Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.125
Filter
1.
Int Heart J ; 65(3): 466-474, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38749754

ABSTRACT

Endothelial cell dysfunction is the main pathology of atherosclerosis (AS). Sirtuin 6 (SIRT6), a deacetylase, is involved in AS progression. This study aimed to investigate the impacts of SIRT6 on the pyroptosis of endothelial cells and its underlying mechanisms. ApoE-/- mice were fed a high-fat diet (HFD) to establish the AS mouse model, atherosclerotic lesions were evaluated using oil red O staining, and blood lipids and inflammatory factors were measured using corresponding kits. Human umbilical vein endothelial cells (HUVECs) were treated with oxidized low-density lipoprotein (ox-LDL) to establish the cell model, and pyroptosis was evaluated by flow cytometry, ELISA, and western blot. Immunoprecipitation (IP), co-IP, western blot, and immunofluorescence were used to detect the molecular mechanisms. The results showed that SIRT6 expression was downregulated in the blood of HFD-induced mice and ox-LDL-induced HUVECs. Overexpression of SIRT6 reduced atherosclerotic lesions, blood lipids, and inflammation in vivo and suppressed pyroptosis of HUVECs in vitro. Moreover, SIRT6 interacted with ASC to inhibit the acetylation of ASC, thus, reducing the interaction between ASC and NLRP3. Moreover, SIRT6 inhibits endothelial cell pyroptosis in the aortic roots of mice by deacetylating ASC. In conclusion, SIRT6 deacetylated ASC to inhibit its interaction with NLRP3 and then suppressed pyroptosis of endothelial cells, thus, decelerating the progression of AS. The findings provide new insights into the function of SIRT6 in AS.


Subject(s)
Atherosclerosis , Human Umbilical Vein Endothelial Cells , Lipoproteins, LDL , Pyroptosis , Sirtuins , Animals , Atherosclerosis/metabolism , Atherosclerosis/pathology , Sirtuins/metabolism , Mice , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/pharmacology , CARD Signaling Adaptor Proteins/metabolism , Disease Models, Animal , Diet, High-Fat , Male , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice, Inbred C57BL
2.
Aging (Albany NY) ; 16(9): 8070-8085, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38728249

ABSTRACT

BACKGROUND: Inflammation is one of the significant consequences of ox-LDL-induced endothelial cell (EC) dysfunction. The senescence-associated secretory phenotype (SASP) is a critical source of inflammation factors. However, the molecular mechanism by which the SASP is regulated in ECs under ox-LDL conditions remains unknown. RESULTS: The level of SASP was increased in ox-LDL-treated ECs, which could be augmented by KLF4 knockdown whereas restored by KLF4 knock-in. Furthermore, we found that KLF4 directly promoted PDGFRA transcription and confirmed the central role of the NAPMT/mitochondrial ROS pathway in KLF4/PDGFRA-mediated inhibition of SASP. Animal experiments showed a higher SASP HFD-fed mice, compared with normal feed (ND)-fed mice, and the endothelium of EC-specific KLF4-/- mice exhibited a higher proportion of SA-ß-gal-positive cells and lower PDGFRA/NAMPT expression. CONCLUSIONS: Our results revealed that KLF4 inhibits the SASP of endothelial cells under ox-LDL conditions through the PDGFRA/NAMPT/mitochondrial ROS. METHODS: Ox-LDL-treated ECs and HFD-fed mice were used as endothelial senescence models in vitro and in vivo. SA-ß-gal stain, detection of SAHF and the expression of inflammatory factors determined SASP and senescence of ECs. The direct interaction of KLF4 and PDGFRA promotor was analyzed by EMSA and fluorescent dual luciferase reporting analysis.


Subject(s)
Cellular Senescence , Endothelial Cells , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors , Lipoproteins, LDL , Mitochondria , Reactive Oxygen Species , Receptor, Platelet-Derived Growth Factor alpha , Kruppel-Like Factor 4/metabolism , Animals , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Reactive Oxygen Species/metabolism , Cellular Senescence/drug effects , Mitochondria/metabolism , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/pharmacology , Mice , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Receptor, Platelet-Derived Growth Factor alpha/genetics , Humans , Endothelial Cells/metabolism , Cytokines/metabolism , Phenotype , Mice, Knockout , Human Umbilical Vein Endothelial Cells/metabolism , Male , Signal Transduction
3.
Int J Biol Macromol ; 269(Pt 2): 132257, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729492

ABSTRACT

Low-density lipoprotein (LDL) transports cholesterol to various tissues via the blood. Glycation of LDL occurs during hyperglycemic condition which is characterised by persistently high blood glucose level. Circulating erythrocytes can come in direct contact with glycated LDL (G-LDL). The objective of this study was to investigate the effect of G-LDL on human erythrocytes, specifically on hemoglobin, intracellular generation of reactive species and the antioxidant defence system. Isolated erythrocytes were incubated with G-LDL (3 and 6 mg/ml) and native LDL (6 mg/ml) at 37 °C for 24 h. Native LDL and G-LDL untreated erythrocytes were similarly incubated at 37 °C and served as control. G-LDL treatment increased hemolysis compared to control and native LDL-treated erythrocytes. Incubation of erythrocytes with G-LDL led to an increase in protein oxidation and lipid peroxidation while greatly decreasing the total sulfhydryl content. It also significantly enhanced hemoglobin oxidation, heme degradation, and the release of free iron moiety. Treatment with G-LDL led to an appreciable increase in the production of reactive oxygen and nitrogen species. The antioxidant power and activities of major antioxidant enzymes were drastically reduced, while critical membrane-bound enzymes were inhibited. The surface morphology of G-LDL-treated erythrocytes was altered leading to the formation of echinocytes. Importantly, treatment of erythrocytes with native LDL did not significantly affect the above-mentioned parameters and values were similar to the corresponding controls. Thus, G-LDL is cytotoxic to human erythrocytes and causes oxidative damage to cell components. This can reduce the oxygen-transporting ability of blood and also result in red cell senescence and anemia.


Subject(s)
Erythrocytes , Hemoglobins , Hemolysis , Lipoproteins, LDL , Oxidation-Reduction , Reactive Oxygen Species , Humans , Erythrocytes/metabolism , Erythrocytes/drug effects , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/pharmacology , Reactive Oxygen Species/metabolism , Hemoglobins/metabolism , Hemolysis/drug effects , Oxidation-Reduction/drug effects , Antioxidants/pharmacology , Lipid Peroxidation/drug effects , Glycation End Products, Advanced/metabolism , Glycation End Products, Advanced/pharmacology , Oxidative Stress/drug effects , Heme/metabolism , Heme/pharmacology , Glycated Proteins
4.
Clinics (Sao Paulo) ; 79: 100343, 2024.
Article in English | MEDLINE | ID: mdl-38554490

ABSTRACT

OBJECTIVE: Atherosclerosis (AS) is a chronic inflammatory disease of the arterial wall, in which Human Vascular Smooth Muscle Cells (HVSMCs) are involved. Nevertheless, the functions and mechanisms of circRNAs in oxidized Low-Density Lipoprotein (ox-LDL)-induced vascular smooth muscle cells remain unclear. METHODS: Circ-ABCA1 expression was measured in the models of AS. Then, in the vitro model, oligonucleotide transfection was performed, followed by an analysis of VSMC proliferation, migration, inflammation, and phenotypic switch. Also, in the in vivo model, mice were injected with shRNA lentivirus, followed by histological examination of aortic tissues. Finally, the interaction of circ-ABCA1, miR-885-5p, and ROCK2 was identified. RESULTS: Circ-ABCA1, was confirmed to be overexpressed in ox-LDL-induced VSMCs and mouse models of AS. Functionally, silencing circ-ABCA1 via oligonucleotide transfection suppressed VSMC proliferation, migration, inflammation, and phenotypic switch in vitro and prevented AS development in mice in vivo. Mechanistically, circ-ABCA1 absorbed miR-885-5p, which targeted ROCK2. CONCLUSION: Taken together, the data from this study suggest that circ-ABCA1 mediates cellular inflammation and phenotype switching through the miR-885-5p/ROCK2 axis in ox-LDL-induced VSMCs, and the circ-ABCA1/miR-885-5p/ROCK2 axis is a new potential biomarker for the treatment of AS.


Subject(s)
MicroRNAs , Muscle, Smooth, Vascular , Humans , Animals , Mice , Phenotype , Inflammation , Lipoproteins, LDL/pharmacology , Myocytes, Smooth Muscle , Oligonucleotides , MicroRNAs/genetics , Cell Proliferation , Apoptosis , Cell Movement , ATP Binding Cassette Transporter 1
5.
Discov Med ; 36(182): 571-580, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38531797

ABSTRACT

BACKGROUND: The apoptosis of vascular smooth muscle cells (VSMCs) contributes to the progression of atherosclerosis (AS). Long intergenic non-protein coding RNA 1128 (LINC01128) has been implicated in AS, and this study aims to uncover the role and mechanism of LINC01128 in regulating oxidized low-density lipoprotein (oxLDL)-induced VSMCs. METHODS: The position of LINC01128 in cells and its target genes were predicted using bioinformatics. The localization of LINC01128 in human VSMCs was determined through fluorescence in situ hybridization. VSMCs were transfected, and the interaction between LINC01128 and fucosyltransferase 8 (FUT8) was validated by chromatin immunoprecipitation assay. The apoptotic VSMC model was established using oxLDL. LINC01128 expression in VSMCs was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR), and FUT8 expression was detected by qRT-PCR and western blot. VSMC viability, migration, invasion abilities, and apoptosis were assessed using cell counting kit-8, transwell assay, and flow cytometry, respectively. RESULTS: OxLDL (200 µg/mL) upregulated the expression of LINC01128 and FUT8 mRNA, as well as FUT8 protein, in VSMCs. LINC01128 was expressed in the nucleus of VSMCs and bound to FUT8. Knockdown of LINC01128 alleviated the inhibitory effects of oxLDL (200 µg/mL) on viability, migration, and invasion, and mitigated the promotion of apoptosis and FUT8 expression in VSMCs. On the other hand, FUT8 overexpression enhanced the suppressive effects of oxLDL (200 µg/mL) on viability, migration, and invasion activities, and amplified the facilitating effect of oxLDL on apoptosis in VSMCs. Moreover, FUT8 overexpression reversed the impact of LINC01128 silencing on viability, migration, invasion, and apoptosis in oxLDL-stimulated VSMCs. CONCLUSION: The knockdown of LINC01128 downregulates FUT8, inhibiting the progression of VSMCs in AS.


Subject(s)
Atherosclerosis , MicroRNAs , Humans , Muscle, Smooth, Vascular/metabolism , In Situ Hybridization, Fluorescence , Atherosclerosis/metabolism , Lipoproteins, LDL/genetics , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/pharmacology , Apoptosis , Cell Proliferation , MicroRNAs/metabolism , Cell Movement , Cells, Cultured
6.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38477705

ABSTRACT

This study investigated the effects of feather meal (FM) processing methods on production parameters, blood biochemical indices, intestinal morphology, digestive and hepatic enzyme activities, and gastrointestinal tract pH and microflora of broilers. A total of 480-d-old male broilers were used for 42 d in a completely randomized design with eight treatments and five replicates (12 chicks/replicate). Treatments were 1) a control diet (without FM), 2) a diet containing 4% raw FM (RFM), 3) a diet containing 4% processed FM (PFM) by autoclave (Au-PFM), 4) a diet containing 4% fermented FM (FFM) by Bacillus licheniformis (Bl-FFM), 5) a diet containing 4% FFM by Bacillus subtilis (Bs-FFM), 6) a diet containing 4% FFM by Aspergillus niger (An-FFM), 7) a diet containing 4% FFM by B. licheniformis + B. subtilis + A. niger (Co-FFM), and 8) a diet containing 4% PFM by an enzyme (En-PFM). Results showed that in the FFMs the contents of ash, ether extract, total volatile nitrogen, and amino acids including Lys, Met, Thr, Trp, His, Leu, Gly, Ile, Phe, and Tyr increased (P < 0.05), while crude fiber, crude protein, and dry matter content decreased (P < 0.05). Compared with the control, the Co-FFM diet had no significant differences (P > 0.05) in total body weight gain (2,827 vs. 2,791 g/chick), total feed intake (5,018 vs. 4,991 g/chick), European production efficiency factor (375 vs. 377), European Broiler Index (371 vs. 371), and feed conversion ratio (1.77 vs. 1.78 g/g). Feeding FFM decreased (P < 0.05) serum total cholesterol (1.46-fold), triglyceride (1.61-fold), very low-density lipoprotein cholesterol (1.61-fold), and low-density lipoprotein cholesterol (2.27-fold) compared to the control. Also, FFM increased (P < 0.05) villus height (1,045 to 1,351, 661 to 854, and 523 to 620 µm), and villus height to crypt depth ratio (6.15 to 8.45, 4.55 to 7.04, and 4.27 to 5.45), in the duodenum, jejunum, and ileum, respectively, compared to the control. Compared to the control, the Co-FFM diet increased (P < 0.05) protease (34, 39, and 45 %) in the pancreas, duodenum, and jejunum, as well as amylase (73, and 97 %) activities in the duodenum, and jejunum, respectively. Diets containing FFM reduced (P < 0.05) pH in the crop, gizzard, and ileum, and decreased (P < 0.05) Escherichia coli (6.12 to 5.70) count in ileum compared to the control. The Co-FFM diet increased (P < 0.05) lactic acid bacteria count in crop (6.77 to 7.50) and ileum (6.94 to 7.73), also decreased (P < 0.05) coliforms (6.31 to 5.75) count in ileum compared to the control. In conclusion, FM fermentation, particularly Co-FFM, improves the nutritional value of FM, converting it into a decent source of dietary protein for broilers.


Fermentation represents an attractive alternative method for feather meal (FM) efficient bioconversion and its nutritional value enhancement. This study investigated the effects of FM processing methods on broilers. Experimental diets were 1) a control diet (without FM), 2) a diet containing 4% raw FM (RFM), 3) a diet containing 4% processed FM (PFM) by autoclave (Au-PFM), 4) a diet containing 4% fermented FM (FFM) by Bacillus licheniformis (Bl-FFM), 5) a diet containing 4% FFM by Bacillus subtilis (Bs-FFM), 6) a diet containing 4% FFM by Aspergillus niger (An-FFM), 7) a diet containing 4% FFM by B. licheniformis + B. subtilis + A. niger (Co-FFM), and 8) a diet containing 4% PFM by an enzyme (En-PFM). Results showed that FFMs increased the contents of ash, ether extract, total volatile nitrogen, and amino acids including Lys, Met, Thr, Trp, His, Leu, Gly, Ile, Phe, and Tyr, while decreased crude fiber, crude protein, and dry matter content. The production parameters of birds fed Co-FFM were similar to the control group. In addition, FFMs decreased serum total cholesterol (1.46-fold), triglyceride (1.61-fold), very low-density lipoprotein cholesterol (1.61-fold), and low-density lipoprotein cholesterol (2.27-fold). Furthermore, Co-FFM improved intestinal morphology, enzyme activities, and beneficial bacterial populations. In conclusion, Co-FFM, improves the nutritional value of FM, converting it into a decent source of dietary protein for broilers.


Subject(s)
Chickens , Feathers , Animals , Male , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Cholesterol , Diet/veterinary , Dietary Supplements , Lipoproteins, LDL/pharmacology
7.
Cell Biol Int ; 48(6): 848-860, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38444077

ABSTRACT

Oxidized low-density lipoprotein (oxLDL), a key component in atherosclerosis and hyperlipidemia, is a risk factor for atherothrombosis in dyslipidemia, yet its mechanism is poorly understood. In this study, we used oxLDL-induced human aortic endothelial cells (HAECs) and high-fat diet (HFD)-fed mice as a hyperlipidemia model. Phosphatidylserine (PS) exposure, cytosolic Ca2+, reactive oxygen species (ROS), and lipid peroxidation were measured by flow cytometer. TMEM16F expression was detected by immunofluorescence, western blot, and reverse transcription polymerase chain reaction. Procoagulant activity (PCA) was measured by coagulation time, intrinsic/extrinsic factor Xase, and thrombin generation. We found that oxLDL-induced PS exposure and the corresponding PCA of HAECs were increased significantly compared with control, which could be inhibited over 90% by lactadherin. Importantly, TMEM16F expression in oxLDL-induced HAECs was upregulated by enhanced intracellular Ca2+ concentration, ROS, and lipid peroxidation, which led to PS exposure. Meanwhile, the knockdown of TMEM16F by short hairpin RNA significantly inhibited PS exposure in oxLDL-induced HAECs. Moreover, we observed that HFD-fed mice dramatically increased the progress of thrombus formation and accompanied upregulated TMEM16F expression by thromboelastography analysis, FeCl3-induced carotid artery thrombosis model, and western blot. Collectively, these results demonstrate that TMEM16F-mediated PS exposure may contribute to prothrombotic status under hyperlipidemic conditions, which may serve as a novel therapeutic target for the prevention of thrombosis in hyperlipidemia.


Subject(s)
Anoctamins , Endothelial Cells , Lipoproteins, LDL , Phosphatidylserines , Reactive Oxygen Species , Lipoproteins, LDL/pharmacology , Lipoproteins, LDL/metabolism , Animals , Humans , Phosphatidylserines/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Mice , Anoctamins/metabolism , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Male , Hyperlipidemias/metabolism , Calcium/metabolism , Diet, High-Fat , Thrombosis/metabolism , Lipid Peroxidation/drug effects , Cells, Cultured , Blood Coagulation/drug effects
8.
Prostaglandins Other Lipid Mediat ; 172: 106832, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38460759

ABSTRACT

Atherosclerosis (AS) represents a prevalent initiating factor for cardiovascular events. Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) is an oncofetal RNA-binding protein that participates in cardiovascular diseases. This work aimed to elaborate the effects of IGF2BP3 on AS and the probable mechanism by using an oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs) model. Results indicated that IGF2BP3 expression was declined in the blood of AS patients and ox-LDL-induced HUVECs. IGF2BP3 elevation alleviated ox-LDL-provoked viability loss, apoptosis, oxidative DNA damage and endothelial dysfunction in HUVECs. Moreover, IGF2BP3 bound SESN1 and stabilized SESN1 mRNA. Furthermore, SESN1 interference reversed the impacts of IGF2BP3 overexpression on the apoptosis, oxidative DNA damage and endothelial dysfunction of ox-LDL-challenged HUVECs. Additionally, the activation of Nrf2 signaling mediated by IGF2BP3 up-regulation in ox-LDL-treated HUVECs was blocked by SESN1 absence. Collectively, SESN1 stabilized by IGF2BP3 might protect against AS by activating Nrf2 signaling.


Subject(s)
Human Umbilical Vein Endothelial Cells , Lipoproteins, LDL , NF-E2-Related Factor 2 , Oxidative Stress , RNA, Messenger , RNA-Binding Proteins , Signal Transduction , Humans , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Lipoproteins, LDL/pharmacology , Lipoproteins, LDL/metabolism , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Oxidative Stress/drug effects , Signal Transduction/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Apoptosis/drug effects , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/pathology , RNA Stability/drug effects , DNA Damage , Sestrins
9.
Lipids Health Dis ; 23(1): 76, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38468335

ABSTRACT

BACKGROUND: Atherosclerosis (AS) is a persistent inflammatory condition triggered and exacerbated by several factors including lipid accumulation, endothelial dysfunction and macrophages infiltration. Nobiletin (NOB) has been reported to alleviate atherosclerosis; however, the underlying mechanism remains incompletely understood. METHODS: This study involved comprehensive bioinformatic analysis, including multidatabase target prediction; GO and KEGG enrichment analyses for function and pathway exploration; DeepSite and AutoDock for drug binding site prediction; and CIBERSORT for immune cell involvement. In addition, target intervention was verified via cell scratch assays, oil red O staining, ELISA, flow cytometry, qRT‒PCR and Western blotting. In addition, by establishing a mouse model of AS, it was demonstrated that NOB attenuated lipid accumulation and the extent of atherosclerotic lesions. RESULTS: (1) Altogether, 141 potentially targetable genes were identified through which NOB could intervene in atherosclerosis. (2) Lipid and atherosclerosis, fluid shear stress and atherosclerosis may be the dominant pathways and potential mechanisms. (3) ALB, AKT1, CASP3 and 7 other genes were identified as the top 10 target genes. (4) Six genes, including PPARG, MMP9, SRC and 3 other genes, were related to the M0 fraction. (5) CD36 and PPARG were upregulated in atherosclerosis samples compared to the normal control. (6) By inhibiting lipid uptake in RAW264.7 cells, NOB prevents the formation of foam cell. (7) In RAW264.7 cells, the inhibitory effect of oxidized low-density lipoprotein on foam cells formation and lipid accumulation was closely associated with the PPARG signaling pathway. (8) In vivo validation showed that NOB significantly attenuated intra-arterial lipid accumulation and macrophage infiltration and reduced CD36 expression. CONCLUSIONS: Nobiletin alleviates atherosclerosis by inhibiting lipid uptake via the PPARG/CD36 pathway.


Subject(s)
Atherosclerosis , Flavones , PPAR gamma , Animals , Mice , PPAR gamma/genetics , PPAR gamma/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/metabolism , Macrophages , Foam Cells , Lipoproteins, LDL/pharmacology , CD36 Antigens/genetics , CD36 Antigens/metabolism
10.
Cell Signal ; 117: 111092, 2024 05.
Article in English | MEDLINE | ID: mdl-38331013

ABSTRACT

SUMO-specific protease 3 (SENP3) participates in the removal of SUMOylation and maintains the balance of the SUMO system, which ensures normal functioning of substrates and cellular activities. In the present study, we found that SENP3 expression was significantly reduced in ox-LDL-stimulated macrophages. SENP3 overexpression suppressed and SENP3 knockdown promoted macrophage foam cell formation. Moreover, SENP3 inhibited cholesterol uptake, CD36 expression, and NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome activation in ox-LDL-stimulated macrophages. Ox-LDL-stimulated NLRP3 SUMOylation was reduced by SENP3. Blocking NLRP3 SUMOylation inhibited foam cell formation and NLRP3 inflammasome activation. Thus, this study revealed that SENP3 inhibits macrophage foam cell formation by deSUMOylating NLRP3 and regulating NLRP3 inflammasome activation, which may provide a potentially innovative approach to treatment of atherosclerosis.


Subject(s)
Foam Cells , NLR Family, Pyrin Domain-Containing 3 Protein , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Foam Cells/metabolism , Inflammasomes/metabolism , Peptide Hydrolases/metabolism , Macrophages/metabolism , Lipoproteins, LDL/pharmacology , Lipoproteins, LDL/metabolism , Endopeptidases/metabolism
11.
Hypertension ; 81(4): 861-875, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38361240

ABSTRACT

BACKGROUND: Chemerin, an inflammatory adipokine, is upregulated in preeclampsia, and its placental overexpression results in preeclampsia-like symptoms in mice. Statins may lower chemerin. METHODS: Chemerin was determined in a prospective cohort study in women suspected of preeclampsia and evaluated as a predictor versus the sFlt-1 (soluble fms-like tyrosine kinase-1)/PlGF (placental growth factor) ratio. Chemerin release was studied in perfused placentas and placental explants with or without the statins pravastatin and fluvastatin. We also addressed statin placental passage and the effects of chemerin in chorionic plate arteries. RESULTS: Serum chemerin was elevated in women with preeclampsia, and its addition to a predictive model yielded significant effects on top of the sFlt-1/PlGF ratio to predict preeclampsia and its fetal complications. Perfused placentas and explants of preeclamptic women released more chemerin and sFlt-1 and less PlGF than those of healthy pregnant women. Statins reversed this. Both statins entered the fetal compartment, and the fetal/maternal concentration ratio of pravastatin was twice that of fluvastatin. Chemerin constricted plate arteries, and this was blocked by a chemerin receptor antagonist and pravastatin. Chemerin did not potentiate endothelin-1 in chorionic plate arteries. In explants, statins upregulated low-density lipoprotein receptor expression, which relies on the same transcription factor as chemerin, and NO release. CONCLUSIONS: Chemerin is a biomarker for preeclampsia, and statins both prevent its placental upregulation and effects, in an NO and low-density lipoprotein receptor-dependent manner. Combined with their capacity to improve the sFlt-1/PlGF ratio, this offers an attractive mechanism by which statins may prevent or treat preeclampsia.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Pre-Eclampsia , Humans , Pregnancy , Female , Animals , Mice , Placenta/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Placenta Growth Factor , Pravastatin/pharmacology , Up-Regulation , Prospective Studies , Pre-Eclampsia/drug therapy , Pre-Eclampsia/prevention & control , Fluvastatin/metabolism , Fluvastatin/pharmacology , Vascular Endothelial Growth Factor Receptor-1 , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/pharmacology , Biomarkers , Chemokines/metabolism , Intercellular Signaling Peptides and Proteins/metabolism
12.
Cell Signal ; 117: 111114, 2024 05.
Article in English | MEDLINE | ID: mdl-38387686

ABSTRACT

Obesity has long been thought to be a main cause of hyperlipidemia. As a systemic disease, the impact of obesity on organs, tissues and cells is almost entirely negative. However, the relationship between obesity and bone loss is highly controversial. On the one hand, obesity has long been thought to have a positive effect on bone due to increased mechanical loading on the skeleton, conducive to increasing bone mass to accommodate the extra weight. On the other hand, obesity-related metabolic oxidative modification of low-density lipoprotein (LDL) in vivo causes a gradual increase of oxidized LDL (ox-LDL) in the bone marrow microenvironment. We have reported that low-density lipoprotein receptor-related protein 6 (LRP6) acts as a receptor of ox-LDL and mediates the bone marrow stromal cells (BMSCs) uptake of ox-LDL. We detected elevated serum ox-LDL in obese mice. We found that ox-LDL uptake by LRP6 led to an increase of intracellular reactive oxygen species (ROS) in BMSCs, and N-acetyl-L-cysteine (NAC) alleviated the cellular senescence and impairment of osteogenesis induced by ox-LDL. Moreover, LRP6 is a co-receptor of Wnt signaling. We found that LRP6 preferentially binds to ox-LDL rather than dickkopf-related protein 1 (DKK1), both inhibiting Wnt signaling and promoting BMSCs senescence. Mesoderm development LRP chaperone (MESD) overexpression inhibits ox-LDL binding to LRP6, attenuating oxidative stress and BMSCs senescence, eventually rescuing bone phenotype.


Subject(s)
Bone Marrow , Low Density Lipoprotein Receptor-Related Protein-6 , Animals , Mice , Bone Marrow/metabolism , Carrier Proteins/metabolism , Lipoproteins, LDL/pharmacology , Lipoproteins, LDL/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Obesity/complications , Oxidative Stress
13.
Mol Biol Rep ; 51(1): 365, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409611

ABSTRACT

A low-frequency variant of sushi, von Willebrand factor type A, EGF, and pentraxin domain-containing protein 1 (SVEP1) is associated with the risk of coronary artery disease, as determined by a genome-wide association study. SVEP1 induces vascular smooth muscle cell proliferation and an inflammatory phenotype to promote atherosclerosis. In the present study, qRT‒PCR demonstrated that the mRNA expression of SVEP1 was significantly increased in atherosclerotic plaques compared to normal tissues. Bioinformatics revealed that EGR1 was a transcription factor for SVEP1. The results of the luciferase reporter assay, siRNA interference or overexpression assay, mutational analysis and ChIP confirmed that EGR1 positively regulated the transcriptional activity of SVEP1 by directly binding to its promoter. EGR1 promoted human coronary artery smooth muscle cell (HCASMC) proliferation and migration via SVEP1 in response to oxidized low-density lipoprotein (ox-LDL) treatment. Moreover, the expression level of EGR1 was increased in atherosclerotic plaques and showed a strong linear correlation with the expression of SVEP1. Our findings indicated that EGR1 binding to the promoter region drive SVEP1 transcription to promote HCASMC proliferation and migration.


Subject(s)
MicroRNAs , Plaque, Atherosclerotic , Humans , Plaque, Atherosclerotic/metabolism , Coronary Vessels/metabolism , Genome-Wide Association Study , Cell Movement , Lipoproteins, LDL/pharmacology , Cells, Cultured , Cell Proliferation/genetics , Myocytes, Smooth Muscle/metabolism , MicroRNAs/genetics , Early Growth Response Protein 1/genetics , Early Growth Response Protein 1/metabolism , Cell Adhesion Molecules/genetics
14.
Discov Med ; 36(181): 343-354, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38409839

ABSTRACT

BACKGROUND: Oxidative stress, propelled by reactive oxygen species (ROS), serves as a significant catalyst for atherosclerosis (AS), a primary contributor to vascular diseases on a global scale. Antioxidant therapy via nanomedicine has emerged as a pivotal approach in AS treatment. Nonetheless, challenges such as inadequate targeting, subpar biocompatibility, and limited antioxidant effectiveness have restrained the widespread utilization of nanomedicines in AS treatment. This study aimed to synthesize a specialized peptide-modified liposome capable of encapsulating two antioxidant enzymes, intending to enhance targeted antioxidant therapy for AS. METHODS: The film dispersion method was employed for liposome preparation. Fluorescence quantification was conducted to assess the drug encapsulation rate. Characterization of liposome particle size was performed using dynamic light scattering (DLS) and transmission electron microscopy (TEM). Laser confocal microscopy and flow cytometry were utilized to analyze liposome cell uptake and target foam cells. Antioxidant analysis was conducted using 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) staining, while pro-lipid efflux analysis utilized Oil Red O (ORO) staining. Safety evaluation was performed using Hematoxylin and Eosin (H&E) staining. The level of inflammatory factors was determined through enzyme-linked immunosorbent assay (ELISA). The degree of lipid oxidation at the cellular level was assessed using the malonaldehyde (MDA) assay. In vivo targeting analysis was conducted using small animal live imaging. RESULTS: Our in vitro and in vivo findings substantiated that the modification of Lyp-1 led to increased delivery of antioxidant enzymes into foam cells (p < 0.05), the primary pathological cells within AS plaques. Upon accumulation in foam cells, liposomes loaded with superoxide dismutase (SOD) and catalase (CAT) (LyP-lip@SOD/CAT) effectively mitigated excess ROS and shielded macrophages from ROS-induced damage (p < 0.01). Furthermore, the reduction in ROS levels notably hindered the endocytosis of oxidized low-density lipoprotein (Ox-LDL) by activated macrophages, subsequently alleviating lipid accumulation at atherosclerotic lesion sites, evident from both in vitro and in vivo ORO staining results (p < 0.01). LyP-lip@SOD/CAT significantly curbed the secretion of inflammatory factors at the plaque site (p < 0.001). Additionally, LyP-lip@SOD/CAT demonstrated commendable biological safety. CONCLUSIONS: In this study, we effectively synthesized LyP-lip@SOD/CAT and established its efficacy as a straightforward and promising nano-agent for antioxidant therapy targeting atherosclerosis.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Animals , Foam Cells , Liposomes/pharmacology , Superoxide Dismutase/pharmacology , Catalase/pharmacology , Antioxidants/therapeutic use , Antioxidants/pharmacology , Reactive Oxygen Species , Oxidative Stress , Atherosclerosis/drug therapy , Lipoproteins, LDL/pharmacology
15.
Biomed Pharmacother ; 172: 116268, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38359489

ABSTRACT

Atherosclerosis is a lipid-driven inflammatory arterial disease, with one crucial factor is oxidized low-density lipoprotein (ox-LDL), which can induce endothelial dysfunction through endoplasmic reticulum stress (ERS). Interleukin-37 (IL-37) exerts vascular protective functions. This study aims to investigates whether IL-37 can alleviate ERS and autophagy induced by ox-LDL, therely potentialy treating atherosclerosis. We found that ox-LDL enhances the wound healing rate in Rat Coronary Artery Endothelial Cells (RCAECs) and IL-37 reduce the ox-LDL-induced pro-osteogenic response, ERS, and autophagy by binding to Smad3. In RCAECs treated with ox-LDL and recombinant human IL-37, the wound healing rate was mitigated. The expression of osteogenic transcription factors and proteins involved in the ERS pathway was reduced in the group pretreated with IL-37 and ox-LDL. However, these responses were not alleviated when Smads silenced. Electron microscopy revealed that the IL-37/Smad3 complex could suppress endoplasmic reticulum autophagy under ox-LDL stimulation. Thus, IL-37 might treat atherosclerosis through its multi-protective effect by binding Smad3.


Subject(s)
Atherosclerosis , Endothelial Cells , Interleukin-1 , Animals , Humans , Rats , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Atherosclerosis/metabolism , Lipoproteins, LDL/pharmacology , Lipoproteins, LDL/metabolism , Transcription Factors/metabolism , Interleukin-1/therapeutic use
16.
Mol Cell Endocrinol ; 584: 112161, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38280475

ABSTRACT

BACKGROUND: Atherosclerosis (AS) is commonly regarded as a key driver accounted for the leading causes of morbidity and mortality among cardiovascular and cerebrovascular diseases. A growing body of evidence indicates that autophagy in macrophages involved in AS might be a potential therapeutic target. C1q/TNF-related protein 9 (CTRP9) has been proven to delay the progression of cardiovascular diseases. However, the relations between CTRP9 and Sirt1, as well as their effects on macrophages autophagy have not been fully explored. METHODS: Macrophages were differentiated from mononuclear cells collected from peripheral blood samples of healthy donors. The in vitro AS models were constructed by ox-LDL treatment. Cell viability was determined by CCK-8 assay. Immunofluorescence assay of LC3 was implemented for evaluating autophagy activity. Oil Red O staining was performed for lipid accumulation detection. ELISA, cholesterol concentration assay and cholesterol efflux analysis were conducted using commercial kits. Cycloheximide assay was implemented for revealing protein stability. RT-qPCR was used for mRNA expression detection, and western blotting was performed for protein level monitoring. RESULTS: CTRP9 attenuated impaired cell viability, autophagy inhibition and increased lipid accumulation induced by ox-LDL. Moreover, CTRP9 maintained Sirt1 protein level through enhancing its stability through de-ubiquitination, which was mediated by upregulated USP22 level. CRTP9 exerted its protective role in promoting autophagy and reducing lipid accumulation through the USP22/Sirt1 axis. CONCLUSION: Collectively, CTRP9 alleviates lipid accumulation and facilitated the macrophages autophagy by upregulating USP22 level and maintaining Sirt1 protein expression, thereby exerting a protective role in AS progression in vitro.


Subject(s)
Atherosclerosis , Sirtuin 1 , Humans , Sirtuin 1/genetics , Sirtuin 1/metabolism , Complement C1q/genetics , Complement C1q/metabolism , Complement C1q/pharmacology , Macrophages/metabolism , Lipoproteins, LDL/pharmacology , Cholesterol/metabolism , Atherosclerosis/metabolism , Autophagy , Ubiquitination
17.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(1): 52-59, 2024 Jan 20.
Article in Chinese | MEDLINE | ID: mdl-38293976

ABSTRACT

OBJECTIVE: To investigate the effects of galangin on angiogenic activity of oxidized low-density lipoprotein (ox-LDL)-induced human aortic endothelial cells (HAECs) and explore the underlying mechanisms. METHODS: HAECs incubated with 10, 20, 40, and 80 µmol/L galangin for 24 h were assessed for cell viability changes using MTT assay to determine the cytotoxicity of galangin. HAECs treated with 5 mg/mL ox-LDL and incubated with 20 and 40 µmol/L galangin for 24 h, and the cells overexpressing lncRNA H19 and incubated with 40 µmol/L galangin for 24 h were examined for lncRNA H19 level with qRT-PCR. The migration and tube formation capacity of the cells were observed using scratch assay and angiogenesis assay, and ROS levels in the cells were detected with flow cytometry. The protein expression levels of VEGFA, MMP-2 and MMP-9 in the treated cells were detected with Western blotting. RESULTS: Galangin at 10, 20, or 40 µmol/L produced no obvious toxicity (P>0.05), whereas 80 µmol/L galangin significantly inhibited the viability of HAECs (P<0.01). Treatment with ox-LDL significantly increased the expression of lncRNA H19 in HAECs. Galangin significantly lowered lncRNA H19 expression in ox-LDL-induced HAECs, suppressed cell migration, angiogenesis and ROS production level, and reduced the protein levels of VEGFA, MMP-2 and MMP-9 (P<0.01). The effects of galangin were blocked by overexpression of lncRNA H19 in the cardiomyocytes. CONCLUSION: The therapeutic effect of galangin for atherosclerosis is mediated by inhibiting lncRNA H19 expression to reduce ox-LDL-induced migration, oxidative stress, and angiogenesis of HAECs.


Subject(s)
Flavonoids , MicroRNAs , RNA, Long Noncoding , Humans , Endothelial Cells , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Reactive Oxygen Species/metabolism , Lipoproteins, LDL/pharmacology , Apoptosis
18.
Cell Mol Life Sci ; 81(1): 62, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38280036

ABSTRACT

Endothelial injury and dysfunction in the artery wall fuel the process of atherosclerosis. As a key epigenetic regulator, Ash2l (Absent, small, or homeotic-Like 2) is involved in regulating vascular injury and its complications. However, the role of Ash2l in atherosclerosis has not yet been fully elucidated. Here, we found increased Ash2l expression in high-cholesterol diet-fed ApoE-/- mice and oxidized LDL (oxLDL) treated endothelial cells (ECs). Furthermore, Ash2l promoted the scavenger receptors transcription by catalyzing histone H3 lysine 4 (H3K4) trimethylation at the promoter region of transcription factor peroxisome proliferator-activated receptor-γ (PPARγ) and triggered the activation of the pro-inflammatory nuclear factor-kappa B (NF-κB) by enhancing interaction between CD36 and toll-like receptor 4 (TLR4). Meanwhile, enhanced expression of scavenger receptors drove more oxLDL uptake by ECs. In vivo studies revealed that ECs-specific Ash2l knockdown reduced atherosclerotic lesion formation and promoted fibrous cap stability in the aorta of ApoE-/- mice, which was partly associated with a reduced endothelial activation by suppressing scavenger receptors and the uptake of lipids by ECs. Collectively, our findings identify Ash2l as a novel regulator that mediates endothelial injury and atherosclerosis. Targeting Ash2l may provide valuable insights for developing novel therapeutic candidates for atherosclerosis.


Subject(s)
Atherosclerosis , Endothelial Cells , Mice , Animals , Endothelial Cells/metabolism , Lipoproteins, LDL/pharmacology , Lipoproteins, LDL/metabolism , Atherosclerosis/metabolism , NF-kappa B/metabolism , Receptors, Scavenger/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism
19.
J Mol Histol ; 55(1): 109-120, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38165567

ABSTRACT

Endothelial cells are a crucial component of the vessel-tissue wall and exert an important role in atherosclerosis (AS). To explore the role of Orientin in AS, human vascular endothelial cells (HUVECs) were induced by oxidized low-density lipoprotein (ox-LDL) to simulate the vascular endothelial injury during AS. Cell viability was detected by CCK-8 assay. Oxidative stress and inflammation related markers were measured using kits, RT-qPCR or western blot. Besides, cell apoptosis was assessed with TUNEL staining and cell autophagy was evaluated by LC3 immunofluorescent staining. Additionally, western blot was utilized to evaluate the expression of Sestrin 1 (SESN1) and proteins in AMPK/mTOR signaling. Afterwards, SESN1 was silenced to determine the expression of autophagy-related proteins. The further application of autophagy inhibitor 3-methyladenine (3-MA) was used to clarify the regulatory mechanism of Orientin on autophagy. Results showed that the decreased viability of HUVECs caused by ox-LDL induction was elevated by Orientin. Oxidative stress and inflammation were also attenuated after Orientin addition in HUVECs under ox-LDL condition. Moreover, Orientin suppressed apoptosis and induced autophagy of HUVECs stimulated by ox-LDL, accompanied by enhanced level of phospho (p)-AMPK and declined level of p-mTOR. Interestingly, SESN1 level was elevated by Orientin, and SESN1 depletion alleviated autophagy and reduced p-AMPK expression but enhanced p-mTOR expression. The further experiments indicated that SESN1 silencing or 3-MA addition reversed the inhibitory effects of Orientin on the oxidative stress, inflammation and apoptosis of HUVECs. Collectively, Orientin could induce autophagy by activating SESN1 expression, thereby regulating AMPK/mTOR signaling in ox-LDL-induced HUVECs.


Subject(s)
AMP-Activated Protein Kinases , Flavonoids , Glucosides , Sestrins , Humans , Sestrins/metabolism , Human Umbilical Vein Endothelial Cells , AMP-Activated Protein Kinases/metabolism , Oxidative Stress , Lipoproteins, LDL/pharmacology , TOR Serine-Threonine Kinases/metabolism , Apoptosis , Autophagy , Inflammation/metabolism
20.
Int Heart J ; 65(1): 135-145, 2024.
Article in English | MEDLINE | ID: mdl-38296567

ABSTRACT

Atherosclerosis may be caused or developed by an immune response and antioxidation imbalance. MicroRNA-375 (miR-375) or G-protein-coupled receptor 39 (GPR39) is involved in vascular endothelial cell injury, but their role in atherosclerosis is unknown. This experiment aimed to determine the action of the miR-375/GPR39 axis in atherosclerosis.Human aortic endothelial cells (HAECs) were treated with 10 ng/mL of oxidised low-density lipoprotein (ox-LDL) for 24 hours to induce HAEC injury, which was treated by the miR-375 inhibitor, GPR39 inhibitor, or agonist. High-fat diet (HFD) -induced ApoE-/- mice were made as an atherosclerosis model for miR-375 inhibitor treatment. Cell Counting Kit-8 was applied to detect HAEC viability. HAEC apoptosis and ROS levels were measured using flow cytometry. Vascular histopathology and the GPR39 expression were detected using hematoxylin-eosin and immunohistochemistry. The expressions of interleukin (IL) -6, IL-1ß, and tumour necrosis factor-α (TNF-α) were assessed using an enzyme-linked immunosorbent assay. The miR-375, GPR39, NOX-4, and p-IκBα/IκBα levels were measured using quantitative reverse transcription polymerase chain reaction or western blot.MiR-375 and GPR39 levels increased and decreased in ox-LDL-treated HAECs, respectively. The miR-375 inhibitor or GPR39 agonist promoted cell viability and inhibited apoptosis in ox-LDL-induced HAEC injury. The miR-375 inhibitor also significantly downregulated the IL-6, IL-1ß, TNF-α, p-IκBα/IκBα, ROS, and NOX-4 expressions to alleviate oxidative stress and inflammation, which were reversed by the GPR39 inhibitor. An in vivo experiment proved that the miR-375 inhibitor upregulated the GPR39 expression and improved inflammation, oxidative stress, and endothelial cell damage associated with atherosclerosis.The miR-375 inhibitor improved inflammation, oxidative stress, and cell damage in ox-LDL-induced HAECs and HFD-induced ApoE-/- mice by promoting the GPR39 expression, which provided a new theoretical basis for the clinical treatment of atherosclerosis.


Subject(s)
Atherosclerosis , MicroRNAs , Humans , Animals , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , NF-KappaB Inhibitor alpha/metabolism , Endothelial Cells/metabolism , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/metabolism , Atherosclerosis/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Lipoproteins, LDL/pharmacology , Lipoproteins, LDL/metabolism , Oxidative Stress , Inflammation/metabolism , Apolipoproteins E , Apoptosis
SELECTION OF CITATIONS
SEARCH DETAIL
...