Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.521
Filter
1.
BMC Vet Res ; 20(1): 286, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961471

ABSTRACT

BACKGROUND: The milk's nutritional value is determined by its constituents, including fat, protein, carbohydrates, and minerals. The mammary gland's ability to produce milk is controlled by a complex network of genes. Thereby, the fat, protein, and lactose synthesis must be boost in milk to increase milk production efficiency. This can be accomplished by fusing genetic advancements with proper management practices. Therefore, this study aimed to investigate the association between the Lipoprotein lipase (LPL), kappa casein CSN3, and Glucose transporter 1 (GLUT1) genes expression levels and such milk components as fat, protein, and lactose in different dairy breeds during different stages of lactation. METHODS: To achieve such a purpose, 94 milk samples were collected (72 samples from 36 multiparous black-white and red-white Holstein-Friesian (HF) cows and 22 milk samples from 11 Egyptian buffaloes) during the early and peak lactation stages. The milk samples were utilized for milk analysis and genes expressions analyses using non- invasive approach in obtaining milk fat globules (MFGs) as a source of Ribonucleic acid (RNA). RESULTS: LPL and CSN3 genes expressions levels were found to be significantly higher in Egyptian buffalo than Holstein-Friesian (HF) cows as well as fat and protein percentages. On the other hand, GLUT1 gene expression level was shown to be significantly higher during peak lactation than early lactation. Moreover, lactose % showed a significant difference in peak lactation phase compared to early lactation phase. Also, fat and protein percentages were significantly higher in early lactation period than peak lactation period but lactose% showed the opposite pattern of Egyptian buffalo. CONCLUSION: Total RNA can be successfully obtained from MFGs. The results suggest that these genes play a role in glucose absorption and lactose synthesis in bovine mammary epithelial cells during lactation. Also, these results provide light on the differential expression of these genes among distinct Holstein-Friesian cow breeds and Egyptian buffalo subspecies throughout various lactation phases.


Subject(s)
Caseins , Glycolipids , Glycoproteins , Lactation , Lipid Droplets , Mammary Glands, Animal , Milk , RNA, Messenger , Animals , Cattle/genetics , Lactation/genetics , Female , Lipid Droplets/metabolism , Milk/chemistry , Milk/metabolism , Glycolipids/metabolism , Caseins/genetics , Caseins/metabolism , Glycoproteins/genetics , Glycoproteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Mammary Glands, Animal/metabolism , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Buffaloes/genetics , Buffaloes/metabolism , Lactose/metabolism , Lactose/analysis , Milk Proteins/analysis , Milk Proteins/metabolism , Milk Proteins/genetics , Gene Expression Regulation
2.
JCI Insight ; 9(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973609

ABSTRACT

Lipoprotein lipase (LPL) hydrolyzes circulating triglycerides (TGs), releasing fatty acids (FA) and promoting lipid storage in white adipose tissue (WAT). However, the mechanisms regulating adipose LPL and its relationship with the development of hypertriglyceridemia are largely unknown. WAT from obese humans exhibited high PAR2 expression, which was inversely correlated with the LPL gene. Decreased LPL expression was also inversely correlated with elevated plasma TG levels, suggesting that adipose PAR2 might regulate hypertriglyceridemia by downregulating LPL. In mice, aging and high palmitic acid diet (PD) increased PAR2 expression in WAT, which was associated with a high level of macrophage migration inhibitory factor (MIF). MIF downregulated LPL expression and activity in adipocytes by binding with CXCR2/4 receptors and inhibiting Akt phosphorylation. In a MIF overexpression model, high-circulating MIF levels suppressed adipose LPL, and this suppression was associated with increased plasma TGs but not FA. Following PD feeding, adipose LPL expression and activity were significantly reduced, and this reduction was reversed in Par2-/- mice. Recombinant MIF infusion restored high plasma MIF levels in Par2-/- mice, and the levels decreased LPL and attenuated adipocyte lipid storage, leading to hypertriglyceridemia. These data collectively suggest that downregulation of adipose LPL by PAR2/MIF may contribute to the development of hypertriglyceridemia.


Subject(s)
Down-Regulation , Hypertriglyceridemia , Lipoprotein Lipase , Receptor, PAR-2 , Animals , Lipoprotein Lipase/metabolism , Lipoprotein Lipase/genetics , Hypertriglyceridemia/metabolism , Hypertriglyceridemia/genetics , Mice , Humans , Receptor, PAR-2/metabolism , Receptor, PAR-2/genetics , Male , Mice, Knockout , Triglycerides/metabolism , Triglycerides/blood , Adipose Tissue, White/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , Macrophage Migration-Inhibitory Factors/genetics , Adipocytes/metabolism , Obesity/metabolism , Obesity/genetics , Palmitic Acid/metabolism , Female , Mice, Inbred C57BL , Middle Aged
3.
Methods Mol Biol ; 2816: 193-204, 2024.
Article in English | MEDLINE | ID: mdl-38977600

ABSTRACT

With impaired retinal ganglion cell (RGC) function and eventual RGC death, there is a heightened risk of experiencing glaucoma-induced blindness or other optic neuropathies. Poor RGC efficiency leads to limited transmission of visual signals between the retina and the brain by RGC axons. Increased focus on studying lipid messengers found in neurons such as endocannabinoids (eCBs) has importance due to their potential axonal pathway regenerative properties. 2-Arachidonoylglycerol (2-AG), a common eCB, is synthesized from an sn-1 hydrolysis reaction between diacylglycerol (DAG) and diacylglycerol lipase (DAGL). Examination of DAG production allows for future downstream analysis in relation to DAGL functionality. Here, we describe protocol guidelines for extracting RGCs from mouse retinas and subsequent mass spectrometry analysis of the DAG content present within the RGCs.


Subject(s)
Diglycerides , Retinal Ganglion Cells , Signal Transduction , Retinal Ganglion Cells/metabolism , Animals , Mice , Diglycerides/metabolism , Endocannabinoids/metabolism , Glycerides/metabolism , Lipoprotein Lipase/metabolism , Arachidonic Acids/metabolism , Mass Spectrometry/methods , Retina/metabolism
4.
Subcell Biochem ; 104: 139-179, 2024.
Article in English | MEDLINE | ID: mdl-38963487

ABSTRACT

Lipoprotein lipase (LPL) is a critical enzyme in humans that provides fuel to peripheral tissues. LPL hydrolyzes triglycerides from the cores of lipoproteins that are circulating in plasma and interacts with receptors to mediate lipoprotein uptake, thus directing lipid distribution via catalytic and non-catalytic functions. Functional losses in LPL or any of its myriad of regulators alter lipid homeostasis and potentially affect the risk of developing cardiovascular disease-either increasing or decreasing the risk depending on the mutated protein. The extensive LPL regulatory network tunes LPL activity to allocate fatty acids according to the energetic needs of the organism and thus is nutritionally responsive and tissue dependent. Multiple pharmaceuticals in development manipulate or mimic these regulators, demonstrating their translational importance. Another facet of LPL biology is that the oligomeric state of the enzyme is also central to its regulation. Recent structural studies have solidified the idea that LPL is regulated not only by interactions with other binding partners but also by self-associations. Here, we review the complexities of the protein-protein and protein-lipid interactions that govern LPL structure and function.


Subject(s)
Lipoprotein Lipase , Lipoprotein Lipase/metabolism , Lipoprotein Lipase/chemistry , Lipoprotein Lipase/genetics , Humans , Animals , Protein Binding , Triglycerides/metabolism , Lipid Metabolism
5.
Cell Biochem Funct ; 42(5): e4069, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38940455

ABSTRACT

Stem cells demonstrate differentiation and regulatory functions. In this discussion, we will explore the impacts of cell culture density on stem cell proliferation, adipogenesis, and regulatory abilities. This study aimed to investigate the impact of the initial culture density of human periodontal ligament stem cells (hPDLSCs) on the adipogenic differentiation of autologous cells. Our findings indicate that the proliferation rate of hPDLSCs increased with increasing initial cell density (0.5-8 × 104 cells/cm2). After adipogenic differentiation induced by different initial cell densities of hPDLSC, we found that the mean adipose concentration and the expression levels of lipoprotein lipase (LPL), CCAAT/enhancer binding protein α (CEBPα), and peroxisome proliferator-activated receptor γ (PPAR-γ) genes all increased with increasing cell density. To investigate the regulatory role of hPDLSCs in the adipogenic differentiation of other cells, we used secreted exocrine vesicles derived from hPDLSCs cultivated at different initial cell densities of 50 µg/mL to induce the adipogenic differentiation of human bone marrow stromal cells. We also found that the mean adipose concentration and expression of LPL, CEBPα, and PPARγ genes increased with increasing cell density, with an optimal culture density of 8 × 104 cells/cm2. This study provides a foundation for the application of adipogenic differentiation in stem cells.


Subject(s)
Adipogenesis , Cell Differentiation , Periodontal Ligament , Stem Cells , Humans , Periodontal Ligament/cytology , Periodontal Ligament/metabolism , Stem Cells/cytology , Stem Cells/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Cells, Cultured , Lipoprotein Lipase/metabolism , Lipoprotein Lipase/genetics , Cell Proliferation , Cell Count , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics
6.
Nat Commun ; 15(1): 4410, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782979

ABSTRACT

Pancreatic ß cells secrete insulin in response to glucose elevation to maintain glucose homeostasis. A complex network of inter-organ communication operates to modulate insulin secretion and regulate glucose levels after a meal. Lipids obtained from diet or generated intracellularly are known to amplify glucose-stimulated insulin secretion, however, the underlying mechanisms are not completely understood. Here, we show that a Drosophila secretory lipase, Vaha (CG8093), is synthesized in the midgut and moves to the brain where it concentrates in the insulin-producing cells in a process requiring Lipid Transfer Particle, a lipoprotein originating in the fat body. In response to dietary fat, Vaha stimulates insulin-like peptide release (ILP), and Vaha deficiency results in reduced circulatory ILP and diabetic features including hyperglycemia and hyperlipidemia. Our findings suggest Vaha functions as a diacylglycerol lipase physiologically, by being a molecular link between dietary fat and lipid amplified insulin secretion in a gut-brain axis.


Subject(s)
Brain , Drosophila Proteins , Drosophila melanogaster , Insulin Secretion , Insulin , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Brain/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Brain-Gut Axis/physiology , Lipase/metabolism , Lipase/genetics , Dietary Fats/metabolism , Glucose/metabolism , Fat Body/metabolism , Lipoprotein Lipase/metabolism , Lipoprotein Lipase/genetics , Male
7.
Biomed Pharmacother ; 174: 116598, 2024 May.
Article in English | MEDLINE | ID: mdl-38615609

ABSTRACT

Angiopoietin-like 3 (ANGPTL3) acts as an inhibitor of lipoprotein lipase (LPL), impeding the breakdown of triglyceride-rich lipoproteins (TGRLs) in circulation. Targeting ANGPTL3 is considered a novel strategy for improving dyslipidemia and atherosclerotic cardiovascular diseases (ASCVD). Hops (Humulus lupulus L.) contain several bioactive prenylflavonoids, including xanthohumol (Xan), isoxanthohumol (Isoxan), 6-prenylnaringenin (6-PN), and 8-prenylnaringenin (8-PN), with the potential to manage lipid metabolism. The aim of this study was to investigate the lipid-lowering effects of Xan, the effective prenylated chalcone in attenuating ANGPTL3 transcriptional activity, both in vitro using hepatic cells and in vivo using zebrafish models, along with exploring the underlying mechanisms. Xan (10 and 20 µM) significantly reduced ANGPTL3 mRNA and protein expression in HepG2 and Huh7 cells, leading to a marked decrease in secreted ANGPTL3 proteins via hepatic cells. In animal studies, orally administered Xan significantly alleviated plasma triglyceride (TG) and cholesterol levels in zebrafish fed a high-fat diet. Furthermore, it reduced hepatic ANGPTL3 protein levels and increased LPL activity in zebrafish models, indicating its potential to modulate lipid profiles in circulation. Furthermore, molecular docking results predicted that Xan exhibits a higher binding affinity to interact with liver X receptor α (LXRα) and retinoic acid X receptor (RXR) than their respective agonists, T0901317 and 9-Cis-retinoic acid (9-Cis-RA). We observed that Xan suppressed hepatic ANGPTL3 expression by antagonizing the LXRα/RXR-mediated transcription. These findings suggest that Xan ameliorates dyslipidemia by modulating the LXRα/RXR-ANGPTL3-LPL axis. Xan represents a novel potential inhibitor of ANGPTL3 for the prevention or treatment of ASCVD.


Subject(s)
Angiopoietin-Like Protein 3 , Diet, High-Fat , Flavonoids , Lipid Metabolism , Lipoprotein Lipase , Liver X Receptors , Propiophenones , Zebrafish , Animals , Liver X Receptors/metabolism , Propiophenones/pharmacology , Humans , Lipid Metabolism/drug effects , Diet, High-Fat/adverse effects , Flavonoids/pharmacology , Lipoprotein Lipase/metabolism , Retinoid X Receptors/metabolism , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Chalcones/pharmacology , Liver/drug effects , Liver/metabolism
8.
BMC Endocr Disord ; 24(1): 47, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622573

ABSTRACT

BACKGROUND: Familial chylomicronemia syndrome (FCS) is a rare monogenic form of severe hypertriglyceridemia, caused by mutations in genes involved in triglyceride metabolism. Herein, we report the case of a Korean family with familial chylomicronemia syndrome caused by compound heterozygous deletions of glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1). CASE PRESENTATION: A 4-year-old boy was referred for the evaluation of severe hypertriglyceridemia (3734 mg/dL) that was incidentally detected 4 months prior. His elder brother also demonstrated an elevated triglyceride level of 2133 mg/dL at the age of 9. Lipoprotein electrophoresis revealed the presence of chylomicrons, an increase in the proportion of pre-beta lipoproteins, and low serum lipoprotein lipase levels. The patient's parents and first elder brother had stable lipid profiles. For suspected FCS, genetic testing was performed using the next-generation sequencing-based analysis of 31 lipid metabolism-associated genes, which revealed no pathogenic variants. However, copy number variant screening using sequencing depth information suggested large heterozygous deletion encompassing all the coding exons of GPIHBP1. A real-time quantitative polymerase chain reaction was performed to validate the deletion site. The results showed that the siblings had two heterozygous copy number variants consisting of the whole gene and an exon 4 deletion, each inherited from their parents. During the follow-up period of 17 months, the patient did not develop pancreatitis, following dietary intervention. CONCLUSION: These siblings' case of familial chylomicronemia syndrome caused by rare GPIHBP1 deletions highlight the implementation of copy number variants-beyond next-generation sequencing-as an important consideration in diagnosis. Accurate genetic diagnosis is necessary to establish the etiology of severe hypertriglyceridemia, which increases the risk of pancreatitis.


Subject(s)
Hyperlipoproteinemia Type I , Hypertriglyceridemia , Pancreatitis , Receptors, Lipoprotein , Child, Preschool , Humans , Male , Hyperlipoproteinemia Type I/diagnosis , Hyperlipoproteinemia Type I/genetics , Hypertriglyceridemia/etiology , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Receptors, Lipoprotein/genetics , Receptors, Lipoprotein/chemistry , Receptors, Lipoprotein/metabolism , Siblings , Triglycerides , Child
9.
J Lipid Res ; 65(4): 100532, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38608546

ABSTRACT

To support in vivo and in vitro studies of intravascular triglyceride metabolism in mice, we created rat monoclonal antibodies (mAbs) against mouse LPL. Two mAbs, mAbs 23A1 and 31A5, were used to develop a sandwich ELISA for mouse LPL. The detection of mouse LPL by the ELISA was linear in concentrations ranging from 0.31 ng/ml to 20 ng/ml. The sensitivity of the ELISA made it possible to quantify LPL in serum and in both pre-heparin and post-heparin plasma samples (including in grossly lipemic samples). LPL mass and activity levels in the post-heparin plasma were lower in Gpihbp1-/- mice than in wild-type mice. In both groups of mice, LPL mass and activity levels were positively correlated. Our mAb-based sandwich ELISA for mouse LPL will be useful for any investigator who uses mouse models to study LPL-mediated intravascular lipolysis.


Subject(s)
Antibodies, Monoclonal , Enzyme-Linked Immunosorbent Assay , Lipoprotein Lipase , Animals , Lipoprotein Lipase/metabolism , Lipoprotein Lipase/blood , Mice , Enzyme-Linked Immunosorbent Assay/methods , Antibodies, Monoclonal/immunology , Rats , Receptors, Lipoprotein/metabolism , Receptors, Lipoprotein/genetics , Mice, Knockout
10.
Proc Natl Acad Sci U S A ; 121(17): e2322332121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38625948

ABSTRACT

Apolipoprotein AV (APOA5) lowers plasma triglyceride (TG) levels by binding to the angiopoietin-like protein 3/8 complex (ANGPTL3/8) and suppressing its capacity to inhibit lipoprotein lipase (LPL) catalytic activity and its ability to detach LPL from binding sites within capillaries. However, the sequences in APOA5 that are required for suppressing ANGPTL3/8 activity have never been defined. A clue to the identity of those sequences was the presence of severe hypertriglyceridemia in two patients harboring an APOA5 mutation that truncates APOA5 by 35 residues ("APOA5Δ35"). We found that wild-type (WT) human APOA5, but not APOA5Δ35, suppressed ANGPTL3/8's ability to inhibit LPL catalytic activity. To pursue that finding, we prepared a mutant mouse APOA5 protein lacking 40 C-terminal amino acids ("APOA5Δ40"). Mouse WT-APOA5, but not APOA5Δ40, suppressed ANGPTL3/8's capacity to inhibit LPL catalytic activity and sharply reduced plasma TG levels in mice. WT-APOA5, but not APOA5Δ40, increased intracapillary LPL levels and reduced plasma TG levels in Apoa5-/- mice (where TG levels are high and intravascular LPL levels are low). Also, WT-APOA5, but not APOA5Δ40, blocked the ability of ANGPTL3/8 to detach LPL from cultured cells. Finally, an antibody against a synthetic peptide corresponding to the last 26 amino acids of mouse APOA5 reduced intracapillary LPL levels and increased plasma TG levels in WT mice. We conclude that C-terminal sequences in APOA5 are crucial for suppressing ANGPTL3/8 activity in vitro and for regulating intracapillary LPL levels and plasma TG levels in vivo.


Subject(s)
Apolipoproteins , Lipoprotein Lipase , Mice , Humans , Animals , Angiopoietin-like Proteins/genetics , Angiopoietin-like Proteins/metabolism , Lipoprotein Lipase/metabolism , Angiopoietin-Like Protein 3 , Amino Acids , Triglycerides/metabolism , Apolipoprotein A-V/genetics
11.
Trends Endocrinol Metab ; 35(6): 490-504, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38521668

ABSTRACT

The regulation of triglyceride (TG) tissue distribution, storage, and utilization, a fundamental process of energy homeostasis, critically depends on lipoprotein lipase (LPL). We review the intricate mechanisms by which LPL activity is regulated by angiopoietin-like proteins (ANGPTL3, 4, 8), apolipoproteins (APOA5, APOC3, APOC2), and the cAMP-responsive element-binding protein H (CREBH). ANGPTL8 functions as a molecular switch, through complex formation, activating ANGPTL3 while deactivating ANGPTL4 in their LPL inhibition. The ANGPTL3-4-8 model integrates the roles of the aforementioned proteins in TG partitioning between white adipose tissue (WAT) and oxidative tissues (heart and skeletal muscles) during the feed/fast cycle. This model offers a unified perspective on LPL regulation, providing insights into TG metabolism, metabolic diseases, and therapeutics.


Subject(s)
Lipoprotein Lipase , Humans , Lipoprotein Lipase/metabolism , Animals , Triglycerides/metabolism , Angiopoietin-like Proteins/metabolism , Angiopoietin-like Proteins/genetics , Angiopoietin-Like Protein 8 , Angiopoietin-Like Protein 4/metabolism , Angiopoietin-Like Protein 4/genetics , Angiopoietin-Like Protein 3/metabolism
12.
J Lipid Res ; 65(4): 100526, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38431115

ABSTRACT

ANGPTL4 is an attractive pharmacological target for lowering plasma triglycerides and cardiovascular risk. Since most preclinical studies on ANGPTL4 were performed in male mice, little is known about sexual dimorphism in ANGPTL4 regulation and function. Here, we aimed to study potential sexual dimorphism in ANGPTL4 mRNA and protein levels and ANGPTL4 function. Additionally, we performed exploratory studies on the function of ANGPTL4 in the liver during fasting using Angptl4-transgenic and Angptl4-/- mice. Compared to female mice, male mice showed higher hepatic and adipose ANGPTL4 mRNA and protein levels, as well as a more pronounced effect of genetic ANGPTL4 modulation on plasma lipids. By contrast, very limited sexual dimorphism in ANGPTL4 levels was observed in human liver and adipose tissue. In human and mouse adipose tissue, ANGPTL8 mRNA and/or protein levels were significantly higher in females than males. Adipose LPL protein levels were higher in female than male Angptl4-/- mice, which was abolished by ANGPTL4 (over) expression. At the human genetic level, the ANGPTL4 E40K loss-of-function variant was associated with similar plasma triglyceride reductions in women and men. Finally, ANGPTL4 ablation in fasted mice was associated with changes in hepatic gene expression consistent with PPARα activation. In conclusion, the levels of ANGPTL4 and the magnitude of the effect of ANGPTL4 on plasma lipids exhibit sexual dimorphism. Nonetheless, inactivation of ANGPTL4 should confer a similar metabolic benefit in women and men. Expression levels of ANGPTL8 in human and mouse adipose tissue are highly sexually dimorphic, showing higher levels in females than males.


Subject(s)
Adipose Tissue , Angiopoietin-Like Protein 4 , Liver , Peptide Hormones , Sex Characteristics , Animals , Male , Female , Humans , Angiopoietin-Like Protein 4/metabolism , Angiopoietin-Like Protein 4/genetics , Mice , Liver/metabolism , Adipose Tissue/metabolism , Angiopoietins/genetics , Angiopoietins/metabolism , Angiopoietin-Like Protein 8 , Triglycerides/blood , Triglycerides/metabolism , Mice, Knockout , RNA, Messenger/metabolism , RNA, Messenger/genetics , Lipoprotein Lipase/metabolism , Lipoprotein Lipase/genetics , Mice, Inbred C57BL
13.
J Biosci Bioeng ; 137(5): 381-387, 2024 May.
Article in English | MEDLINE | ID: mdl-38429186

ABSTRACT

The adjunct product with enzymatic activity from Aspergillus oryzae is beneficial for flavor enrichment in the ripened cheese. However, an excessive lipolytic reaction leads to the release of volatile free fatty acids. Accordingly, a strong off-flavor (i.e., rancidity) has been detected when A. oryzae AHU 7139 is used. To identify the rancidity-related lipase from this strain, we evaluated the substrate specificity and lipase distribution using five mutants cultured on a whey-based solid medium under different initial pH conditions. The results showed a higher diacylglycerol lipase activity than triacylglycerol lipase activity. Moreover, an initial pH of 6.5 for the culture resulted in higher lipolytic activity than a pH of 4.0, and most of the activity was found in the extracellular fraction. Based on the gene expression analysis by real-time polymerase chain reaction and location and substrate specificity, five genes (No. 1, No. 19, mdlB, tglA, and cutL) were selected among 25 annotated lipase genes to identify the respective knockout strains. Because ΔtglA and ΔmdlB showed an outstanding involvement in the release of free fatty acids, these strains were applied to in vitro cheese curd experiments. In conclusion, we posit that triacylglycerol lipase (TglA) plays a key role as the trigger of rancidity and the resulting diglycerides have to be exposed to diacylglycerol lipase (MdlB) to stimulate rancidity in cheese made with A. oryzae AHU 7139. This finding could help screen suitable A.oryzae strains as cheese adjuncts to prevent the generation of the rancid-off flavor.


Subject(s)
Aspergillus oryzae , Cheese , Lipoprotein Lipase/metabolism , Aspergillus oryzae/genetics , Aspergillus oryzae/metabolism , Fatty Acids, Nonesterified/metabolism , Lipase/genetics , Lipase/metabolism
14.
Int J Mol Sci ; 25(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38542527

ABSTRACT

Angiopoietin-like protein 3 (ANGPTL3) is a plasmatic protein that plays a crucial role in lipoprotein metabolism by inhibiting the lipoprotein lipase (LPL) and the endothelial lipase (EL) responsible for the hydrolysis of phospholipids on high-density lipoprotein (HDL). Interest in developing new pharmacological therapies aimed at inhibiting ANGPTL3 has been growing due to the hypolipidemic and antiatherogenic profile observed in its absence. The goal of this study was the in silico characterization of the interaction between ANGPTL3 and EL. Because of the lack of any structural information on both the trimeric coiled-coil N-terminal domain of ANGPTL3 and the EL homodimer as well as data regarding their interactions, the first step was to obtain the three-dimensional model of these two proteins. The models were then refined via molecular dynamics (MD) simulations and used to investigate the interaction mechanism. The analysis of interactions in different docking poses and their refinement via MD allowed the identification of three specific glutamates of ANGPTL3 that recognize a positively charged patch on the surface of EL. These ANGPTL3 key residues, i.e., Glu154, Glu157, and Glu160, could form a putative molecular recognition site for EL. This study paves the way for future investigations aimed at confirming the recognition site and at designing novel inhibitors of ANGPTL3.


Subject(s)
Angiopoietin-Like Protein 3 , Lipase , Angiopoietin-like Proteins , Lipase/metabolism , Lipoprotein Lipase/metabolism , Lipoproteins, HDL/metabolism , Phospholipids/metabolism , Triglycerides , Angiopoietins/metabolism
15.
Obes Facts ; 17(3): 255-263, 2024.
Article in English | MEDLINE | ID: mdl-38342095

ABSTRACT

INTRODUCTION: Cardio-ankle vascular index (CAVI) is an arterial stiffness index that correlates inversely with body mass index (BMI) and subcutaneous fat area. Lipoprotein lipase (LPL) that catalyzes the hydrolysis of serum triglycerides is produced mainly in adipocytes. Serum LPL mass reflects LPL expression in adipose tissue, and its changes correlate inversely with changes in CAVI. We hypothesized that LPL derived from subcutaneous adipose tissue (SAT) suppresses the progression of arteriosclerosis and examined the relationship of LPL gene expression in different adipose tissues and serum LPL mass with CAVI in Japanese patients with severe obesity undergoing laparoscopic sleeve gastrectomy (LSG). METHODS: This study was a single-center retrospective database analysis. Fifty Japanese patients who underwent LSG and had 1-year postoperative follow-up data were enrolled (mean age 47.5 years, baseline BMI 46.6 kg/m2, baseline HbA1c 6.7%). SAT and visceral adipose tissue (VAT) samples were obtained during LSG surgery. LPL gene expression was analyzed by real-time PCR. Serum LPL mass was measured by ELISA using a specific monoclonal antibody against LPL. RESULTS: At baseline, LPL mRNA expression in SAT correlated positively with serum LPL mass, but LPL mRNA expression in VAT did not. LPL mRNA expression in SAT was correlated, and serum LPL mass tended to correlate inversely with the number of metabolic syndrome symptoms, but LPL mRNA expression in VAT did not. LPL mRNA expression in SAT and CAVI tended to correlate inversely in the group with visceral-to-subcutaneous fat ratio of 0.4 or higher, which is considered metabolically severe. Serum LPL mass increased 1 year after LSG. Change in serum LPL mass at 1 year after LSG tended to be an independent factor inversely associated with change in CAVI. CONCLUSIONS: Serum LPL mass reflected LPL mRNA expression in SAT in Japanese patients with severe obesity, and LPL mRNA expression in SAT was associated with CAVI in patients with visceral obesity. The change in serum LPL mass after LSG tended to independently contribute inversely to the change in CAVI. This study suggests that LPL derived from SAT may suppress the progression of arteriosclerosis.


Subject(s)
Cardio Ankle Vascular Index , Intra-Abdominal Fat , Lipoprotein Lipase , Obesity, Morbid , Subcutaneous Fat , Humans , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Lipoprotein Lipase/blood , Middle Aged , Male , Female , Subcutaneous Fat/metabolism , Obesity, Morbid/surgery , Obesity, Morbid/genetics , Obesity, Morbid/metabolism , Obesity, Morbid/blood , Retrospective Studies , Adult , Japan , Intra-Abdominal Fat/metabolism , Body Mass Index , RNA, Messenger/metabolism , Gastrectomy , Vascular Stiffness , East Asian People
16.
J Nutr Biochem ; 128: 109605, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38401691

ABSTRACT

The endocannabinoid system (ECS) is dysregulated during obesity and metabolic disorders. Weight loss favours the re-establishment of ECS homeostatic conditions, but also the fatty acid composition of the diet can modulate endocannabinoid profiles. However, the combined impact of nutrient quality and energy restriction on the ECS remains unclear. In this 12 weeks randomized controlled trial, men and women (40-70 years) with obesity (BMI: 31.3 ± 3.5 kg/ m2) followed either a low nutrient quality 25% energy-restricted (ER) diet (n=39) high in saturated fats and fructose, or a high nutrient quality ER diet (n=34) amongst others enriched in n-3 polyunsaturated fatty acids (PUFAs) or kept their habitual diet (controls). Profiles of plasma- and adipose N-acylethanolamines and mono-acyl glycerol esters were quantified using LC-MS/MS. Gene expression of ECS-related enzymes and receptors was determined in adipose tissue. Measurements were performed under fasting conditions before and after 12 weeks. Our results showed that plasma level of the DHA-derived compound docosahexaenoylethanolamide (DHEA) was decreased in the low nutrient quality ER diet (P<0.001) compared with the high nutrient quality ER diet, whereas anandamide (AEA) and arachidonoylglycerol (2-AG) levels were unaltered. However, adipose tissue gene expression of the 2-AG synthesizing enzyme diacylglycerol lipase alpha (DAGL-α) was increased following the low nutrient quality ER diet (P<.009) and differed upon intervention with both other diets. Concluding, nutrient quality of the diet affects N-acylethanolamine profiles and gene expression of ECS-related enzymes and receptors even under conditions of high energy restriction in abdominally obese humans. ClinicalTrials.gov NCT02194504.


Subject(s)
Adipose Tissue , Caloric Restriction , Endocannabinoids , Lipoprotein Lipase , Obesity, Abdominal , Humans , Endocannabinoids/metabolism , Endocannabinoids/blood , Middle Aged , Male , Female , Adult , Aged , Adipose Tissue/metabolism , Obesity, Abdominal/diet therapy , Obesity, Abdominal/metabolism , Obesity, Abdominal/blood , Lipoprotein Lipase/metabolism , Ethanolamines/metabolism , Nutrients/metabolism
17.
Curr Opin Lipidol ; 35(2): 58-65, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37962908

ABSTRACT

PURPOSE OF REVIEW: The angiopoietin-like (ANGPTL) proteins ANGPTL3 and ANGPTL4 are critical lipoprotein lipase (LPL) inhibitors. This review discusses the unique ability of the insulin-responsive protein ANGPTL8 to regulate triglyceride (TG) metabolism by forming ANGPTL3/8 and ANGPTL4/8 complexes that control tissue-specific LPL activities. RECENT FINDINGS: After feeding, ANGPTL4/8 acts locally in adipose tissue, has decreased LPL-inhibitory activity compared to ANGPTL4, and binds tissue plasminogen activator (tPA) and plasminogen to generate plasmin, which cleaves ANGPTL4/8 and other LPL inhibitors. This enables LPL to be fully active postprandially to promote efficient fatty acid (FA) uptake and minimize ectopic fat deposition. In contrast, liver-derived ANGPTL3/8 acts in an endocrine manner, has markedly increased LPL-inhibitory activity compared to ANGPTL3, and potently inhibits LPL in oxidative tissues to direct TG toward adipose tissue for storage. Circulating ANGPTL3/8 levels are strongly correlated with serum TG, and the ANGPTL3/8 LPL-inhibitory epitope is blocked by the TG-lowering protein apolipoprotein A5 (ApoA5). SUMMARY: ANGPTL8 plays a crucial role in TG metabolism by forming ANGPTL3/8 and ANGPTL4/8 complexes that differentially modulate LPL activities in oxidative and adipose tissues respectively. Selective ANGPTL8 inhibition in the context of the ANGPTL3/8 complex has the potential to be a promising strategy for treating dyslipidemia.


Subject(s)
Angiopoietin-Like Protein 8 , Peptide Hormones , Humans , Angiopoietin-like Proteins/metabolism , Tissue Plasminogen Activator/metabolism , Biological Transport , Lipoprotein Lipase/metabolism , Triglycerides/metabolism , Angiopoietin-Like Protein 3 , Peptide Hormones/metabolism
18.
Mol Ther ; 32(1): 59-73, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-37974401

ABSTRACT

GPIHBP1 plays an important role in the hydrolysis of triglyceride (TG) lipoproteins by lipoprotein lipases (LPLs). However, Gpihbp1 knockout mice did not develop hypertriglyceridemia (HTG) during the suckling period but developed severe HTG after weaning on a chow diet. It has been postulated that LPL expression in the liver of suckling mice may be involved. To determine whether hepatic LPL expression could correct severe HTG in Gpihbp1 deficiency, liver-targeted LPL expression was achieved via intravenous administration of the adeno-associated virus (AAV)-human LPL gene, and the effects of AAV-LPL on HTG and HTG-related acute pancreatitis (HTG-AP) were observed. Suckling Gpihbp1-/- mice with high hepatic LPL expression did not develop HTG, whereas Gpihbp1-/- rat pups without hepatic LPL expression developed severe HTG. AAV-mediated liver-targeted LPL expression dose-dependently decreased plasma TG levels in Gpihbp1-/- mice and rats, increased post-heparin plasma LPL mass and activity, decreased mortality in Gpihbp1-/- rat pups, and reduced the susceptibility and severity of both Gpihbp1-/- animals to HTG-AP. However, the muscle expression of AAV-LPL had no significant effect on HTG. Targeted expression of LPL in the liver showed no obvious adverse reactions. Thus, liver-targeted LPL expression may be a new therapeutic approach for HTG-AP caused by GPIHBP1 deficiency.


Subject(s)
Hypertriglyceridemia , Pancreatitis , Receptors, Lipoprotein , Animals , Humans , Mice , Rats , Acute Disease , Dependovirus/genetics , Dependovirus/metabolism , Hypertriglyceridemia/genetics , Hypertriglyceridemia/therapy , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Liver/metabolism , Pancreatitis/genetics , Pancreatitis/therapy , Pancreatitis/metabolism , Receptors, Lipoprotein/genetics , Receptors, Lipoprotein/metabolism , Triglycerides/metabolism
19.
J Clin Lipidol ; 18(1): e80-e89, 2024.
Article in English | MEDLINE | ID: mdl-37981531

ABSTRACT

BACKGROUND: Severe hypertriglyceridemia can be caused by pathogenic variants in genes encoding proteins involved in the metabolism of triglyceride-rich lipoproteins. A key protein in this respect is lipoprotein lipase (LPL) which hydrolyzes triglycerides in these lipoproteins. Another important protein is glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) which transports LPL to the luminal side of the endothelial cells. OBJECTIVE: Our objective was to identify a genetic cause of hypertriglyceridemia in 459 consecutive unrelated subjects with levels of serum triglycerides ≥20 mmol/l. These patients had been referred for molecular genetic testing from 1998 to 2021. In addition, we wanted to study whether GPIHBP1 autoantibodies also were a cause of hypertriglyceridemia. METHODS: Molecular genetic analyses of the genes encoding LPL, GPIHBP1, apolipoprotein C2, lipase maturation factor 1 and apolipoprotein A5 as well as apolipoprotein E genotyping, were performed in all 459 patients. Serum was obtained from 132 of the patients for measurement of GPIHBP1 autoantibodies approximately nine years after molecular genetic testing was performed. RESULTS: A monogenic cause was found in four of the 459 (0.9%) patients, and nine (2.0%) patients had dyslipoproteinemia due to homozygosity for apolipoprotein E2. One of the 132 (0.8%) patients had GPIHBP1 autoantibody syndrome. CONCLUSION: Only 0.9% of the patients had monogenic hypertriglyceridemia, and only 0.8% had GPIHBP1 autoantibody syndrome. The latter figure is most likely an underestimate because serum samples were obtained approximately nine years after hypertriglyceridemia was first identified. There is a need to implement measurement of GPIHBP1 autoantibodies in clinical medicine to secure that proper therapeutic actions are taken.


Subject(s)
Hypertriglyceridemia , Receptors, Lipoprotein , Humans , Autoantibodies , Endothelial Cells , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Lipoproteins , Hypertriglyceridemia/genetics , Triglycerides/metabolism , Molecular Biology , Apolipoproteins
20.
Mol Neurobiol ; 61(7): 4577-4588, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38109005

ABSTRACT

We previously reported that 2-arachidonoylglycerol (2-AG) synthesis by diacylglycerol lipase (DAGL) and lysophosphatidate phosphohydrolase (LPAP) and hydrolysis by monoacylglycerol lipase (MAGL) in rod outer segments (ROS) from bovine retina were differently modified by light applied to the retina. Based on these findings, the aim of the present research was to evaluate whether 2-AG metabolism could be modulated by proteins involved in the visual process. To this end, ROS kept in darkness (DROS) or obtained in darkness and then subjected to light (BROS) were treated with GTPγS and GDPßS, or with low and moderate ionic strength buffers for detaching soluble and peripheral proteins, or soluble proteins, respectively. Only DAGL activity was stimulated by the application of light to the ROS. GTPγS-stimulated DAGL activity in DROS reached similar values to that observed in BROS. The studies using different ionic strength show that (1) the highest decrease in DROS DAGL activity was observed when both phosphodiesterase (PDE) and transducin α (Tα) are totally membrane-associated; (2) the decrease in BROS DAGL activity does not depend on PDE association to membrane, and that (3) MAGL activity decreases, both in DROS and BROS, when PDE is not associated to the membrane. Our results indicate that the bioavailability of 2-AG under light conditions is favored by G protein-stimulated increase in DAGL activity and hindered principally by Tα/PDE association with the ROS membrane, which decreases DAGL activity.


Subject(s)
Arachidonic Acids , Endocannabinoids , Glycerides , Rod Cell Outer Segment , Animals , Endocannabinoids/metabolism , Arachidonic Acids/metabolism , Rod Cell Outer Segment/metabolism , Cattle , Glycerides/metabolism , Light Signal Transduction , Transducin/metabolism , Light , Lipoprotein Lipase/metabolism , Phosphoric Diester Hydrolases/metabolism , Vision, Ocular/physiology , Vision, Ocular/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...