTRACT

Oxytocin (OXT), a nine-amino-acid peptide produced in the hypothalamus and released by the posterior pituitary, has well-known actions in parturition, lactation and social behaviour1, and has become an intriguing therapeutic target for conditions such as autism and schizophrenia2. Exogenous OXT has also been shown to have effects on body weight, lipid levels and glucose homeostasis1,3, suggesting that it may also have therapeutic potential for metabolic disease1,4. It is unclear, however, whether endogenous OXT participates in metabolic homeostasis. Here we show that OXT is a critical regulator of adipose tissue lipolysis in both mice and humans. In addition, OXT serves to facilitate the ability of ß-adrenergic agonists to fully promote lipolysis. Most surprisingly, the relevant source of OXT in these metabolic actions is a previously unidentified subpopulation of tyrosine hydroxylase-positive sympathetic neurons. Our data reveal that OXT from the peripheral nervous system is an endogenous regulator of adipose and systemic metabolism.


Subject(s)
Adipose Tissue , Lipolysis , Neurons , Oxytocin , Animals , Humans , Mice , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Adrenergic beta-Agonists/pharmacology , Lipolysis/drug effects , Neurons/metabolism , Oxytocin/metabolism , Oxytocin/pharmacology , Tyrosine 3-Monooxygenase/metabolism
11.
J Clin Endocrinol Metab ; 108(3): 653-664, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36240323

ABSTRACT

CONTEXT: Exogenous ketone body administration lowers circulating glucose levels but the underlying mechanisms are uncertain. OBJECTIVE: We tested the hypothesis that administration of the ketone body ß-hydroxybutyrate (ßOHB) acutely increases insulin sensitivity via feedback suppression of circulating free fatty acid (FFA) levels. METHODS: In a randomized, single-blinded crossover design, 8 healthy men were studied twice with a growth hormone (GH) infusion to induce lipolysis in combination with infusion of either ßOHB or saline. Each study day comprised a basal period and a hyperinsulinemic-euglycemic clamp combined with a glucose tracer and adipose tissue and skeletal muscle biopsies. RESULTS: ßOHB administration profoundly suppressed FFA levels concomitantly with a significant increase in glucose disposal and energy expenditure. This was accompanied by a many-fold increase in skeletal muscle content of both ßOHB and its derivative acetoacetate. CONCLUSION: Our data unravel an insulin-sensitizing effect of ßOHB, which we suggest is mediated by concomitant suppression of lipolysis.


Subject(s)
Human Growth Hormone , Insulin Resistance , Ketone Bodies , Humans , Male , 3-Hydroxybutyric Acid/pharmacology , Fatty Acids, Nonesterified , Glucose , Glucose Clamp Technique , Growth Hormone , Human Growth Hormone/pharmacology , Insulin/pharmacology , Insulin Resistance/physiology , Ketone Bodies/pharmacology , Ketone Bodies/therapeutic use , Lipolysis/drug effects , Lipolysis/physiology
12.
Int J Mol Sci ; 23(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35806278

ABSTRACT

Casein kinase 2 (CK2) is a ubiquitously expressed serine/threonine kinase and is upregulated in human obesity. CX-4945 (Silmitasertib) is a CK2 inhibitor with anti-cancerous and anti-adipogenic activities. However, the anti-adipogenic and pro-lipolytic effects and the mode of action of CX-4945 in (pre)adipocytes remain elusive. Here, we explored the effects of CX-4945 on adipogenesis and lipolysis in differentiating and differentiated 3T3-L1 cells, a murine preadipocyte cell line. CX-4945 at 15 µM strongly reduced lipid droplet (LD) accumulation and triglyceride (TG) content in differentiating 3T3-L1 cells, indicating the drug's anti-adipogenic effect. Mechanistically, CX-4945 reduced the expression levels of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and perilipin A in differentiating 3T3-L1 cells. Strikingly, CX-4945 further increased the phosphorylation levels of cAMP-activated protein kinase (AMPK) and liver kinase B-1 (LKB-1) while decreasing the intracellular ATP content in differentiating 3T3-L1 cells. In differentiated 3T3-L1 cells, CX-4945 had abilities to stimulate glycerol release and elevate the phosphorylation levels of hormone-sensitive lipase (HSL), pointing to the drug's pro-lipolytic effect. In addition, CX-4945 induced the activation of extracellular signal-regulated kinase-1/2 (ERK-1/2), and PD98059, an inhibitor of ERK-1/2, attenuated the CX4945-induced glycerol release and HSL phosphorylation in differentiated 3T3-L1 cells, indicating the drug's ERK-1/2-dependent lipolysis. In summary, this investigation shows that CX-4945 has strong anti-adipogenic and pro-lipolytic effects on differentiating and differentiated 3T3-L1 cells, mediated by control of the expression and phosphorylation levels of CK2, C/EBP-α, PPAR-γ, FAS, ACC, perilipin A, AMPK, LKB-1, ERK-1/2, and HSL.


Subject(s)
Adipogenesis , Casein Kinase II , Naphthyridines , Phenazines , 3T3-L1 Cells , AMP-Activated Protein Kinases/metabolism , Animals , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Casein Kinase II/antagonists & inhibitors , Casein Kinase II/metabolism , Cell Differentiation/drug effects , Cyclic AMP-Dependent Protein Kinases/metabolism , Glycerol/pharmacology , Humans , Lipolysis/drug effects , Mice , Naphthyridines/pharmacology , PPAR gamma/metabolism , Perilipin-1/metabolism , Phenazines/pharmacology , Sterol Esterase/metabolism
13.
Int J Mol Sci ; 23(9)2022 Apr 23.
Article in English | MEDLINE | ID: mdl-35563078

ABSTRACT

Oncostatin M (OSM) is an immune cell-derived cytokine that is upregulated in adipose tissue in obesity. Upon binding its receptor (OSMR), OSM induces the phosphorylation of the p66 subunit of Src homology 2 domain-containing transforming protein 1 (SHC1), called p66Shc, and activates the extracellular signal-related kinase (ERK) pathway. Mice with adipocyte-specific OSMR deletion (OsmrFKO) are insulin resistant and exhibit adipose tissue inflammation, suggesting that intact adipocyte OSM-OSMR signaling is necessary for maintaining adipose tissue health. How OSM affects specific adipocyte functions is still unclear. Here, we examined the effects of OSM on adipocyte lipolysis. We treated 3T3-L1 adipocytes with OSM, insulin, and/or inhibitors of SHC1 and ERK and measured glycerol release. We also measured phosphorylation of p66Shc, ERK, and insulin receptor substrate-1 (IRS1) and the expression of lipolysis-associated genes in OSM-exposed 3T3-L1 adipocytes and primary adipocytes from control and OsmrFKO mice. We found that OSM induces adipocyte lipolysis via a p66Shc-ERK pathway and inhibits the suppression of lipolysis by insulin. Further, OSM induces phosphorylation of inhibitory IRS1 residues. We conclude that OSM is a stimulator of lipolysis and inhibits adipocyte insulin response. Future studies will determine how these roles of OSM affect adipose tissue function in health and disease.


Subject(s)
Insulin , Lipolysis , Oncostatin M , 3T3-L1 Cells/metabolism , Adipocytes/metabolism , Animals , Extracellular Signal-Regulated MAP Kinases/metabolism , Insulin/metabolism , Insulin, Regular, Human , Lipolysis/drug effects , Mice , Oncostatin M/metabolism , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism
14.
J Nutr Biochem ; 106: 109017, 2022 08.
Article in English | MEDLINE | ID: mdl-35461903

ABSTRACT

Lipophagy, a form of selective autophagy, degrades lipid droplet (LD) in adipose tissue and the liver. The chemotherapeutic isothiocyanate sulforaphane (SFN) contributes to lipolysis through the activation of hormone-sensitive lipase and the browning of white adipocytes. However, the details concerning the regulation of lipolysis in adipocytes by SFN-mediated autophagy remain unclear. In this study, we investigated the effects of SFN on autophagy in the epididymal fat of mice fed a high-fat diet (HFD) or control-fat diet and on the molecular mechanisms of autophagy in differentiated 3T3-L1 cells. Western blotting revealed that the protein expression of lipidated LC3 (LC3-II), an autophagic substrate, was induced after 3T3-L1 adipocytes treatment with SFN. In addition, SFN increased the LC3-II protein expression in the epididymal fat of mice fed an HFD. Immunofluorescence showed that the SFN-induced LC3 expression was co-localized with LDs in 3T3-L1 adipocytes and with perilipin, the most abundant adipocyte-specific protein, in adipocytes of mice fed an HFD. Next, we confirmed that SFN activates autophagy flux in differentiated 3T3-L1 cells using the mCherry-EGFP-LC3 and GFP-LC3-RFP-LC3ΔG probe. Furthermore, we examined the induction mechanisms of autophagy by SFN in 3T3-L1 adipocytes using western blotting. ATG5 knockdown partially blocked the SFN-induced release of fatty acids from LDs in mature 3T3-L1 adipocytes. SFN time-dependently elicited the phosphorylation of AMPK, the dephosphorylation of mTOR, and the phosphorylation of ULK1 in differentiated 3T3-L1 cells. Taken together, these results suggest that SFN may provoke lipophagy through AMPK-mTOR-ULK1 pathway signaling, resulting in partial lipolysis of adipocytes.


Subject(s)
AMP-Activated Protein Kinases , Autophagy-Related Protein-1 Homolog , Isothiocyanates , TOR Serine-Threonine Kinases , 3T3-L1 Cells , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Adipocytes, White/drug effects , Adipocytes, White/metabolism , Animals , Autophagy/drug effects , Autophagy-Related Protein-1 Homolog/metabolism , Isothiocyanates/pharmacology , Lipolysis/drug effects , Mice , Signal Transduction/drug effects , Sulfoxides/pharmacology , TOR Serine-Threonine Kinases/metabolism
15.
Nat Commun ; 13(1): 942, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35177603

ABSTRACT

Insulin analogs have been developed to treat diabetes with focus primarily on improving the time action profile without affecting ligand-receptor interaction or functional selectivity. As a result, inherent liabilities (e.g. hypoglycemia) of injectable insulin continue to limit the true therapeutic potential of related agents. Insulin dimers were synthesized to investigate whether partial agonism of the insulin receptor (IR) tyrosine kinase is achievable, and to explore the potential for tissue-selective systemic insulin pharmacology. The insulin dimers induced distinct IR conformational changes compared to native monomeric insulin and substrate phosphorylation assays demonstrated partial agonism. Structurally distinct dimers with differences in conjugation sites and linkers were prepared to deliver desirable IR partial agonist (IRPA). Systemic infusions of a B29-B29 dimer in vivo revealed sharp differences compared to native insulin. Suppression of hepatic glucose production and lipolysis were like that attained with regular insulin, albeit with a distinctly shallower dose-response. In contrast, there was highly attenuated stimulation of glucose uptake into muscle. Mechanistic studies indicated that IRPAs exploit tissue differences in receptor density and have additional distinctions pertaining to drug clearance and distribution. The hepato-adipose selective action of IRPAs is a potentially safer approach for treatment of diabetes.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 1/drug therapy , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Receptor, Insulin/agonists , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Alloxan/administration & dosage , Alloxan/toxicity , Animals , Blood Glucose/drug effects , Blood Glucose/metabolism , CHO Cells , Cricetulus , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/chemically induced , Diabetes Mellitus, Type 1/metabolism , HEK293 Cells , Humans , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Lipolysis/drug effects , Liver/drug effects , Liver/metabolism , Male , Mice , Rats , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Signal Transduction/drug effects , Swine , Swine, Miniature
16.
Int J Mol Sci ; 23(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35163277

ABSTRACT

Hydrogen sulfide (H2S) and inorganic polysulfides are important signaling molecules; however, little is known about their role in the adipose tissue. We examined the effect of H2S and polysulfides on adipose tissue lipolysis. H2S and polysulfide production by mesenteric adipose tissue explants in rats was measured. The effect of Na2S and Na2S4, the H2S and polysulfide donors, respectively, on lipolysis markers, plasma non-esterified fatty acids (NEFA) and glycerol, was examined. Na2S but not Na2S4 increased plasma NEFA and glycerol in a time- and dose-dependent manner. Na2S increased cyclic AMP but not cyclic GMP concentration in the adipose tissue. The effect of Na2S on NEFA and glycerol was abolished by the specific inhibitor of protein kinase A, KT5720. The effect of Na2S on lipolysis was not abolished by propranolol, suggesting no involvement of ß-adrenergic receptors. In addition, Na2S had no effect on phosphodiesterase activity in the adipose tissue. Obesity induced by feeding rats a highly palatable diet for 1 month was associated with increased plasma NEFA and glycerol concentrations, as well as greater H2S production in the adipose tissue. In conclusion, H2S stimulates lipolysis and may contribute to the enhanced lipolysis associated with obesity.


Subject(s)
Adipose Tissue/metabolism , Hydrogen Sulfide/metabolism , Lipolysis/physiology , Adipose Tissue/drug effects , Animals , Cyclic GMP/metabolism , Fatty Acids, Nonesterified/metabolism , Lipolysis/drug effects , Male , Metabolic Syndrome/genetics , Metabolic Syndrome/metabolism , Metabolic Syndrome/physiopathology , Obesity/metabolism , Rats , Rats, Wistar , Receptors, Adrenergic, beta/metabolism , Sulfides/metabolism
17.
Biochem Pharmacol ; 197: 114910, 2022 03.
Article in English | MEDLINE | ID: mdl-35026188

ABSTRACT

Cannabidiol (CBD) is a non-psychoactive phytocannabinoid found in the Cannabis sativa plant. Human exposure to CBD can be through recreational marijuana use, commercially available CBD-containing products, and medical treatments. Previous studies found that cannabidiol may activate the master regulator of adipogenesis, peroxisome proliferator activated receptor gamma (PPARγ). Here we investigated the effects of CBD on adipogenesis in human and mouse multipotent mesenchymal stromal stem cells (MSCs). We tested the effects of CBD on nuclear receptor activation and adipogenic potential to demonstrate the mechanism of CBD effects and employed the in vitro MSC differentiation models to assess adipogenic effects of CBD.Using transient transfection assays, we demonstrated that CBD activated mouse and human PPARγ, but not its heterodimeric partner, the retinoid 'X' receptor, RXR. Our results showed that CBD increased lipid accumulation and the expression of adipogenic genes in mouse and human MSCs in vitro. Adipogenic differentiation induced by CBD was significantly decreased by the PPARγ antagonist T0070907, supporting the hypothesis that CBD promoted differentiation via PPARγ. Taken together, our results indicate that in humans and in mice, CBD induced adipogenic differentiation in MSCs through a PPARγ-dependent mechanism.


Subject(s)
Adipogenesis/drug effects , Cannabidiol/pharmacology , Lipogenesis/drug effects , Lipolysis/drug effects , Mesenchymal Stem Cells/drug effects , PPAR gamma/agonists , Adipogenesis/physiology , Animals , Benzamides/pharmacology , Cell Line, Transformed , Humans , Lipogenesis/physiology , Lipolysis/physiology , Mesenchymal Stem Cells/metabolism , Mice , PPAR gamma/antagonists & inhibitors , PPAR gamma/metabolism , Pyridines/pharmacology
18.
Biochem Pharmacol ; 197: 114933, 2022 03.
Article in English | MEDLINE | ID: mdl-35093393

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is becoming an increasingly serious disease worldwide. Unfortunately, no specific drug has been approved to treat NAFLD. Accumulating evidence suggests that lipotoxicity, which is induced by an excess of intracellular triacylglycerols (TAGs), is a potential mechanism underlying the ill-defined progression of NAFLD. Under physiological conditions, a balance is maintained between TAGs and free fatty acids (FFAs) in the liver. TAGs are catabolized to FFAs through neutral lipolysis and/or lipophagy, while FFAs can be anabolized to TAGs through an esterification reaction. However, in the livers of patients with NAFLD, lipophagy appears to fail. Reversing this abnormal state through several lipophagic molecules (mTORC1, AMPK, PLIN, etc.) facilitates NAFLD amelioration; therefore, restoring failed lipophagy may be a highly efficient therapeutic strategy for NAFLD. Here, we outline the lipophagy phases with the relevant important proteins and discuss the roles of lipophagy in the progression of NAFLD. Additionally, the potential candidate drugs with therapeutic value targeting these proteins are discussed to show novel strategies for future treatment of NAFLD.


Subject(s)
Autophagy/drug effects , Drug Delivery Systems/methods , Lipid Metabolism/drug effects , Liver/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagy/physiology , Berberine/administration & dosage , Fatty Acids, Nonesterified/antagonists & inhibitors , Fatty Acids, Nonesterified/metabolism , Fibroblast Growth Factors/administration & dosage , Humans , Lipid Metabolism/physiology , Lipolysis/drug effects , Lipolysis/physiology , Liver/drug effects , Mechanistic Target of Rapamycin Complex 1/administration & dosage , Transient Receptor Potential Channels/administration & dosage , Triglycerides/antagonists & inhibitors , Triglycerides/metabolism
19.
Food Funct ; 13(1): 131-142, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34870663

ABSTRACT

Medium-chain triglyceride (MCT) and eicosapentaenoic acid (EPA) have been widely applied in nutritional supplementation. However, when administered individually or mixed, they were unable to maximize their nutritional value. Hence, EPA-rich medium- and long-chain triacylglycerol (MLCT) was synthesized from MCT and EPA-rich fish oil (FO) by enzymatic transesterification. The fatty acids in triglyceride (TAG) were rearranged which resulted in significant changes in TAG profiles compared to the physical mixture of MCT and FO (PM). EPA-containing MML (MML, MLM and LMM) and LLM (LLM, LML and MLL) type TAGs account for 70.21%. The fate of different oils (MCT, FO, PM, and MLCT) across the gastrointestinal tract was subsequently simulated using an in vitro digestion model. The results showed that the physical and structural characteristics of different oils during digestion depended upon the oil type and the microenvironment they were in. After 120 min of small intestine digestion, the degree of hydrolysis for MLCT was higher than that for the other three oils. The final FFA release level was in the following order: MLCT (102.79%) > MCT (95.20%) > PM (85.81%) > FO (74.18%). This can be attributed to the composition and positional distribution of fatty acids in TAGs. What's more, LCFAs (EPA) in MLCT mainly existed in the form of sn-2 MAG, which was conducive to their subsequent absorption and transport. These results may aid in the future rational design of structural lipids, thereby regulating lipid digestion and maximizing the nutritional value of oils.


Subject(s)
Digestion/drug effects , Eicosapentaenoic Acid , Fatty Acids , Triglycerides , Eicosapentaenoic Acid/chemistry , Eicosapentaenoic Acid/metabolism , Eicosapentaenoic Acid/pharmacology , Esterification , Fatty Acids/chemistry , Fatty Acids/metabolism , Lipolysis/drug effects , Models, Biological , Triglycerides/chemistry , Triglycerides/metabolism , Triglycerides/pharmacology
20.
J Clin Invest ; 132(2)2022 01 18.
Article in English | MEDLINE | ID: mdl-34847077

ABSTRACT

The dysregulation of energy homeostasis in obesity involves multihormone resistance. Although leptin and insulin resistance have been well characterized, catecholamine resistance remains largely unexplored. Murine ß3-adrenergic receptor expression in adipocytes is orders of magnitude higher compared with that of other isoforms. While resistant to classical desensitization pathways, its mRNA (Adrb3) and protein expression are dramatically downregulated after ligand exposure (homologous desensitization). ß3-Adrenergic receptor downregulation also occurs after high-fat diet feeding, concurrent with catecholamine resistance and elevated inflammation. This downregulation is recapitulated in vitro by TNF-α treatment (heterologous desensitization). Both homologous and heterologous desensitization of Adrb3 were triggered by induction of the pseudokinase TRIB1 downstream of the EPAC/RAP2A/PI-PLC pathway. TRIB1 in turn degraded the primary transcriptional activator of Adrb3, CEBPα. EPAC/RAP inhibition enhanced catecholamine-stimulated lipolysis and energy expenditure in obese mice. Moreover, adipose tissue expression of genes in this pathway correlated with body weight extremes in a cohort of genetically diverse mice and with BMI in 2 independent cohorts of humans. These data implicate a signaling axis that may explain reduced hormone-stimulated lipolysis in obesity and resistance to therapeutic interventions with ß3-adrenergic receptor agonists.


Subject(s)
Adipocytes/metabolism , Catecholamines/pharmacology , Down-Regulation/drug effects , Drug Resistance/drug effects , Obesity/metabolism , Receptors, Adrenergic, beta-3/metabolism , 3T3-L1 Cells , Animals , Down-Regulation/genetics , Drug Resistance/genetics , Energy Metabolism/drug effects , Energy Metabolism/genetics , Lipolysis/drug effects , Lipolysis/genetics , Male , Mice , Obesity/drug therapy , Obesity/genetics , Receptors, Adrenergic, beta-3/genetics , Signal Transduction/drug effects , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...