Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94.642
Filter
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 516-522, jul. 2024. graf, ilus
Article in English | LILACS | ID: biblio-1538029

ABSTRACT

This article aimed to discuss the protection of trans - nerolidol on vascular endothelial cells (ECs) injured by lipopolysac charides. ECs were divided into four groups: normal, model, low and high dose trans - nerolidol treatment groups. The cell survival rate and the contents of NO in the cell culture supernatant were determined. The protein expression and transcript level of pe roxisome proliferator - activated receptor - γ (PPARγ), endothelial nitric oxide synthase (eNOS), and inducible nitric oxide synthase (iNOS) were determined by western blotting and RT - PCR respectively. Compared with the normal group, cell livability, protein e xpression and mRNA transcript level of PPARγ and eNOS decreased, NO contents, protein expression and mRNA transcript tlevel of iNOS increased in model group significantly. Compared with model group, all the changes recovered in different degree in treatmen t groups. Hence, it was concluded that trans - nerolidol can alleviate the ECs injuryby the regulation of iNOS/eNOS through activating PPARγ in a dose - dependent manner


Este artículo tiene como objetivo discutir la protección del trans - nerolidol en las células endoteliales vasculares (CE) dañadas por lipopolisacáridos. Las CE se di vidieron en cuatro grupos: normal, modelo, grupos de tratamiento con trans - nerolidol de baja y alta dosis. Se determinó la tasa de supervivencia de las células y los contenidos de óxido nítrico (NO) en el sobrenadante del cultivo celular. La expresión de p roteínas y el nivel de transcripción del receptor activado por proliferadores de peroxisomas - γ (PPARγ), el óxido nítrico sint et asa endotelial (eNOS) y el óxido nítrico sint et asa inducible (iNOS) se determinaron mediante western blot y RT - PCR, respectivamen te. En comparación con el grupo normal, la viabilidad celular, la expresión de proteínas y el nivel de transcripción de PPARγ y eNOS disminuyeron, los contenidos de NO, la expresión de proteínas y el nivel de transcripción de iNOS aumentaron significativam ente en el grupo modelo. En comparación con el grupo modelo, todos los cambios se recuperaron en diferentes grados en los grupos de tratamiento. Por lo tanto, se concluyó que el trans - nerolidol puede aliviar el daño en las CE regulando iNOS/eNOS a través d e la activación de PPARγ de manera dependiente de la dosis.


Subject(s)
Sesquiterpenes/pharmacology , Lipopolysaccharides/pharmacology , Endothelial Cells/drug effects
2.
J Neuroinflammation ; 21(1): 143, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822367

ABSTRACT

The dysregulation of pro- and anti-inflammatory processes in the brain has been linked to the pathogenesis of major depressive disorder (MDD), although the precise mechanisms remain unclear. In this study, we discovered that microglial conditional knockout of Pdcd4 conferred protection against LPS-induced hyperactivation of microglia and depressive-like behavior in mice. Mechanically, microglial Pdcd4 plays a role in promoting neuroinflammatory responses triggered by LPS by inhibiting Daxx-mediated PPARγ nucleus translocation, leading to the suppression of anti-inflammatory cytokine IL-10 expression. Finally, the antidepressant effect of microglial Pdcd4 knockout under LPS-challenged conditions was abolished by intracerebroventricular injection of the IL-10 neutralizing antibody IL-10Rα. Our study elucidates the distinct involvement of microglial Pdcd4 in neuroinflammation, suggesting its potential as a therapeutic target for neuroinflammation-related depression.


Subject(s)
Co-Repressor Proteins , Interleukin-10 , Mice, Knockout , Microglia , Neuroinflammatory Diseases , PPAR gamma , Signal Transduction , Animals , Mice , Microglia/metabolism , Microglia/drug effects , PPAR gamma/metabolism , PPAR gamma/genetics , Signal Transduction/physiology , Signal Transduction/drug effects , Neuroinflammatory Diseases/metabolism , Interleukin-10/metabolism , Interleukin-10/deficiency , Interleukin-10/genetics , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Depression/metabolism , Depression/etiology , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/deficiency , Mice, Inbred C57BL , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Male , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Lipopolysaccharides/toxicity
3.
Cell Mol Neurobiol ; 44(1): 48, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822888

ABSTRACT

C3-positive reactive astrocytes play a neurotoxic role in various neurodegenerative diseases. However, the mechanisms controlling C3-positive reactive astrocyte induction are largely unknown. We found that the length of the primary cilium, a cellular organelle that receives extracellular signals was increased in C3-positive reactive astrocytes, and the loss or shortening of primary cilium decreased the count of C3-positive reactive astrocytes. Pharmacological experiments suggested that Ca2+ signalling may synergistically promote C3 expression in reactive astrocytes. Conditional knockout (cKO) mice that specifically inhibit primary cilium formation in astrocytes upon drug stimulation exhibited a reduction in the proportions of C3-positive reactive astrocytes and apoptotic cells in the brain even after the injection of lipopolysaccharide (LPS). Additionally, the novel object recognition (NOR) score observed in the cKO mice was higher than that observed in the neuroinflammation model mice. These results suggest that the primary cilium in astrocytes positively regulates C3 expression. We propose that regulating astrocyte-specific primary cilium signalling may be a novel strategy for the suppression of neuroinflammation.


Subject(s)
Astrocytes , Cilia , Mice, Knockout , Animals , Astrocytes/metabolism , Astrocytes/drug effects , Cilia/metabolism , Cilia/drug effects , Mice , Complement C3/metabolism , Mice, Inbred C57BL , Lipopolysaccharides/pharmacology , Apoptosis/drug effects
4.
Food Res Int ; 188: 114433, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823827

ABSTRACT

Whey derived peptides have shown potential activity improving brain function in pathological condition. However, there is little information about their mechanism of action on glial cells, which have important immune functions in brain. Astrocytes and microglia are essential in inflammatory and oxidative defense that take place in neurodegenerative disease. In this work we evaluate antioxidant and anti-inflammatory potential bioactivity of whey peptide in glial cells. Peptides were formed during simulated gastrointestinal digestion (Infogest protocol), and low molecular weight (<5kDA) peptides (WPHf) attenuated reactive oxygen species (ROS) production induced by hydrogen peroxide stimulus in both cells in dose-dependent manner. WPHf induced an increase in the antioxidant glutathione (GSH) content and prevented GSH reduction induced by lipopolysaccharides (LPS) stimulus in astrocytes cells in a cell specific form. An increase in cytokine mRNA expression (TNFα and IL6) and nitric oxide secretion induced by LPS was attenuated by WPHf pre-treatment in both cells. The inflammatory pathway was dependent on NFκB activation. Bioactive peptide ranking analysis showed positive correlation with hydrophobicity and negative correlation with high molecular weights. The sequence identification revealed 19 peptides cross-referred with bioactive database. Whey peptides were rich in leucine, valine and tyrosine in the C-terminal region and lysine in the N-terminal region. The anti-inflammatory and antioxidant potential of whey peptides were assessed in glia cells and its mechanisms of action were related, such as modulation of antioxidant enzymes and anti-inflammatory pathways. Features of the peptide structure, such as molecular size, hydrophobicity and types of amino acids present in the terminal region are associated to bioactivity.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Neuroglia , Whey Proteins , Antioxidants/pharmacology , Anti-Inflammatory Agents/pharmacology , Whey Proteins/pharmacology , Whey Proteins/chemistry , Whey Proteins/metabolism , Neuroglia/drug effects , Neuroglia/metabolism , Animals , Reactive Oxygen Species/metabolism , Lipopolysaccharides/pharmacology , Glutathione/metabolism , Peptides/pharmacology , Nitric Oxide/metabolism , Astrocytes/drug effects , Astrocytes/metabolism
5.
BMC Vet Res ; 20(1): 236, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824607

ABSTRACT

BACKGROUND: The chicken's inflammatory response is an essential part of the bird's response to infection. A single dose of Escherichia coli (E. coli) lipopolysaccharide (LPS) endotoxin can activate the acute phase response (APR) and lead to the production of acute phase proteins (APPs). In this study, the responses of established chicken APPs, Serum amyloid A (SAA) and Alpha-1-acid-glycoprotein (AGP), were compared to two novel APPs, Hemopexin (Hpx) and Extracellular fatty acid binding protein (Ex-FABP), in 15-day old broilers over a time course of 48 h post E.coli LPS challenge. We aimed to investigate and validate their role as biomarkers of an APR. Novel plant extracts, Citrus (CTS) and cucumber (CMB), were used as dietary supplements to investigate their ability to reduce the inflammatory response initiated by the endotoxin. RESULTS: A significant increase of established (SAA, AGP) and novel (Ex-FABP, Hpx) APPs was detected post E.coli LPS challenge. Extracellular fatty acid binding protein (Ex-FABP) showed a similar early response to SAA post LPS challenge by increasing ~ 20-fold at 12 h post challenge (P < 0.001). Hemopexin (Hpx) showed a later response by increasing ∼5-fold at 24 h post challenge (P < 0.001) with a similar trend to AGP. No differences in APP responses were identified between diets (CTS and CMB) using any of the established or novel biomarkers. CONCLUSIONS: Hpx and Ex-FABP were confirmed as potential biomarkers of APR in broilers when using an E. coli LPS model along with SAA and AGP. However, no clear advantage for using either of dietary supplements to modulate the APR was identified at the dosage used.


Subject(s)
Acute-Phase Proteins , Acute-Phase Reaction , Biomarkers , Chickens , Escherichia coli , Lipopolysaccharides , Animals , Biomarkers/blood , Lipopolysaccharides/pharmacology , Acute-Phase Proteins/metabolism , Acute-Phase Proteins/analysis , Endotoxins , Serum Amyloid A Protein/analysis , Serum Amyloid A Protein/metabolism , Orosomucoid/metabolism , Dietary Supplements , Plant Extracts/pharmacology , Fatty Acid-Binding Proteins/metabolism , Poultry Diseases/microbiology , Hemopexin/metabolism
6.
Dis Model Mech ; 17(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38813848

ABSTRACT

Evidence suggests the presence of microglial activation and microRNA (miRNA) dysregulation in amyotrophic lateral sclerosis (ALS), the most common form of adult motor neuron disease. However, few studies have investigated whether the miRNA dysregulation originates from microglia. Furthermore, TDP-43 (encoded by TARDBP), involved in miRNA biogenesis, aggregates in tissues of ∼98% of ALS cases. Thus, this study aimed to determine whether expression of the ALS-linked TDP-43M337V mutation in a transgenic mouse model dysregulates microglia-derived miRNAs. RNA sequencing identified several dysregulated miRNAs released by transgenic microglia and a differential miRNA release by lipopolysaccharide-stimulated microglia, which was more pronounced in cells from female mice. We validated the downregulation of three candidate miRNAs, namely, miR-16-5p, miR-99a-5p and miR-191-5p, by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and identified their predicted targets, which primarily include genes involved in neuronal development and function. These results suggest that altered TDP-43 function leads to changes in the miRNA population released by microglia, which may in turn be a source of the miRNA dysregulation observed in the disease. This has important implications for the role of neuroinflammation in ALS pathology and could provide potential therapeutic targets.


Subject(s)
Amyotrophic Lateral Sclerosis , Mice, Transgenic , MicroRNAs , Microglia , Mutation , Sex Characteristics , Microglia/metabolism , Microglia/pathology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Female , Male , Mutation/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Mice , Extracellular Space/metabolism , Humans , Lipopolysaccharides/pharmacology , Gene Expression Regulation
7.
J Immunol Res ; 2024: 8121284, 2024.
Article in English | MEDLINE | ID: mdl-38799117

ABSTRACT

Macroalgae are considered healthy food ingredients due to their content in numerous bioactive compounds, and the traditional use of whole macroalgae in Asian cuisine suggests a contribution to longevity. Although much information is available about the bioactivity of pure algal compounds, such as different polyphenols and polysaccharides, documentation of potential effects of whole macroalgae as part of Western diets is limited. Lifestyle- and age-related diseases, which have a high impact on population health, are closely connected to underlying chronic inflammation. Therefore, we have studied crude extracts of green (Ulva fenestrata) and brown (Saccharina latissima) macroalgae, as two of the most promising food macroalgae in the Nordic countries for their effect on inflammation in vitro. Human macrophage-like reporter THP-1 cells were treated with macroalgae extracts and stimulated with lipopolysaccharide (LPS) to induce inflammatory signalling. Effects of the macroalgae extracts were assessed on transcription factor activity of NF-κB and IRF as well as secretion and/or expression of the cytokines TNF-α and IFN-ß and chemokines IL-8 and CXCL10. The crude macroalgae extracts were further separated into polyphenol-enriched and polysaccharide-enriched fractions, which were also tested for their effect on transcription factor activity. Interestingly, we observed a selective activation of NF-κB, when cells were treated with macroalgae extracts. On the other hand, pretreatment with macroalgae extracts selectively repressed IRF activation when inflammatory signaling was subsequently induced by LPS. This effect was consistent for both tested species as well as for polyphenol- and polysaccharide-enriched fractions, of which the latter had more pronounced effects. Overall, this is the first indication of how macroalgae could modulate inflammatory signaling by selective activation and subsequent repression of different pathways. Further in vitro and in vivo studies of this mechanism would be needed to understand how macroalgae consumption could influence the prevention of noncommunicable, lifestyle- and age-related diseases that are highly related to unbalanced inflammatory processes.


Subject(s)
Inflammation , Macrophages , NF-kappa B , Phaeophyceae , Seaweed , Signal Transduction , Humans , NF-kappa B/metabolism , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Inflammation/metabolism , Inflammation/immunology , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Cytokines/metabolism , THP-1 Cells , Plant Extracts/pharmacology , Lipopolysaccharides , Edible Seaweeds , Laminaria
8.
Dev Comp Immunol ; 157: 105191, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38705263

ABSTRACT

Ficus hirta Vahl. (FhV) has been shown to have antimicrobial and antiviral efficacy. To further ascertain the pharmacological properties of FhV., and to search for alternatives to antibiotics. An in vitro experiment was carried out to evaluate what influence FhV. would have on LPS-induced apoptosis. In this study, Fas, an apoptosis receptor, was cloned, which included a 5'-UTR of 39 bp, an ORF of 951 bp, a protein of 316 amino acids, and a 3'-UTR of 845 bp. EcFas was most strongly expressed in the spleen tissue of orange-spotted groupers. In addition, the apoptosis of fish spleen cells induced by LPS was concentration-dependent. Interestingly, appropriate concentrations of FhV. alleviated LPS-induced apoptosis. Inhibition of miR-411 further decreased the inhibitory effect of Fas on apoptosis, which reduced Bcl-2 expression and mitochondrial membrane potential, enhanced the protein expression of Bax and Fas. More importantly, the FhV. could activate miR-411 to improve this effect. In addition, luciferase reporter assays showed that miR-411 binds to Fas 3'-UTR to inhibit Fas expression. These findings provide evidence that FhV. alleviates LPS-induced apoptosis by activating miR-411 to inhibit Fas expression and, therefore, provided possible strategies for bacterial infections in fish.


Subject(s)
Apoptosis , Fish Proteins , Lipopolysaccharides , MicroRNAs , Spleen , Animals , Apoptosis/drug effects , Lipopolysaccharides/immunology , MicroRNAs/genetics , MicroRNAs/metabolism , Spleen/metabolism , Spleen/immunology , Fish Proteins/metabolism , Fish Proteins/genetics , fas Receptor/metabolism , fas Receptor/genetics , Fish Diseases/immunology , Down-Regulation , Bass/immunology , Bass/genetics , Cells, Cultured , 3' Untranslated Regions/genetics , Perciformes/immunology
9.
J Nanobiotechnology ; 22(1): 301, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38816771

ABSTRACT

Intervertebral disc degeneration (IVDD) is the primary factor contributing to low back pain (LBP). Unlike elderly patients, many young IVDD patients usually have a history of trauma or long-term abnormal stress, which may lead to local inflammatory reaction causing by immune cells, and ultimately accelerates degeneration. Research has shown the significance of M1-type macrophages in IVDD; nevertheless, the precise mechanism and the route by which it influences the function of nucleus pulposus cell (NPC) remain unknown. Utilizing a rat acupuncture IVDD model and an NPC degeneration model induced by lipopolysaccharide (LPS), we investigated the function of M1 macrophage-derived exosomes (M1-Exos) in IVDD both in vivo and in vitro in this study. We found that M1-Exos enhanced LPS-induced NPC senescence, increased the number of SA-ß-gal-positive cells, blocked the cell cycle, and promoted the activation of P21 and P53. M1-Exos derived from supernatant pretreated with the exosome inhibitor GW4869 reversed this result in vivo and in vitro. RNA-seq showed that Lipocalin2 (LCN2) was enriched in M1-Exos and targeted the NF-κB pathway. The quantity of SA-ß-gal-positive cells was significantly reduced with the inhibition of LCN2, and the expression of P21 and P53 in NPCs was decreased. The same results were obtained in the acupuncture-induced IVDD model. In addition, inhibition of LCN2 promotes the expression of type II collagen (Col-2) and inhibits the expression of matrix metalloproteinase 13 (MMP13), thereby restoring the equilibrium of metabolism inside the extracellular matrix (ECM) in vitro and in vivo. In addition, the NF-κB pathway is crucial for regulating M1-Exo-mediated NPC senescence. After the addition of M1-Exos to LPS-treated NPCs, p-p65 activity was significantly activated, while si-LCN2 treatment significantly inhibited p-p65 activity. Therefore, this paper demonstrates that M1 macrophage-derived exosomes have the ability to deliver LCN2, which activates the NF-κB signaling pathway, and exacerbates IVDD by accelerating NPC senescence. This may shed new light on the mechanism of IVDD and bring a fresh approach to IVDD therapy.


Subject(s)
Cellular Senescence , Exosomes , Intervertebral Disc Degeneration , Lipocalin-2 , Macrophages , NF-kappa B , Nucleus Pulposus , Rats, Sprague-Dawley , Signal Transduction , Animals , Exosomes/metabolism , Nucleus Pulposus/metabolism , Intervertebral Disc Degeneration/metabolism , Lipocalin-2/metabolism , Lipocalin-2/genetics , Rats , NF-kappa B/metabolism , Signal Transduction/drug effects , Macrophages/metabolism , Macrophages/drug effects , Male , Lipopolysaccharides/pharmacology , Disease Models, Animal
10.
Elife ; 132024 May 31.
Article in English | MEDLINE | ID: mdl-38818711

ABSTRACT

Leptospirosis is an emerging infectious disease caused by pathogenic Leptospira spp. Humans and some mammals can develop severe forms of leptospirosis accompanied by a dysregulated inflammatory response, which often results in death. The gut microbiota has been increasingly recognized as a vital element in systemic health. However, the precise role of the gut microbiota in severe leptospirosis is still unknown. Here, we aimed to explore the function and potential mechanisms of the gut microbiota in a hamster model of severe leptospirosis. Our study showed that leptospires were able to multiply in the intestine, cause pathological injury, and induce intestinal and systemic inflammatory responses. 16S rRNA gene sequencing analysis revealed that Leptospira infection changed the composition of the gut microbiota of hamsters with an expansion of Proteobacteria. In addition, gut barrier permeability was increased after infection, as reflected by a decrease in the expression of tight junctions. Translocated Proteobacteria were found in the intestinal epithelium of moribund hamsters, as determined by fluorescence in situ hybridization, with elevated lipopolysaccharide (LPS) levels in the serum. Moreover, gut microbiota depletion reduced the survival time, increased the leptospiral load, and promoted the expression of proinflammatory cytokines after Leptospira infection. Intriguingly, fecal filtration and serum from moribund hamsters both increased the transcription of TNF-α, IL-1ß, IL-10, and TLR4 in macrophages compared with those from uninfected hamsters. These stimulating activities were inhibited by LPS neutralization using polymyxin B. Based on our findings, we identified an LPS neutralization therapy that significantly improved the survival rates in severe leptospirosis when used in combination with antibiotic therapy or polyclonal antibody therapy. In conclusion, our study not only uncovers the role of the gut microbiota in severe leptospirosis but also provides a therapeutic strategy for severe leptospirosis.


Subject(s)
Disease Models, Animal , Gastrointestinal Microbiome , Leptospirosis , Lipopolysaccharides , Animals , Leptospirosis/microbiology , Leptospirosis/immunology , Leptospirosis/drug therapy , Gastrointestinal Microbiome/drug effects , Cricetinae , RNA, Ribosomal, 16S/genetics , Leptospira , Cytokines/metabolism , Mesocricetus , Proteobacteria/genetics
11.
PLoS One ; 19(5): e0303846, 2024.
Article in English | MEDLINE | ID: mdl-38820372

ABSTRACT

There is an urgent need for rapid, non-sputum point-of-care diagnostics to detect tuberculosis. This prospective trial in seven high tuberculosis burden countries evaluated the diagnostic accuracy of the point-of-care urine-based lipoarabinomannan assay FUJIFILM SILVAMP TB LAM (FujiLAM) among inpatients and outpatients living with HIV. Diagnostic performance of FujiLAM was assessed against a mycobacterial reference standard (sputum culture, blood culture, and Xpert Ultra from urine and sputum at enrollment, and additional sputum culture ≤7 days from enrollment), an extended mycobacterial reference standard (eMRS), and a composite reference standard including clinical evaluation. Of 1637 participants considered for the analysis, 296 (18%) were tuberculosis positive by eMRS. Median age was 40 years, median CD4 cell count was 369 cells/ul, and 52% were female. Overall FujiLAM sensitivity was 54·4% (95% CI: 48·7-60·0), overall specificity was 85·2% (83·2-87·0) against eMRS. Sensitivity and specificity estimates varied between sites, ranging from 26·5% (95% CI: 17·4%-38·0%) to 73·2% (60·4%-83·0%), and 75·0 (65·0%-82·9%) to 96·5 (92·1%-98·5%), respectively. Post-hoc exploratory analysis identified significant variability in the performance of the six FujiLAM lots used in this study. Lot variability limited interpretation of FujiLAM test performance. Although results with the current version of FujiLAM are too variable for clinical decision-making, the lipoarabinomannan biomarker still holds promise for tuberculosis diagnostics. The trial is registered at clinicaltrials.gov (NCT04089423).


Subject(s)
HIV Infections , Tuberculosis , Humans , Female , Male , Adult , HIV Infections/complications , HIV Infections/diagnosis , Prospective Studies , Tuberculosis/diagnosis , Middle Aged , Sensitivity and Specificity , Mycobacterium tuberculosis/isolation & purification , Lipopolysaccharides/urine , Sputum/microbiology
12.
Int Immunopharmacol ; 134: 112191, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38759369

ABSTRACT

Social behavior is inextricably linked to the immune system. Although IFN-γ is known to be involved in social behavior, yet whether and how it encodes social memory remains unclear. In the current study, we injected with IFN-γ into the lateral ventricle of male C57BL/6J mice, and three-chamber social test was used to examine the effects of IFN-γ on their social preference and social memory. The morphology of microglia in the hippocampus, prelimbic cortex and amygdala was examined using immunohistochemistry, and the phenotype of microglia were examined using immunohistochemistry and enzyme-linked immunosorbent assays. The IFN-γ-injected mice were treated with lipopolysaccharide, and effects of IFN-γ on behavior and microglial responses were evaluated. STAT1 pathway and microglia-neuron interactions were examined in vivo or in vitro using western blotting and immunohistochemistry. Finally, we use STAT1 inhibitor or minocycline to evaluated the role of STAT1 in mediating the microglial priming and effects of primed microglia in IFN-γ-induced social dysfunction. We demonstrated that 500 ng of IFN-γ injection results in significant decrease in social index and social novelty recognition index, and induces microglial priming in hippocampus, characterized by enlarged cell bodies, shortened branches, increased expression of CD68, CD86, CD74, CD11b, CD11c, CD47, IL-33, IL-1ß, IL-6 and iNOS, and decreased expression of MCR1, Arg-1, IGF-1 and BDNF. This microglia subpopulation is more sensitive to LPS challenge, which characterized by more significant morphological changes and inflammatory responses, as well as induced increased sickness behaviors in mice. IFN-γ upregulated pSTAT1 and STAT1 and promoted the nuclear translocation of STAT1 in the hippocampal microglia and in the primary microglia. Giving minocycline or STAT1 inhibitor fludarabin blocked the priming of hippocampal microglia induced by IFN-γ, ameliorated the dysfunction in hippocampal microglia-neuron interactions and synapse pruning by microglia, thereby improving social memory deficits in IFN-γ injected mice. IFN-γ initiates STAT1 pathway to induce priming of hippocampal microglia, thereby disrupts hippocampal microglia-neuron interactions and neural circuit link to social memory. Blocking STAT1 pathway or inhibiting microglial priming may be strategies to reduce the effects of IFN-γ on social behavior.


Subject(s)
Hippocampus , Interferon-gamma , Mice, Inbred C57BL , Microglia , STAT1 Transcription Factor , Signal Transduction , Social Behavior , Animals , Microglia/drug effects , Microglia/immunology , Microglia/metabolism , STAT1 Transcription Factor/metabolism , Male , Interferon-gamma/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/immunology , Mice , Signal Transduction/drug effects , Lipopolysaccharides , Memory/drug effects , Cells, Cultured , Neurons/drug effects , Neurons/immunology , Neurons/metabolism
13.
Int J Med Sci ; 21(6): 983-993, 2024.
Article in English | MEDLINE | ID: mdl-38774750

ABSTRACT

Previous studies have highlighted the protective effects of pyruvate kinase M2 (PKM2) overexpression in septic cardiomyopathy. In our study, we utilized cardiomyocyte-specific PKM2 knockout mice to further investigate the role of PKM2 in attenuating LPS-induced myocardial dysfunction, focusing on mitochondrial biogenesis and prohibitin 2 (PHB2). Our findings confirmed that the deletion of PKM2 in cardiomyocytes significantly exacerbated LPS-induced myocardial dysfunction, as evidenced by impaired contractile function and relaxation. Additionally, the deletion of PKM2 intensified LPS-induced myocardial inflammation. At the molecular level, LPS triggered mitochondrial dysfunction, characterized by reduced ATP production, compromised mitochondrial respiratory complex I/III activities, and increased ROS production. Intriguingly, the absence of PKM2 further worsened LPS-induced mitochondrial damage. Our molecular investigations revealed that LPS disrupted mitochondrial biogenesis in cardiomyocytes, a disruption that was exacerbated by the absence of PKM2. Given that PHB2 is known as a downstream effector of PKM2, we employed PHB2 adenovirus to restore PHB2 levels. The overexpression of PHB2 normalized mitochondrial biogenesis, restored mitochondrial integrity, and promoted mitochondrial function. Overall, our results underscore the critical role of PKM2 in regulating the progression of septic cardiomyopathy. PKM2 deficiency impeded mitochondrial biogenesis, leading to compromised mitochondrial integrity, increased myocardial inflammation, and impaired cardiac function. The overexpression of PHB2 mitigated the deleterious effects of PKM2 deletion. This discovery offers a novel insight into the molecular mechanisms underlying septic cardiomyopathy and suggests potential therapeutic targets for intervention.


Subject(s)
Cardiomyopathies , Mice, Knockout , Mitochondria, Heart , Myocytes, Cardiac , Prohibitins , Pyruvate Kinase , Sepsis , Animals , Cardiomyopathies/pathology , Cardiomyopathies/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/etiology , Mice , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Sepsis/metabolism , Sepsis/pathology , Sepsis/genetics , Pyruvate Kinase/metabolism , Pyruvate Kinase/genetics , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Repressor Proteins/genetics , Repressor Proteins/metabolism , Humans , Organelle Biogenesis , Lipopolysaccharides/toxicity , Male , Disease Models, Animal
14.
Article in English | MEDLINE | ID: mdl-38780272

ABSTRACT

Sepsis-induced kidney injury (SAKI) has been frequently established as a prevailing complication of sepsis which is linked to unfavorable outcomes. Fatty acid-binding protein-4 (FABP4) has been proposed as a possible target for the treatment of SAKI. In the current work, we aimed to explore the role and underlying mechanism of FABP4 in lipopolysaccharide (LPS)-induced human renal tubular epithelial cell damage. In LPS-induced human kidney 2 (HK2) cells, FABP4 expression was tested by the reverse transcription-quantitative polymerase chain reaction and Western blot. Cell counting kit-8 method assayed cell viability. Inflammatory levels were detected using the enzyme-linked immunosorbent assay. Immunofluorescence staining measured the nuclear translocation of nuclear factor kappa B p65. Thiobarbituric acid-reactive substances assay and C11 BODIPY 581/591 probe were used to estimate the level of cellular lipid peroxidation. Fe2+ content was examined by the kit. In addition, the expression of proteins related to inflammation-, ferroptosis- and Janus kinase 2 (JAK2)/signal transducer, and activator of transcription 3 (STAT3) signaling was detected by the Western blot analysis. The results revealed that FABP4 was significantly upregulated in LPS-treated HK2 cells, the knockdown of which elevated the viability, whereas alleviated the inflammation and ferroptosis in HK2 cells challenged with LPS. In addition, down-regulation of FABP4 inactivated JAK2/STAT3 signaling. JAK2/STAT3 stimulator (colivelin) and ferroptosis activator (Erastin) partially restored the effects of FABP4 interference on LPS-triggered inflammation and ferroptosis in HK2 cells. Together, FABP4 knockdown inhibited ferroptosis to alleviate LPS-induced injury of renal tubular epithelial cells through suppressing JAK2/STAT3 signaling.


Subject(s)
Epithelial Cells , Fatty Acid-Binding Proteins , Ferroptosis , Janus Kinase 2 , Kidney Tubules , Lipopolysaccharides , STAT3 Transcription Factor , Signal Transduction , Humans , Lipopolysaccharides/toxicity , Ferroptosis/drug effects , Janus Kinase 2/metabolism , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Signal Transduction/drug effects , Cell Line , Kidney Tubules/pathology , Kidney Tubules/metabolism , Kidney Tubules/drug effects , Acute Kidney Injury/metabolism , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Acute Kidney Injury/chemically induced
15.
PeerJ ; 12: e17032, 2024.
Article in English | MEDLINE | ID: mdl-38770093

ABSTRACT

Purpose: This study seeks to identify potential clinical biomarkers for osteoarthritis (OA) using bioinformatics and investigate OA mechanisms through cellular assays. Methods: Differentially Expressed Genes (DEGs) from GSE52042 (four OA samples, four control samples) were screened and analyzed with protein-protein interaction (PPI) analysis. Overlapping genes in GSE52042 and GSE206848 (seven OA samples, and seven control samples) were identified and evaluated using Gene Set Enrichment Analysis (GSEA) and clinical diagnostic value analysis to determine the hub gene. Finally, whether and how the hub gene impacts LPS-induced OA progression was explored by in vitro experiments, including Western blotting (WB), co-immunoprecipitation (Co-IP), flow cytometry, etc. Result: Bioinformatics analysis of DEGs (142 up-regulated and 171 down-regulated) in GSE52042 identified two overlapping genes (U2AF2, TPX2) that exhibit significant clinical diagnostic value. These genes are up-regulated in OA samples from both GSE52042 and GSE206848 datasets. Notably, TPX2, which AUC = 0.873 was identified as the hub gene. In vitro experiments have demonstrated that silencing TPX2 can alleviate damage to chondrocytes induced by lipopolysaccharide (LPS). Furthermore, there is a protein interaction between TPX2 and MMP13 in OA. Excessive MMP13 can attenuate the effects of TPX2 knockdown on LPS-induced changes in OA protein expression, cell growth, and apoptosis. Conclusion: In conclusion, our findings shed light on the molecular mechanisms of OA and suggested TPX2 as a potential therapeutic target. TPX2 could promote the progression of LPS-induced OA by up-regulating the expression of MMP13, which provides some implications for clinical research.


Subject(s)
Cell Cycle Proteins , Chondrocytes , Disease Progression , Lipopolysaccharides , Matrix Metalloproteinase 13 , Microtubule-Associated Proteins , Osteoarthritis , Up-Regulation , Lipopolysaccharides/pharmacology , Osteoarthritis/genetics , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/chemically induced , Humans , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chondrocytes/metabolism , Chondrocytes/pathology , Chondrocytes/drug effects , Computational Biology , Protein Interaction Maps
16.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731397

ABSTRACT

A chemical investigation of the arils of Torreya grandis led to the isolation of seven abietane-type diterpenoids (compounds 1-7) including three previously undescribed compounds, one unreported natural product, and three known analogs. The structures of these compounds were determined by means of spectroscopy, single-crystal X-ray diffraction, and ECD spectra. An antibacterial activity assay showed that compounds 5 and 6 had significant inhibitory effects on methicillin-resistant Staphylococcus aureus, with MIC values of 100 µM. Moreover, compounds 1, 3, 4, and 7 exhibited anti-neuroinflammatory activity in LPS-stimulated BV-2 microglia cells, with the IC50 values ranging from 38.4 to 67.9 µM.


Subject(s)
Abietanes , Anti-Bacterial Agents , Abietanes/chemistry , Abietanes/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Microglia/drug effects , Microglia/metabolism , Mice , Methicillin-Resistant Staphylococcus aureus/drug effects , Animals , Molecular Structure , Cell Line , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/isolation & purification , Lipopolysaccharides/pharmacology
17.
Physiol Res ; 73(2): 305-314, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38710054

ABSTRACT

Netrin-1 (NTN-1) plays a vital role in the progress of nervous system development and inflammatory diseases. However, the role and underlying mechanism of NTN-1 in inflammatory pain (IP) are unclear. BV2 microglia were treated with LPS to mimic the cell status under IP. Adeno-associated virus carrying the NTN-1 gene (AAV-NTN-1) was used to overexpress NTN-1. Complete Freund's Adjuvant (CFA)-induced mouse was recruited as an in vivo model. MTT and commercial kits were utilized to evaluate cell viability and cell death of BV2 cells. The mRNA expressions and secretions of cytokines were measured using the ELISA method. Also, the pyroptosis and activation of BV2 cells were investigated based on western blotting. To verify the role of Rac1/NF-kappaB signaling, isochamaejasmin (ISO) and AAV-Rac1 were presented. The results showed that NTN-1 expression was decreased in LPS-treated BV2 microglia and spinal cord tissues of CFA-injected mice. Overexpressing NTN-1 dramatically reversed cell viability and decreased cell death rate of BV2 microglia under lipopolysaccharide (LPS) stimulation, while the level of pyroptosis was inhibited. Besides, AAV-NTN-1 rescued the activation of microglia and inflammatory injury induced by LPS, decreasing IBA-1 expression, as well as iNOS, IL-1beta and IL-6 secretions. Meanwhile AAV-NTN-1 promoted the anti-inflammation response, including increases in Arg-1, IL-4 and IL-10 levels. In addition, the LPS-induced activation of Rac1/NF-kappaB signaling was depressed by NTN-1 overexpression. The same results were verified in a CFA-induced mouse model. In conclusion, NTN-1 alleviated IP by suppressing pyroptosis and promoting M2 type activation of microglia via inhibiting Rac1/NF-?B signaling, suggesting the protective role of NTN-1 in IP. Keywords: Netrin-1, Inflammatory pain, Pyroptosis, Microglia M2 activation, Rac1/NF-kappaB.


Subject(s)
Inflammation , Microglia , NF-kappa B , Netrin-1 , Neuropeptides , Pyroptosis , Signal Transduction , rac1 GTP-Binding Protein , Animals , Pyroptosis/physiology , Pyroptosis/drug effects , Microglia/metabolism , Mice , Netrin-1/metabolism , rac1 GTP-Binding Protein/metabolism , NF-kappa B/metabolism , Inflammation/metabolism , Inflammation/pathology , Male , Mice, Inbred C57BL , Pain/metabolism , Cell Line , Lipopolysaccharides
18.
J Med Chem ; 67(10): 8060-8076, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38722184

ABSTRACT

Interleukin-1 receptor-associated kinase 4 (IRAK4) is a promising therapeutic target in inflammation-related diseases. However, the inhibition of IRAK4 kinase activity may lead to moderate anti-inflammatory efficacy owing to the dual role of IRAK4 as an active kinase and a scaffolding protein. Herein, we report the design, synthesis, and biological evaluation of an efficient and selective IRAK4 proteolysis-targeting chimeric molecule that eliminates IRAK4 scaffolding functions. The most potent compound, LC-MI-3, effectively degraded cellular IRAK4, with a half-maximal degradation concentration of 47.3 nM. LC-MI-3 effectively inhibited the activation of downstream nuclear factor-κB signaling and exerted more potent pharmacological effects than traditional kinase inhibitors. Furthermore, LC-MI-3 exerted significant therapeutic effects in lipopolysaccharide- and Escherichia coli-induced acute and chronic inflammatory skin models compared with kinase inhibitors in vivo. Therefore, LC-MI-3 is a candidate IRAK4 degrader in alternative targeting strategies and advanced drug development.


Subject(s)
Interleukin-1 Receptor-Associated Kinases , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Interleukin-1 Receptor-Associated Kinases/metabolism , Animals , Humans , Mice , Inflammation/drug therapy , Inflammation/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Administration, Oral , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , NF-kappa B/antagonists & inhibitors , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacokinetics , Biological Availability , Drug Discovery , Proteolysis/drug effects , Structure-Activity Relationship , Male , Mice, Inbred C57BL
19.
Med Microbiol Immunol ; 213(1): 8, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767707

ABSTRACT

Bacterial resistance to serum is a key virulence factor for the development of systemic infections. The amount of lipopolysaccharide (LPS) and the O-antigen chain length distribution on the outer membrane, predispose Salmonella to escape complement-mediated killing. In Salmonella enterica serovar Enteritidis (S. Enteritidis) a modal distribution of the LPS O-antigen length can be observed. It is characterized by the presence of distinct fractions: low molecular weight LPS, long LPS and very long LPS. In the present work, we investigated the effect of the O-antigen modal length composition of LPS molecules on the surface of S. Enteritidis cells on its ability to evade host complement responses. Therefore, we examined systematically, by using specific deletion mutants, roles of different O-antigen fractions in complement evasion. We developed a method to analyze the average LPS lengths and investigated the interaction of the bacteria and isolated LPS molecules with complement components. Additionally, we assessed the aspect of LPS O-antigen chain length distribution in S. Enteritidis virulence in vivo in the Galleria mellonella infection model. The obtained results of the measurements of the average LPS length confirmed that the method is suitable for measuring the average LPS length in bacterial cells as well as isolated LPS molecules and allows the comparison between strains. In contrast to earlier studies we have used much more precise methodology to assess the LPS molecules average length and modal distribution, also conducted more subtle analysis of complement system activation by lipopolysaccharides of various molecular mass. Data obtained in the complement activation assays clearly demonstrated that S. Enteritidis bacteria require LPS with long O-antigen to resist the complement system and to survive in the G. mellonella infection model.


Subject(s)
Complement System Proteins , Disease Models, Animal , Lipopolysaccharides , O Antigens , Salmonella enteritidis , Salmonella enteritidis/immunology , Salmonella enteritidis/pathogenicity , Animals , O Antigens/immunology , Complement System Proteins/immunology , Complement System Proteins/metabolism , Lipopolysaccharides/immunology , Immune Evasion , Microbial Viability , Moths/microbiology , Moths/immunology , Virulence , Salmonella Infections/immunology , Salmonella Infections/microbiology , Salmonella Infections, Animal/immunology , Salmonella Infections, Animal/microbiology , Complement Activation , Lepidoptera/immunology , Lepidoptera/microbiology
20.
Sci Rep ; 14(1): 11519, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38769131

ABSTRACT

Ulcerative colitis (UC) is a refractory inflammatory bowel disease, which is known to cause psychiatric disorders such as anxiety and depression at a high rate in addition to peripheral inflammatory symptoms. However, the pathogenesis of these psychiatric disorders remains mostly unknown. While prior research revealed that the Enterococcus faecalis 2001 (EF-2001) suppressed UC-like symptoms and accompanying depressive-like behaviors, observed in a UC model using dextran sulfate sodium (DSS), whether it has an anxiolytic effect remains unclear. Therefore, we examined whether EF-2001 attenuates DSS-induced anxiety-like behaviors. Treatment with 2% DSS for seven days induced UC-like symptoms and anxiety-like behavior through the hole-board test, increased serum lipopolysaccharide (LPS) and corticosterone concentration, and p-glucocorticoid receptor (GR) in the prefrontal cortex (PFC), and decreased N-methyl-D-aspartate receptor subunit (NR) 2A and NR2B expression levels in the PFC. Interestingly, these changes were reversed by EF-2001 administration. Further, EF-2001 administration enhanced CAMKII/CREB/BDNF-Drebrin pathways in the PFC of DSS-treated mice, and labeling of p-GR, p-CAMKII, and p-CREB showed colocalization with neurons. EF-2001 attenuated anxiety-like behavior by reducing serum LPS and corticosterone levels linked to the improvement of UC symptoms and by facilitating the CAMKII/CREB/BDNF-Drebrin pathways in the PFC. Our findings suggest a close relationship between UC and anxiety.


Subject(s)
Anti-Anxiety Agents , Dextran Sulfate , Disease Models, Animal , Enterococcus faecalis , Animals , Mice , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Dextran Sulfate/toxicity , Male , Anxiety/drug therapy , Lipopolysaccharides , Corticosterone/blood , Prefrontal Cortex/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/microbiology , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...