Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.534
Filter
1.
J Transl Med ; 22(1): 534, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835045

ABSTRACT

BACKGROUND: Macrophages are involved in tissue homeostasis, angiogenesis and immunomodulation. Proangiogenic and anti-inflammatory macrophages (regulatory macrophages, Mreg) can be differentiated in-vitro from CD14+ monocytes by using a defined cell culture medium and a stimulus of IFNγ. AIM OF THE STUDY: To scrutinize the potential impact of temporal IFNγ exposure on macrophage differentiation as such exposure may lead to the emergence of a distinct and novel macrophage subtype. METHODS: Differentiation of human CD14+ monocytes to Mreg was performed using a GMP compliant protocol and administration of IFNγ on day 6. Monocytes from the same donor were in parallel differentiated to MregIFNγ0 using the identical protocol but with administration of IFNγ on day 0. Cell characterization was performed using brightfield microscopy, automated and metabolic cell analysis, transmission electron microscopy, flow cytometry, qPCR and secretome profiling. RESULTS: Mreg and MregIFNγ0 showed no differences in cell size and volume. However, phenotypically MregIFNγ0 exhibited fewer intracellular vesicles/vacuoles but larger pseudopodia-like extensions. MregIFNγ0 revealed reduced expression of IDO and PD-L1 (P < 0.01 for both). They were positive for CD80, CD14, CD16 and CD38 (P < 0.0001vs. Mreg for all), while the majority of MregIFNγ0 did not express CD206, CD56, and CD103 on their cell surface (P < 0.01 vs. Mreg for all). In terms of their secretomes, MregIFNγ0 differed significantly from Mreg. MregIFNγ0 media exhibited reduced levels of ENA-78, Osteopontin and Serpin E1, while the amounts of MIG (CXCL9) and IP10 were increased. CONCLUSION: Exposing CD14+ monocytes to an alternatively timed IFNγ stimulation results in a novel macrophage subtype which possess additional M1-like features (MregIFNγ0). MregIFNγ0 may therefore have the potential to serve as cellular therapeutics for clinical applications beyond those covered by M2-like Mreg, including immunomodulation and tumor treatment.


Subject(s)
Cell Differentiation , Interferon-gamma , Macrophages , Phenotype , Humans , Interferon-gamma/metabolism , Interferon-gamma/pharmacology , Macrophages/metabolism , Macrophages/drug effects , Cell Differentiation/drug effects , Monocytes/metabolism , Monocytes/drug effects , Time Factors , Lipopolysaccharide Receptors/metabolism
2.
Food Res Int ; 186: 114338, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729719

ABSTRACT

Women with the extremely prevalent polycystic ovary syndromegather multiple cardiovascular risk factors and chronic subclinical inflammation. Interactions between diet, adiposity, and gut microbiota modulate intestinal permeabilityand bacterial product translocation, and may contribute to the chronic inflammation process associated with the polycystic ovary syndrome. In the present study, we aimed to address the effects of obesity, functional hyperandrogenism, and diverse oral macronutrients on intestinal permeabilityby measuring circulating markers of gut barrier dysfunction and endotoxemia. Participants included 17 non-hyperandrogenic control women, 17 women with polycystic ovary syndrome, and 19 men that were submitted to glucose, lipid, and protein oral loads. Lipopolysaccharide-binding protein, plasma soluble CD14, succinate, zonulin family peptide, and glucagon-like peptide-2 were determined at fasting and after oral challenges. Macronutrient challenges induced diverse changes on circulating intestinal permeabilitybiomarkers in the acute postprancial period, with lipids and proteins showing the most unfavorable and favorable effects, respectively. Particularly, lipopolysaccharide-binding protein, zonulin family peptide, and glucagon-like peptide-2 responses were deregulated by the presence of obesity after glucose and lipid challenges. Obese subjects showed higher fasting intestinal permeabilitybiomarkers levels than non-obese individuals, except for plasma soluble CD14. The polycystic ovary syndromeexacerbated the effect of obesity further increasing fasting glucagon-like peptide-2, lipopolysaccharide-binding protein, and succinate concentrations. We observed specific interactions of the polycystic ovary syndromewith obesity in the postprandial response of succinate, zonulin family peptide, and glucagon-like peptide-2. In summary, obesity and polycystic ovary syndromemodify the effect of diverse macronutrients on the gut barrier, and alsoinfluence intestinal permeabilityat fasting,contributing to the morbidity of functional hyperandrogenism by inducing endotoxemia and subclinical chronic inflammation.


Subject(s)
Fasting , Glucagon-Like Peptide 2 , Obesity , Permeability , Polycystic Ovary Syndrome , Humans , Polycystic Ovary Syndrome/metabolism , Female , Adult , Fasting/blood , Male , Glucagon-Like Peptide 2/blood , Intestinal Mucosa/metabolism , Gastrointestinal Microbiome , Nutrients , Young Adult , Haptoglobins/metabolism , Endotoxemia , Lipopolysaccharide Receptors/blood , Acute-Phase Proteins/metabolism , Biomarkers/blood , Membrane Glycoproteins/blood , Membrane Glycoproteins/metabolism , Dietary Fats , Glucose/metabolism , Intestinal Barrier Function , Carrier Proteins , Protein Precursors
3.
Nutrients ; 16(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732600

ABSTRACT

BACKGROUND: Exercise and the consumption of sugars result in a dysfunction of the intestinal barrier (IB). Here, we determined the effect of sugar in a natural matrix on the intestinal barrier after moderate (A) and intensive endurance exercise (B). METHOD: The IB function was determined before (pre) and after running (post), and 120 and 180 min after consuming the drink by measuring serum endotoxin concentrations (lipopolysaccharides-LPS), IL-6, CD14, and i-FABP. In study A, nonspecifically trained participants (n = 24, males and females, age 26 ± 4) ran for one hour at 80% of their individual anaerobic threshold (IAT). After finishing, the runners consumed, in a crossover setup, either 500 mL of water, diluted cloudy apple juice (test drink), or an identical drink (placebo) without the fruit juice matrix (FJM). In study B, the participants (n = 30, males and females, age 50 ± 9) completed an ultra-marathon run, were divided into groups, and consumed one of the above-mentioned drinks. RESULTS: Study A: Exercise resulted in a significant increase in serum LPS, i-FABP, and IL-6, which decreased fast after finishing. No impact of the different drinks on LPS i-FABP, or IL-6 could be observed, but there was an impact on CD14. Study B: The ultra-marathon resulted in a strong increase in serum LPS, which decreased fast after finishing in the water and test drink groups, but not in the placebo group. CONCLUSIONS: The consumed drinks did not affect the kinetics of IB regeneration after moderate exercise, but impacted CD14 serum concentrations, indicating possible beneficial effects of the FJM on the immune system. After an ultra-marathon, IB function regenerates very fast. The intake of sugar (placebo) seems to have had a negative impact on IB regeneration, which was diminished by the presence of the FJM.


Subject(s)
Cross-Over Studies , Fruit and Vegetable Juices , Interleukin-6 , Lipopolysaccharide Receptors , Malus , Marathon Running , Physical Endurance , Polyphenols , Humans , Male , Female , Adult , Middle Aged , Polyphenols/pharmacology , Polyphenols/administration & dosage , Physical Endurance/drug effects , Physical Endurance/physiology , Interleukin-6/blood , Lipopolysaccharide Receptors/blood , Marathon Running/physiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Lipopolysaccharides/blood , Fatty Acid-Binding Proteins/blood , Running/physiology , Young Adult
4.
Aging (Albany NY) ; 16(10): 8922-8943, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38787375

ABSTRACT

BACKGROUND: Progress is being made in the prevention and treatment of chronic obstructive pulmonary disease (COPD), but it is still unsatisfactory. With the development of genetic technology, validated genetic information can better explain COPD. OBJECTIVE: The study utilized scRNA-seq and Mendelian randomization analysis of eQTLs to identify crucial genes and potential mechanistic pathways underlying COPD pathogenesis. MEHODS: Single-cell sequencing data were used to identify marker genes for immune cells in the COPD process. Data on eQTLs for immune cell marker genes were obtained from the eQTLGen consortium. To estimate the causal effect of marker genes on COPD, we selected an independent cohort (ukb-b-16751) derived from the UK Biobank database for two-sample Mendelian randomization analysis. Subsequently, we performed immune infiltration analysis, gene set enrichment analysis (GSEA), and co-expression network analysis on the key genes. RESULTS: The 154 immune cell-associated marker genes identified were mainly involved in pathways such as vacuolar cleavage, positive regulation of immune response and regulation of cell activation. Mendelian randomization analysis screened four pairs of marker genes (GZMH, COTL1, CSTA and CD14) were causally associated with COPD. These four key genes were significantly associated with immune cells. In addition, we have identified potential transcription factors associated with these key genes using the Cistrome database, thus contributing to a deeper understanding of the regulatory network of these gene expressions. CONCLUSIONS: This eQTLs Mendelian randomization study identified four key genes (GZMH, COTL1, CSTA, and CD14) causally associated with COPD, providing new insights for prevention and treatment of COPD.


Subject(s)
Mendelian Randomization Analysis , Pulmonary Disease, Chronic Obstructive , Single-Cell Analysis , Pulmonary Disease, Chronic Obstructive/genetics , Humans , Genetic Predisposition to Disease , Quantitative Trait Loci , Male , Genetic Markers , Female , Lipopolysaccharide Receptors/genetics , Middle Aged
5.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(4): 340-344, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38813625

ABSTRACT

OBJECTIVE: To analyze the early diagnostic value of plasma soluble cluster of differentiation 14 subtype (sCD14-ST, Presepsin) in sepsis in a population with suspected sepsis in fever clinic. METHODS: A prospective observational study was conducted. The patients admitted to the fever clinic of Beijing Chaoyang Hospital from April to December 2022 were enrolled as the study objects. According to sequential organ failure assessment (SOFA) score, the patients were divided into low SOFA score group (SOFA score ≤3) and high SOFA score group (SOFA score > 3). Venous blood was collected at the time of admission. The level of plasma Presepsin was detected by chemiluminescence enzyme-linked immunoassay. The level of plasma procalcitonin (PCT) was detected by enzyme-linked immunofluorescence method. The level of C-reactive protein (CRP) was detected by scattering turbidimetry. White blood cell count (WBC) and neutrophil count (NEUT) were measured by automatic blood cell analyzer. For patients with fear of cold or chills, venous blood of upper limbs was taken for blood culture at the time of admission. The differences in inflammatory biomarkers were compared between the two groups. Binary multivariate Logistic regression analysis was used to screen the early risk factors of sepsis in fever outpatients with suspected sepsis. Receiver operator characteristic curve (ROC curve) was drawn to investigate the early diagnostic value of Presepsin and other inflammatory markers in sepsis, and to analyze the optimal cut-off value. RESULTS: A total of 149 fever outpatients with suspected sepsis were enrolled, including 92 patients with low SOFA score and 57 patients with high SOFA score. Plasma PCT and Presepsin levels in the high SOFA score group were significantly higher than those in the low SOFA score group [PCT (µg/L): 0.77 (0.18, 2.02) vs. 0.22 (0.09, 0.71), Presepsin (ng/L): 1 129.00 (785.50, 1 766.50) vs. 563.00 (460.50, 772.25), both P < 0.01]. There was no significant difference in WBC, NEUT, CRP or positive rate of blood culture between the high and low SOFA score groups [WBC (×109/L): 11.32±5.47 vs. 11.14±5.29, NEUT (×109/L): 9.88±4.89 vs. 9.60±5.10, CRP (mg/L): 54.05 (15.95, 128.90) vs. 46.11 (19.60, 104.60), blood culture positivity rate: 42.3% (11/26) vs. 29.4% (10/34), all P > 0.05]. Multivariate Logistic regression analysis showed that Presepsin was an early risk factor for sepsis in suspected sepsis patients in fever clinics [odds ratio (OR) = 16.96, 95% confidence interval (95%CI) was 6.35-45.29, P = 0.000]. ROC curve analysis showed that the early diagnostic value of Presepsin in sepsis was significantly better than WBC, NEUT, CRP, PCT, and blood culture [the area under the ROC curve (AUC) and 95%CI: 0.832 (0.771-0.899) vs. 0.522 (0.424-0.619), 0.532 (0.435-0.629), 0.533 (0.435-0.632), 0.664 (0.574-0.753), 0.554 (0.458-0.650)]. When the optimal cut-off value of Presepsin was 646.50 ng/L, its sensitivity and positive predictive value were higher than those of WBC, NEUT, CRP, and PCT (sensitivity: 89.5% vs. 38.6%, 68.4%, 38.6%, 57.9%; positive predictive value: 64.6% vs. 44.9%, 44.3%, 47.8%, 55.9%). CONCLUSIONS: Plasma PCT and Presepsin have early diagnostic value for sepsis in suspected sepsis patients in fever clinics, and Presepsin is more sensitive than PCT and can be used as an early marker of sepsis.


Subject(s)
C-Reactive Protein , Fever , Lipopolysaccharide Receptors , Peptide Fragments , Procalcitonin , Sepsis , Humans , Lipopolysaccharide Receptors/blood , Sepsis/diagnosis , Sepsis/blood , Prospective Studies , Peptide Fragments/blood , Procalcitonin/blood , Fever/diagnosis , Fever/blood , C-Reactive Protein/analysis , Biomarkers/blood , Organ Dysfunction Scores , Leukocyte Count , Male , Female , Early Diagnosis , Middle Aged , Calcitonin/blood , Logistic Models
6.
Ulus Travma Acil Cerrahi Derg ; 30(4): 242-247, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38634849

ABSTRACT

BACKGROUND: The purpose of this study is to determine the significance of markers such as C-reactive protein, procalcitonin, complete blood count parameters, delta neutrophil index, ischemia-modified albumin, presepsin, and oxidative stress indicators, which are associated with inflammation, oxidative stress, and ischemia in the pathology and diagnosis of acute cholecystitis in adults. METHODS: Patients diagnosed with acute cholecystitis in the emergency department and healthy individuals in the control group were included in the study. Routine blood count and biochemistry analyses were performed on the participants. Blood serum was used to measure ischemia-modified albumin, presepsin, and oxidative stress indicators. RESULTS: White blood cell count, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, delta neutrophil index, C-reactive protein, procalcitonin, ischemia-modified albumin, ischemia-modified albumin to albumin ratio, presepsin, and oxidative stress indicators were significantly higher in patients with cholecystitis compared to the control group. Measurements of white blood cell count, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and delta neutrophil index can be included as part of the complete blood count. The complete blood count parameters are readily available and do not incur additional costs to the healthcare system. CONCLUSION: The authors believe that the neutrophil-to-lymphocyte ratio, delta neutrophil index, ischemia-modified albumin, ischemia-modified albumin to albumin ratio, and presepsin values can be used as new markers in the diagnosis of acute cholecystitis due to their high sensitivity, specificity, and low negative likelihood ratio.


Subject(s)
Cholecystitis, Acute , Neutrophils , Serum Albumin, Human , Adult , Humans , Biomarkers , C-Reactive Protein/analysis , Cholecystitis, Acute/blood , Cholecystitis, Acute/diagnosis , Ischemia , Lipopolysaccharide Receptors/analysis , Lipopolysaccharide Receptors/blood , Peptide Fragments , Procalcitonin , Serum Albumin , Serum Albumin, Human/analysis
7.
Cell Mol Life Sci ; 81(1): 191, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652315

ABSTRACT

Lipopolysaccharide (LPS) induces a strong pro-inflammatory reaction of macrophages upon activation of Toll-like receptor 4 (TLR4) with the assistance of CD14 protein. Considering a key role of plasma membrane rafts in CD14 and TLR4 activity and the significant impact exerted on that activity by endocytosis and intracellular trafficking of the both LPS acceptors, it seemed likely that the pro-inflammatory reaction could be modulated by flotillins. Flotillin-1 and -2 are scaffolding proteins associated with the plasma membrane and also with endo-membranes, affecting both the plasma membrane dynamics and intracellular protein trafficking. To verify the above hypothesis, a set of shRNA was used to down-regulate flotillin-2 in Raw264 cells, which were found to also become deficient in flotillin-1. The flotillin deficiency inhibited strongly the TRIF-dependent endosomal signaling of LPS-activated TLR4, and to a lower extent also the MyD88-dependent one, without affecting the cellular level of TLR4. The flotillin depletion also inhibited the pro-inflammatory activity of TLR2/TLR1 and TLR2/TLR6 but not TLR3. In agreement with those effects, the depletion of flotillins down-regulated the CD14 mRNA level and the cellular content of CD14 protein, and also inhibited constitutive CD14 endocytosis thereby facilitating its shedding. Ultimately, the cell-surface level of CD14 was markedly diminished. Concomitantly, CD14 recycling was enhanced via EEA1-positive early endosomes and golgin-97-positive trans-Golgi network, likely to compensate for the depletion of the cell-surface CD14. We propose that the paucity of surface CD14 is the reason for the down-regulated signaling of TLR4 and the other TLRs depending on CD14 for ligand binding.


Subject(s)
Lipopolysaccharide Receptors , Lipopolysaccharides , Membrane Proteins , Protein Transport , Signal Transduction , Toll-Like Receptor 4 , Lipopolysaccharide Receptors/metabolism , Toll-Like Receptor 4/metabolism , Lipopolysaccharides/pharmacology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Signal Transduction/drug effects , Mice , Animals , RAW 264.7 Cells , Endocytosis/drug effects , Macrophages/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Adaptor Proteins, Vesicular Transport/genetics , RNA, Small Interfering/metabolism , Endosomes/metabolism
8.
Virol J ; 21(1): 96, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671532

ABSTRACT

BACKGROUND: There is still limited research on the prognostic value of Presepsin as a biomarker for predicting the outcome of COVID-19 patients. Additionally, research on the combined predictive value of Presepsin with clinical scoring systems and inflammation markers for disease prognosis is lacking. METHODS: A total of 226 COVID-19 patients admitted to Beijing Youan Hospital's emergency department from May to November 2022 were screened. Demographic information, laboratory measurements, and blood samples for Presepsin levels were collected upon admission. The predictive value of Presepsin, clinical scoring systems, and inflammation markers for 28-day mortality was analyzed. RESULTS: A total of 190 patients were analyzed, 83 (43.7%) were mild, 61 (32.1%) were moderate, and 46 (24.2%) were severe/critically ill. 23 (12.1%) patients died within 28 days. The Presepsin levels in severe/critical patients were significantly higher compared to moderate and mild patients (p < 0.001). Presepsin showed significant predictive value for 28-day mortality in COVID-19 patients, with an area under the ROC curve of 0.828 (95% CI: 0.737-0.920). Clinical scoring systems and inflammation markers also played a significant role in predicting 28-day outcomes. After Cox regression adjustment, Presepsin, qSOFA, NEWS2, PSI, CURB-65, CRP, NLR, CAR, and LCR were identified as independent predictors of 28-day mortality in COVID-19 patients (all p-values < 0.05). Combining Presepsin with clinical scoring systems and inflammation markers further enhanced the predictive value for patient prognosis. CONCLUSION: Presepsin is a favorable indicator for the prognosis of COVID-19 patients, and its combination with clinical scoring systems and inflammation markers improved prognostic assessment.


Subject(s)
Biomarkers , COVID-19 , Adult , Aged , Female , Humans , Male , Middle Aged , Biomarkers/blood , COVID-19/mortality , COVID-19/blood , COVID-19/diagnosis , Inflammation/blood , Lipopolysaccharide Receptors/blood , Peptide Fragments/blood , Predictive Value of Tests , Prognosis , ROC Curve , SARS-CoV-2/physiology , Severity of Illness Index
9.
Int J Pharm ; 657: 124129, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38621615

ABSTRACT

Cationic liposomes specifically target monocytes in blood, rendering them promising drug-delivery tools for cancer immunotherapy, vaccines, and therapies for monocytic leukaemia. The mechanism behind this monocyte targeting ability is, however, not understood, but may involve plasma proteins adsorbed on the liposomal surfaces. To shed light on this, we investigated the biomolecular corona of three different types of PEGylated cationic liposomes, finding all of them to adsorb hyaluronan-associated proteins and proteoglycans upon incubation in human blood plasma. This prompted us to study the role of the TLR4 co-receptors CD44 and CD14, both involved in signalling and uptake pathways of proteoglycans and glycosaminoglycans. We found that separate inhibition of each of these receptors hampered the monocyte uptake of the liposomes in whole human blood. Based on clues from the biomolecular corona, we have thus identified two receptors involved in the targeting and uptake of cationic liposomes in monocytes, in turn suggesting that certain proteoglycans and glycosaminoglycans may serve as monocyte-targeting opsonins. This mechanistic knowledge may pave the way for rational design of future monocyte-targeting drug-delivery platforms.


Subject(s)
Cations , Liposomes , Monocytes , Polyethylene Glycols , Humans , Monocytes/metabolism , Polyethylene Glycols/chemistry , Hyaluronan Receptors/metabolism , Lipopolysaccharide Receptors/metabolism , Protein Corona/metabolism , Toll-Like Receptor 4/metabolism , Proteoglycans , Drug Delivery Systems
10.
J Virol ; 98(5): e0036324, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38661384

ABSTRACT

HIV-1 has a broad range of nuanced interactions with the immune system, and the incorporation of cellular proteins by nascent virions continues to redefine our understanding of the virus-host relationship. Proteins located at the sites of viral egress can be selectively incorporated into the HIV-1 envelope, imparting new functions and phenotypes onto virions, and impacting viral spread and disease. Using virion capture assays and western blot, we show that HIV-1 can incorporate the myeloid antigen CD14 into its viral envelope. Virion-incorporated CD14 remained biologically active and able to bind its natural ligand, bacterial lipopolysaccharide (LPS), as demonstrated by flow virometry and immunoprecipitation assays. Using a Toll-like receptor 4 (TLR4) reporter cell line, we also demonstrated that virions with bound LPS can trigger TLR4 signaling to activate transcription factors that regulate inflammatory gene expression. Complementary assays with THP-1 monocytes demonstrated enhanced secretion of inflammatory cytokines like tumor necrosis factor alpha (TNF-α) and the C-C chemokine ligand 5 (CCL5), when exposed to LPS-loaded virus. These data highlight a new type of interplay between HIV-1 and the myeloid cell compartment, a previously well-established cellular contributor to HIV-1 pathogenesis and inflammation. Persistent gut inflammation is a hallmark of chronic HIV-1 infection, and contributing to this effect is the translocation of microbes across the gut epithelium. Our data herein provide proof of principle that virion-incorporated CD14 could be a novel mechanism through which HIV-1 can drive chronic inflammation, facilitated by HIV-1 particles binding bacterial LPS and initiating inflammatory signaling in TLR4-expressing cells.IMPORTANCEHIV-1 establishes a lifelong infection accompanied by numerous immunological changes. Inflammation of the gut epithelia, exacerbated by the loss of mucosal T cells and cytokine dysregulation, persists during HIV-1 infection. Feeding back into this loop of inflammation is the translocation of intestinal microbes across the gut epithelia, resulting in the systemic dissemination of bacterial antigens, like lipopolysaccharide (LPS). Our group previously demonstrated that the LPS receptor, CD14, can be readily incorporated by HIV-1 particles, supporting previous clinical observations of viruses derived from patient plasma. We now show that CD14 can be incorporated by several primary HIV-1 isolates and that this virion-incorporated CD14 can remain functional, enabling HIV-1 to bind to LPS. This subsequently allowed CD14+ virions to transfer LPS to monocytic cells, eliciting pro-inflammatory signaling and cytokine secretion. We posit here that virion-incorporated CD14 is a potential contributor to the dysregulated immune responses present in the setting of HIV-1 infection.


Subject(s)
HIV Infections , HIV-1 , Lipopolysaccharide Receptors , Lipopolysaccharides , Virion , Humans , Chemokine CCL5/metabolism , HIV Infections/virology , HIV Infections/immunology , HIV Infections/metabolism , HIV-1/immunology , HIV-1/physiology , Lipopolysaccharide Receptors/metabolism , Lipopolysaccharides/metabolism , Monocytes/metabolism , Monocytes/immunology , Monocytes/virology , Signal Transduction , THP-1 Cells , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism , Virion/metabolism
11.
Nature ; 629(8013): 893-900, 2024 May.
Article in English | MEDLINE | ID: mdl-38632402

ABSTRACT

The blood-brain barrier (BBB) protects the central nervous system from infections or harmful substances1; its impairment can lead to or exacerbate various diseases of the central nervous system2-4. However, the mechanisms of BBB disruption during infection and inflammatory conditions5,6 remain poorly defined. Here we find that activation of the pore-forming protein GSDMD by the cytosolic lipopolysaccharide (LPS) sensor caspase-11 (refs. 7-9), but not by TLR4-induced cytokines, mediates BBB breakdown in response to circulating LPS or during LPS-induced sepsis. Mice deficient in the LBP-CD14 LPS transfer and internalization pathway10-12 resist BBB disruption. Single-cell RNA-sequencing analysis reveals that brain endothelial cells (bECs), which express high levels of GSDMD, have a prominent response to circulating LPS. LPS acting on bECs primes Casp11 and Cd14 expression and induces GSDMD-mediated plasma membrane permeabilization and pyroptosis in vitro and in mice. Electron microscopy shows that this features ultrastructural changes in the disrupted BBB, including pyroptotic endothelia, abnormal appearance of tight junctions and vasculature detachment from the basement membrane. Comprehensive mouse genetic analyses, combined with a bEC-targeting adeno-associated virus system, establish that GSDMD activation in bECs underlies BBB disruption by LPS. Delivery of active GSDMD into bECs bypasses LPS stimulation and opens the BBB. In CASP4-humanized mice, Gram-negative Klebsiella pneumoniae infection disrupts the BBB; this is blocked by expression of a GSDMD-neutralizing nanobody in bECs. Our findings outline a mechanism for inflammatory BBB breakdown, and suggest potential therapies for diseases of the central nervous system associated with BBB impairment.


Subject(s)
Blood-Brain Barrier , Brain , Endothelial Cells , Gasdermins , Inflammation , Animals , Female , Humans , Male , Mice , Basement Membrane/metabolism , Basement Membrane/ultrastructure , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Blood-Brain Barrier/ultrastructure , Blood-Brain Barrier/virology , Brain/metabolism , Brain/pathology , Brain/ultrastructure , Caspases, Initiator/metabolism , Dependovirus , Endothelial Cells/metabolism , Endothelial Cells/ultrastructure , Gasdermins/antagonists & inhibitors , Gasdermins/metabolism , Inflammation/pathology , Inflammation/metabolism , Klebsiella pneumoniae/physiology , Lipopolysaccharide Receptors/metabolism , Lipopolysaccharides/blood , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , Pyroptosis , Sepsis/metabolism , Sepsis/pathology , Sepsis/microbiology , Single-Cell Analysis , Tight Junctions/metabolism , Tight Junctions/ultrastructure
12.
Virus Res ; 345: 199375, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38642618

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of coronavirus disease 2019 (COVID-19), has posed significant challenges to global health. While much attention has been directed towards understanding the primary mechanisms of SARS-CoV-2 infection, emerging evidence suggests co-infections or superinfections with other viruses may contribute to increased morbidity and mortality, particularly in severe cases of COVID-19. Among viruses that have been reported in patients with SARS-CoV-2, seropositivity for Human cytomegalovirus (HCMV) is associated with increased COVID-19 risk and hospitalization. HCMV is a ubiquitous beta-herpesvirus with a seroprevalence of 60-90 % worldwide and one of the leading causes of mortality in immunocompromised individuals. The primary sites of latency for HCMV include CD14+ monocytes and CD34+ hematopoietic cells. In this study, we sought to investigate SARS-CoV-2 infection of CD14+ monocytes latently infected with HCMV. We demonstrate that CD14+ cells are susceptible and permissive to SARS-CoV-2 infection and detect subgenomic transcripts indicative of replication. To further investigate the molecular changes triggered by SARS-CoV-2 infection in HCMV-latent CD14+ monocytes, we conducted RNA sequencing coupled with bioinformatic differential gene analysis. The results revealed significant differences in cytokine-cytokine receptor interactions and inflammatory pathways in cells superinfected with replication-competent SARS-CoV-2 compared to the heat-inactivated and mock controls. Notably, there was a significant upregulation in transcripts associated with pro-inflammatory response factors and a decrease in anti-inflammatory factors. Taken together, these findings provide a basis for the heightened inflammatory response, offering potential avenues for targeted therapeutic interventions among HCMV-infected severe cases of COVID-19. SUMMARY: COVID-19 patients infected with secondary viruses have been associated with a higher prevalence of severe symptoms. Individuals seropositive for human cytomegalovirus (HCMV) infection are at an increased risk for severe COVID-19 disease and hospitalization. HCMV reactivation has been reported in severe COVID-19 cases with respiratory failure and could be the result of co-infection with SARS-CoV-2 and HCMV. In a cell culture model of superinfection, HCMV has previously been shown to increase infection of SARS-CoV-2 of epithelial cells by upregulating the human angiotensin-converting enzyme-2 (ACE2) receptor. In this study, we utilize CD14+ monocytes, a major cell type that harbors latent HCMV, to investigate co-infection of SARS-CoV-2 and HCMV. This study is a first step toward understanding the mechanism that may facilitate increased COVID-19 disease severity in patients infected with SARS-CoV-2 and HCMV.


Subject(s)
COVID-19 , Cytomegalovirus Infections , Cytomegalovirus , Lipopolysaccharide Receptors , Monocytes , SARS-CoV-2 , Superinfection , Humans , Monocytes/virology , Monocytes/immunology , Cytomegalovirus/immunology , Lipopolysaccharide Receptors/metabolism , SARS-CoV-2/immunology , COVID-19/virology , COVID-19/immunology , Cytomegalovirus Infections/virology , Cytomegalovirus Infections/immunology , Superinfection/virology , Superinfection/immunology , Virus Latency , Inflammation , Coinfection/virology , Cytokines/metabolism , Virus Replication
13.
Medicina (Kaunas) ; 60(3)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38541160

ABSTRACT

Worldwide, sepsis is a well-recognized cause of death. Acute kidney injury (AKI) may be related to sepsis in up to 70% of AKI cases. Sepsis-associated AKI (SA-AKI) is defined as the presence of AKI according to the Kidney Disease: Improving Global Outcomes criteria in the context of sepsis. SA-AKI is categorized into early, which presents during the first 48 h of sepsis, and late, presenting between 48 h and 7 days of sepsis. SA-AKI is associated with a worse prognosis among patients with sepsis. However, there are different SA-AKI phenotypes as well as different pathophysiological pathways of SA-AKI. The aim of this review is to provide an updated synopsis of the pathogenetic mechanisms underlying the development of SA-AKI as well as to analyze its different phenotypes and prognosis. In addition, potential novel diagnostic and prognostic biomarkers as well as therapeutic approaches are discussed. A plethora of mechanisms are implicated in the pathogenesis of SA-AKI, including inflammation and metabolic reprogramming during sepsis; various types of cell death such as apoptosis, necroptosis, pyroptosis and ferroptosis; autophagy and efferocytosis; and hemodynamic changes (macrovascular and microvascular dysfunction). Apart from urine output and serum creatinine levels, which have been incorporated in the definition of AKI, several serum and urinary diagnostic and prognostic biomarkers have also been developed, comprising, among others, interleukins 6, 8 and 18, osteoprotegerin, galectin-3, presepsin, cystatin C, NGAL, proenkephalin A, CCL-14, TIMP-2 and L-FABP as well as biomarkers stemming from multi-omics technologies and machine learning algorithms. Interestingly, the presence of long non-coding RNAs (lncRNAs) as well as microRNAs (miRNAs), such as PlncRNA-1, miR-22-3p, miR-526b, LncRNA NKILA, miR-140-5p and miR-214, which are implicated in the pathogenesis of SA-AKI, may also serve as potential therapeutic targets. The combination of omics technologies represents an innovative holistic approach toward providing a more integrated view of the molecular and physiological events underlying SA-AKI as well as for deciphering unique and specific phenotypes. Although more evidence is still necessary, it is expected that the incorporation of integrative omics may be useful not only for the early diagnosis and risk prognosis of SA-AKI, but also for the development of potential therapeutic targets that could revolutionize the management of SA-AKI in a personalized manner.


Subject(s)
Acute Kidney Injury , MicroRNAs , Sepsis , Humans , Sepsis/diagnosis , Prognosis , Biomarkers , Peptide Fragments , Lipopolysaccharide Receptors
14.
J Innate Immun ; 16(1): 226-247, 2024.
Article in English | MEDLINE | ID: mdl-38527452

ABSTRACT

INTRODUCTION: While TLR ligands derived from microbial flora and pathogens are important activators of the innate immune system, a variety of factors such as intracellular bacteria, viruses, and parasites can induce a state of hyperreactivity, causing a dysregulated and potentially life-threatening cytokine over-response upon TLR ligand exposure. Type I interferon (IFN-αß) is a central mediator in the induction of hypersensitivity and is strongly expressed in splenic conventional dendritic cells (cDC) and marginal zone macrophages (MZM) when mice are infected with adenovirus. This study investigates the ability of adenoviral infection to influence the activation state of the immune system and underlines the importance of considering this state when planning the treatment of patients. METHODS: Infection with adenovirus-based vectors (Ad) or pretreatment with recombinant IFN-ß was used as a model to study hypersensitivity to lipopolysaccharide (LPS) in mice, murine macrophages, and human blood samples. The TNF-α, IL-6, IFN-αß, and IL-10 responses induced by LPS after pretreatment were measured. Mouse knockout models for MARCO, IFN-αßR, CD14, IRF3, and IRF7 were used to probe the mechanisms of the hypersensitive reaction. RESULTS: We show that, similar to TNF-α and IL-6 but not IL-10, the induction of IFN-αß by LPS increases strongly after Ad infection. This is true both in mice and in human blood samples ex vivo, suggesting that the regulatory mechanisms seen in the mouse are also present in humans. In mice, the scavenger receptor MARCO on IFN-αß-producing cDC and splenic marginal zone macrophages is important for Ad uptake and subsequent cytokine overproduction by LPS. Interestingly, not all IFN-αß-pretreated macrophage types exposed to LPS exhibit an enhanced TNF-α and IL-6 response. Pretreated alveolar macrophages and alveolar macrophage-like murine cell lines (MPI cells) show enhanced responses, while bone marrow-derived and peritoneal macrophages show a weaker response. This correlates with the respective absence or presence of the anti-inflammatory IL-10 response in these different macrophage types. In contrast, Ad or IFN-ß pretreatment enhances the subsequent induction of IFN-αß in all macrophage types. IRF3 is dispensable for the LPS-induced IFN-αß overproduction in infected MPI cells and partly dispensable in infected mice, while IRF7 is required. The expression of the LPS co-receptor CD14 is important but not absolutely required for the elicitation of a TNF-α over-response to LPS in Ad-infected mice. CONCLUSION: Viral infections or application of virus-based vaccines induces type I interferon and can tip the balance of the innate immune system in the direction of hyperreactivity to a subsequent exposure to TLR ligands. The adenoviral model presented here is one example of how multiple factors, both environmental and genetic, affect the physiological responses to pathogens. Being able to measure the current reactivity state of the immune system would have important benefits for infection-specific therapies and for the prevention of vaccination-elicited adverse effects.


Subject(s)
Adenoviridae , Cytokines , Interferon Regulatory Factor-3 , Lipopolysaccharides , Macrophages , Mice, Knockout , Animals , Mice , Lipopolysaccharides/immunology , Humans , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Macrophages/immunology , Cytokines/metabolism , Mice, Inbred C57BL , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factor-7/genetics , Genetic Vectors , Adenoviridae Infections/immunology , Interferon Type I/metabolism , Lipopolysaccharide Receptors/metabolism , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Cells, Cultured , Dendritic Cells/immunology , Interferon-beta/metabolism
15.
J Innate Immun ; 16(1): 216-225, 2024.
Article in English | MEDLINE | ID: mdl-38461810

ABSTRACT

INTRODUCTION: Toll-like receptors play crucial roles in the sepsis-induced systemic inflammatory response. Septic shock mortality correlates with overexpression of neutrophilic TLR2 and TLR9, while the role of TLR4 overexpression remains a debate. In addition, TLRs are involved in the pathogenesis of viral infections such as COVID-19, where the single-stranded RNA of SARS-CoV-2 is recognized by TLR7 and TLR8, and the spike protein activates TLR4. METHODS: In this study, we conducted a comprehensive analysis of TLRs 1-10 expressions in white blood cells from 71 patients with bacterial and viral infections. Patients were divided into 4 groups based on disease type and severity (sepsis, septic shock, moderate, and severe COVID-19) and compared to 7 healthy volunteers. RESULTS: We observed a significant reduction in the expression of TLR4 and its co-receptor CD14 in septic shock neutrophils compared to the control group (p < 0.001). Severe COVID-19 patients exhibited a significant increase in TLR3 and TLR7 levels in neutrophils compared to controls (p < 0.05). Septic shock patients also showed a similar increase in TLR7 in neutrophils along with elevated intermediate monocytes (CD14+CD16+) compared to the control group (p < 0.005 and p < 0.001, respectively). However, TLR expression remained unchanged in lymphocytes. CONCLUSION: This study provides further insights into the mechanisms of TLR activation in various infectious conditions. Additional analysis is needed to assess their correlation with patient outcome and to evaluate the impact of TLR-pathway modulation during septic shock and severe COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Toll-Like Receptor 10 , Aged , Female , Humans , Male , Middle Aged , Bacterial Infections/immunology , COVID-19/immunology , COVID-19/blood , Leukocytes/immunology , Leukocytes/metabolism , Lipopolysaccharide Receptors/metabolism , Neutrophils/immunology , SARS-CoV-2/immunology , Sepsis/immunology , Shock, Septic/immunology , Shock, Septic/blood , Toll-Like Receptor 1/metabolism , Toll-Like Receptor 1/genetics , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/genetics , Toll-Like Receptors/metabolism , Aged, 80 and over
16.
BMC Res Notes ; 17(1): 53, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378647

ABSTRACT

OBJECTIVE: Sepsis is a syndrome of life-threatening organ dysfunction. This study aimed to determine whether presepsin is a useful predictor of septic acute kidney injury (AKI), acute respiratory distress syndrome (ARDS), disseminated intravascular coagulation (DIC), and shock in very-old sepsis patients aged 75 years in intensive care units (ICUs). RESULTS: A total of 83 adult patients diagnosed with sepsis were prospectively examined and divided into two groups: those aged 75 years and older (over 75 group) and those aged younger than 75 years (under 75 group). Presepsin values were measured after ICU admission. Inflammation-based prognostic scores were also examined. For category classification, total scores ("inflammation-presepsin scores [iPS]") were calculated. Presepsin values, inflammation-based prognostic scores, and iPS were compared between patients with septic AKI, ARDS, DIC, or shock and those without these disorders in the over 75 and under 75 groups. Areas under the curve of presepsin for predicting septic AKI and ARDS in the over 75 group were both > 0.7, which were significantly higher than those in the under 75 group. In conclusion, presepsin is a more useful predictor of septic AKI and ARDS for very-old sepsis patients (over 75 years) than for younger sepsis patients (under 75 years).


Subject(s)
Acute Kidney Injury , Respiratory Distress Syndrome , Sepsis , Adult , Humans , Pilot Projects , Biomarkers , Sepsis/complications , Sepsis/diagnosis , Intensive Care Units , Acute Kidney Injury/diagnosis , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/diagnosis , Lipopolysaccharide Receptors , Peptide Fragments
17.
Clin Exp Immunol ; 216(3): 252-261, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38310540

ABSTRACT

Psoriasis is a chronic inflammatory skin disease with a characteristic isomorphic reaction, i.e. the Köbner reaction, induced by slight epidermal trauma. In this study, the tape-stripping technique was used to induce the development of Köbner reaction in 18 subjects with psoriasis. Eight subjects developed a positive reaction. To study the early cellular changes, skin biopsies were taken at the baseline and subsequent time points of 2 h, 1 d, 3 d, and 7 d for the immunostaining of complement C3c, iC3b, and cells expressing complement receptor 3 (CD11b/CD18; a receptor of iC3b) or CD14. The results show that the positive Köbner reaction is associated with rapid (2 h-1 d) and sustained (3-7 d) increase in the expression of epidermal C3c and iC3b and dermal C3c. In addition, there was a positive correlation between CD11b+ and CD14+ cells in baseline and 2 h-1 d biopsies with a subsequent increase in CD11b+ and CD14+ cells in 3-7 d biopsies in the Köbner-positive group. In the Köbner-negative group, only a transient increase in epidermal iC3b at 2 h-1 d, as well as rapid (2 h-1 d) and sustained increase (3-7 d) in dermal iC3b and CD14+ cells, was observed. In experiments with cultured monolayer keratinocytes, a slight cell damage already at 30 mJ/cm2 ultraviolet B irradiation led to increased expression of C3c, but not iC3b. Therefore, there are marked differences between Köbner groups in respect to the expression of C3c, iC3b, and cells expressing CD11b or CD14. Of note is the rapid and sustained increase in epidermal C3c and iC3b in the positive Köbner reaction.


Subject(s)
CD11b Antigen , Complement C3b , Lipopolysaccharide Receptors , Psoriasis , Humans , Lipopolysaccharide Receptors/metabolism , Male , Psoriasis/immunology , Psoriasis/metabolism , Female , CD11b Antigen/metabolism , Adult , Middle Aged , Complement C3b/metabolism , Complement C3b/immunology , Skin/pathology , Skin/immunology , Skin/metabolism , Skin/radiation effects , Biopsy , Epidermis/metabolism , Epidermis/immunology , Epidermis/pathology
18.
PLoS One ; 19(2): e0297550, 2024.
Article in English | MEDLINE | ID: mdl-38359069

ABSTRACT

BACKGROUND: Delayed diagnosis and inadequate treatment of infectious and inflammatory diseases, such as Brucella, lead to high rates of mortality and morbidity. The aim of our study was to investigate the association between serum levels of apelin, presepsin, and irisin with inflammation, laboratory parameters, and blood culture in patients with brucella. PATIENTS AND METHODS: This prospective case-control study involves 30 patients with brucellosis and 30 healthy, matched control subjects. Thirty patients who were diagnosed with brucellosis were aged ≥ 18 years. Blood samples were taken from the patients on the first day they were diagnosed with brucellosis. The values of irisin, presepsin, and apelin were studied. In addition, blood samples were also taken from 30 healthy individuals for the control group. Irisin, presepsin, and apelin values that were measured in the patients on the first day were compared with those values measured in the control group. RESULTS: The sex and age statuses of the subjects are matched among the groups. The levels of irisin were significantly higher in patients with brucellosis compared to the control group (p<0.045). There was no significant difference between the two groups in terms of apelin and presepsin levels (p values 0.087 and 0.162, respectively). There was a positive correlation between irisin levels and elevated ALT levels, as well as positive blood cultures. CONCLUSIONS: It appears that the measurement of irisin levels may be beneficial in patients with brucellosis. Irisin can be used as a diagnostic marker for brucella infection and may greatly clinicians to predict the severity disease and treatment response.


Subject(s)
Brucella , Brucellosis , Humans , Apelin , Case-Control Studies , Fibronectins , Brucellosis/diagnosis , Biomarkers , Peptide Fragments , Lipopolysaccharide Receptors
19.
Int J Mol Sci ; 25(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38396668

ABSTRACT

Our aim was to study the association of endothelial dysfunction biomarkers with cirrhosis manifestations, bacterial translocation, and gut microbiota taxa. The fecal microbiome was assessed using 16S rRNA gene sequencing. Plasma levels of nitrite, big endothelin-1, asymmetric dimethylarginine (ADMA), presepsin, and claudin were measured as biomarkers of endothelial dysfunction, bacterial translocation, and intestinal barrier dysfunction. An echocardiography with simultaneous determination of blood pressure and heart rate was performed to evaluate hemodynamic parameters. Presepsin, claudin 3, nitrite, and ADMA levels were higher in cirrhosis patients than in controls. Elevated nitrite levels were associated with high levels of presepsin and claudin 3, the development of hemodynamic circulation, hypoalbuminemia, grade 2-3 ascites, overt hepatic encephalopathy, high mean pulmonary artery pressure, increased abundance of Proteobacteria and Erysipelatoclostridium, and decreased abundance of Oscillospiraceae, Subdoligranulum, Rikenellaceae, Acidaminococcaceae, Christensenellaceae, and Anaerovoracaceae. Elevated ADMA levels were associated with higher Child-Pugh scores, lower serum sodium levels, hypoalbuminemia, grade 2-3 ascites, milder esophageal varices, overt hepatic encephalopathy, lower mean pulmonary artery pressure, and low abundance of Erysipelotrichia and Erysipelatoclostridiaceae. High big endothelin-1 levels were associated with high levels of presepsin and sodium, low levels of fibrinogen and cholesterol, hypocoagulation, increased Bilophila and Coprobacillus abundances, and decreased Alloprevotella abundance.


Subject(s)
Gastrointestinal Microbiome , Hepatic Encephalopathy , Hypoalbuminemia , Humans , Ascites , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S , Claudin-3 , Endothelin-1 , Nitrites , Liver Cirrhosis/complications , Biomarkers , Sodium , Dysbiosis/complications , Peptide Fragments , Lipopolysaccharide Receptors
20.
Medicina (Kaunas) ; 60(2)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38399618

ABSTRACT

Background and Objectives: The success of combined antiretroviral therapy (cART) has led to a dramatic improvement in the life expectancy of people living with HIV (PLWH). However, there has been an observed increase in cardiometabolic, bone, renal, hepatic, and neurocognitive manifestations, as well as neoplasms, known as serious non-AIDS events/SNAEs, compared to the general population of corresponding age. This increase is linked to a harmful phenomenon called inflammaging/immunosenescence, which is driven by chronic immune activation and intestinal bacterial translocation. In this study, we examined immunological and metabolic parameters in individuals receiving current cART. Materials and Methods: The study was conducted at Laiko General Hospital in Athens, Greece. Plasma concentrations of sCD14, IL-6, SuPAR, I-FABP, and LBP were measured in virally suppressed PLWH under cART with at least 350 CD4 lymphocytes/µL. We compared these levels between PLWH receiving integrase strand transfer inhibitors (INSTIs) and protease inhibitors (PIs) and attempted to correlate them with chronic immune activation and metabolic parameters. Results: Data from 28 PLWH were analyzed, with a mean age of 52 and 93% being males. Among the two comparison groups, IL-6 levels were higher in the PIs group (5.65 vs. 7.11 pg/mL, p = 0.03). No statistically significant differences were found in the other measured parameters. A greater proportion of PLWH under INSTIs had normal-range LBP (33% vs. 0%, p = 0.04). When using inverse probability of treatment weighting, no statistically significant differences in the measured parameters were found between the two groups (sCD14 p = 0.511, IL-6 p = 0.383, SuPAR p = 0.793, I-FABP p = 0.868, and LBP p = 0.663). Glucose levels were found to increase after viral suppression in the entire sample (92 mg/dL vs. 98 mg/dL, p = 0.009). Total (191 mg/dL vs. 222 mg/dL, p = 0.005) and LDL cholesterol (104 mg/dL vs. 140 mg/dL, p = 0.002) levels were higher in the PIs group. No significant differences were observed in liver and renal function tests. Conclusions: Further investigation is warranted for PLWH on cART-containing INSTI regimens to explore potential reductions in chronic immune activation and intestinal bacterial translocation.


Subject(s)
HIV Infections , Protease Inhibitors , Humans , Male , Middle Aged , Female , Receptors, Urokinase Plasminogen Activator , Interleukin-6 , Lipopolysaccharide Receptors , HIV Infections/complications , HIV Infections/drug therapy , Integrases , Peptide Hydrolases
SELECTION OF CITATIONS
SEARCH DETAIL
...