Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 352(2): 227-35, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25395590

ABSTRACT

Apolipoprotein A-I (apoA-I) mimetic peptides are currently being developed as possible new agents for the treatment of cardiovascular disease based on their ability to promote cholesterol efflux and their other beneficial antiatherogenic properties. Many of these peptides, however, have been reported to cause transient hypertriglyceridemia due to inhibition of lipolysis by lipoprotein lipase (LPL). We describe a novel bihelical amphipathic peptide (C-II-a) that contains an amphipathic helix (18A) for binding to lipoproteins and stimulating cholesterol efflux as well as a motif based on the last helix of apolipoprotein C-II (apoC-II) that activates lipolysis by LPL. The C-II-a peptide promoted cholesterol efflux from ATP-binding cassette transporter ABCA1-transfected BHK cells similar to apoA-I mimetic peptides. Furthermore, it was shown in vitro to be comparable to the full-length apoC-II protein in activating lipolysis by LPL. When added to serum from a patient with apoC-II deficiency, it restored normal levels of LPL-induced lipolysis and also enhanced lipolysis in serum from patients with type IV and V hypertriglyceridemia. Intravenous injection of C-II-a (30 mg/kg) in apolipoprotein E-knockout mice resulted in a significant reduction of plasma cholesterol and triglycerides of 38 ± 6% and 85 ± 7%, respectively, at 4 hours. When coinjected with the 5A peptide (60 mg/kg), the C-II-a (30 mg/kg) peptide was found to completely block the hypertriglyceridemic effect of the 5A peptide in C57Bl/6 mice. In summary, C-II-a is a novel peptide based on apoC-II, which promotes cholesterol efflux and lipolysis and may therefore be useful for the treatment of apoC-II deficiency and other forms of hypertriglyceridemia.


Subject(s)
Apolipoproteins E/genetics , Lipolysis/drug effects , Lipoprotein Lipase Activators/pharmacology , Lipoprotein Lipase/metabolism , Peptides/pharmacology , Triglycerides/blood , Animals , Cholesterol/metabolism , Circular Dichroism , Drug Design , Humans , Hyperlipoproteinemia Type I/blood , Hypertriglyceridemia/blood , In Vitro Techniques , Lipoprotein Lipase Activators/chemistry , Mice, Inbred C57BL , Mice, Knockout , Models, Molecular , Peptides/chemistry
2.
J Pharm Pharmacol ; 64(2): 293-301, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22221106

ABSTRACT

OBJECTIVES: The aim of the study was to elucidate the possible role and mechanism of NO-1886 (ibrolipim, a lipoprotein lipase activator) in ameliorating insulin resistance induced by high palmitate. METHODS: HepG2 cells were cultured in RPMI 1640 medium and were treated with palmitate to induce insulin resistance. Free fatty acids (FFAs), glucose, glycogen, cell viability and mRNA and protein levels were analysed separately. KEY FINDINGS: We found that HepG2 cells treated with 0.5 mm palmitate for 48 h led to a significant decrease of insulin-induced glucose consumption (from 2.89 ± 0.85 mm in the control to 0.57 ± 0.44 mm in palmitate). Insulin resistance (IR) of HepG2 cells was induced by 0.5 mm palmitate for 48 h. NO-1886 stimulated glucose consumption, glycogen synthesis and FFA absorption in insulin-resistant HepG2 cells. Maximum stimulation effects were observed with 10 µm NO-1886 for 24 h. Compared with the dimethyl sulfoxide-treated group, 2.5 µm NO-1886 or higher could induce the mRNA expression of lipoprotein lipase. Meanwhile, NO-1886 increased the protein content of P-GSK-3ßser(9) and decreased the protein level of GSK-3ß in insulin-resistant HepG2 cells, but NO-1886 didn't change the protein levels of PI3-Kp85 and Akt2. CONCLUSION: Lipoprotein lipase activator NO-1886 could increase glycogen synthesis in HepG2 cells and could ameliorate the insulin resistance, which was associated with GSK-3 signalling.


Subject(s)
Benzamides/pharmacology , Glycogen Synthase Kinase 3/metabolism , Glycogenolysis/drug effects , Insulin Resistance/physiology , Lipoprotein Lipase Activators/pharmacology , Organophosphorus Compounds/pharmacology , Palmitates/metabolism , Benzamides/chemistry , Cells, Cultured , Glycogen Synthase Kinase 3 beta , Hep G2 Cells , Humans , Lipoprotein Lipase Activators/chemistry , Organophosphorus Compounds/chemistry , Real-Time Polymerase Chain Reaction , Signal Transduction/drug effects , Statistics as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...