Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.248
Filter
1.
BMC Pregnancy Childbirth ; 24(1): 333, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689215

ABSTRACT

BACKGROUND: Lower socioeconomic position (SEP) associates with adverse pregnancy and perinatal outcomes and with less favourable metabolic profile in nonpregnant adults. Socioeconomic differences in pregnancy metabolic profile are unknown. We investigated association between a composite measure of SEP and pregnancy metabolic profile in White European (WE) and South Asian (SA) women. METHODS: We included 3,905 WE and 4,404 SA pregnant women from a population-based UK cohort. Latent class analysis was applied to nineteen individual, household, and area-based SEP indicators (collected by questionnaires or linkage to residential address) to derive a composite SEP latent variable. Targeted nuclear magnetic resonance spectroscopy was used to determine 148 metabolic traits from mid-pregnancy serum samples. Associations between SEP and metabolic traits were examined using linear regressions adjusted for gestational age and weighted by latent class probabilities. RESULTS: Five SEP sub-groups were identified and labelled 'Highest SEP' (48% WE and 52% SA), 'High-Medium SEP' (77% and 23%), 'Medium SEP' (56% and 44%) 'Low-Medium SEP' (21% and 79%), and 'Lowest SEP' (52% and 48%). Lower SEP was associated with more adverse levels of 113 metabolic traits, including lower high-density lipoprotein (HDL) and higher triglycerides and very low-density lipoprotein (VLDL) traits. For example, mean standardized difference (95%CI) in concentration of small VLDL particles (vs. Highest SEP) was 0.12 standard deviation (SD) units (0.05 to 0.20) for 'Medium SEP' and 0.25SD (0.18 to 0.32) for 'Lowest SEP'. There was statistical evidence of ethnic differences in associations of SEP with 31 traits, primarily characterised by stronger associations in WE women e.g., mean difference in HDL cholesterol in WE and SA women respectively (vs. Highest-SEP) was -0.30SD (-0.41 to -0.20) and -0.16SD (-0.27 to -0.05) for 'Medium SEP', and -0.62SD (-0.72 to -0.52) and -0.29SD (-0.40 to -0.20) for 'Lowest SEP'. CONCLUSIONS: We found widespread socioeconomic differences in metabolic traits in pregnant WE and SA women residing in the UK. Further research is needed to understand whether the socioeconomic differences we observe here reflect pre-conception differences or differences in the metabolic pregnancy response. If replicated, it would be important to explore if these differences contribute to socioeconomic differences in pregnancy outcomes.


Subject(s)
Triglycerides , White People , Humans , Female , Pregnancy , Adult , White People/statistics & numerical data , Cohort Studies , Triglycerides/blood , United Kingdom , Socioeconomic Factors , Latent Class Analysis , Asian People/statistics & numerical data , Metabolome , Lipoproteins, VLDL/blood , Lipoproteins, HDL/blood , Social Class , Young Adult
3.
Curr Opin Lipidol ; 35(3): 157-161, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38465912

ABSTRACT

PURPOSE OF REVIEW: Transmembrane 6 superfamily member 2 ( TM6SF2 ) gene was identified through exome-wide studies in 2014. A genetic variant from glutamic acid to lysine substitution at amino acid position 167 (NM_001001524.3:c.499G> A) (p.Gln167Lys/p.E167K, rs58542926) was discovered (p.E167K) to be highly associated with increased hepatic fat content and reduced levels of plasma triglycerides and LDL cholesterol. In this review, we focus on the discovery of TM6SF2 and its role in VLDL secretion pathways. Human data suggest TM6SF2 is linked to hepatic steatosis and cardiovascular disease (CVD), hence understanding its metabolic pathways is of high scientific interest. RECENT FINDINGS: Since its discovery, completed research studies in cell, rodent and human models have defined the role of TM6SF2 and its links to human disease. TM6SF2 resides in the endoplasmic reticulum (ER) and the ER-Golgi interface and helps with the lipidation of nascent VLDL, the main carrier of triglycerides from the liver to the periphery. Consistent results from cells and rodents indicated that the secretion of triglycerides is reduced in carriers of the p.E167K variant or when hepatic TM6SF2 is deleted. However, data for secretion of APOB, the main protein of VLDL particles responsible for triglycerides transport, are inconsistent. SUMMARY: The identification of genetic variants that are highly associated with human disease presentation should be followed by the validation and investigation into the pathways that regulate disease mechanisms. In this review, we highlight the role of TM6SF2 and its role in processing of liver triglycerides.


Subject(s)
Lipoproteins, VLDL , Membrane Proteins , Humans , Animals , Membrane Proteins/metabolism , Membrane Proteins/genetics , Lipoproteins, VLDL/metabolism , Translational Research, Biomedical
4.
Obesity (Silver Spring) ; 32(4): 678-690, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38439205

ABSTRACT

OBJECTIVE: Polycystic ovary syndrome (PCOS) is characterized by hyperandrogenism, insulin resistance, and hepatic steatosis (HS). Because dietary essential amino acid (EAA) supplementation has been shown to decrease HS in various populations, this study's objective was to determine whether supplementation would decrease HS in PCOS. METHODS: A randomized, double-blind, crossover, placebo-controlled trial was conducted in 21 adolescents with PCOS (BMI 37.3 ± 6.5 kg/m2, age 15.6 ± 1.3 years). Liver fat, very low-density lipoprotein (VLDL) lipogenesis, and triacylglycerol (TG) metabolism were measured following each 28-day phase of placebo or EAA. RESULTS: Compared to placebo, EAA was associated with no difference in body weight (p = 0.673). Two markers of liver health improved: HS was lower (-0.8% absolute, -7.5% relative reduction, p = 0.013), as was plasma aspartate aminotransferase (AST) (-8%, p = 0.004). Plasma TG (-9%, p = 0.015) and VLDL-TG (-21%, p = 0.031) were reduced as well. VLDL-TG palmitate derived from lipogenesis was not different between the phases, nor was insulin sensitivity (p > 0.400 for both). Surprisingly, during the EAA phase, participants reported consuming fewer carbohydrates (p = 0.038) and total sugars (p = 0.046). CONCLUSIONS: Similar to studies in older adults, short-term EAA supplementation in adolescents resulted in significantly lower liver fat, AST, and plasma lipids and thus may prove to be an effective treatment in this population. Additional research is needed to elucidate the mechanisms for these effects.


Subject(s)
Fatty Liver , Hyperandrogenism , Insulin Resistance , Polycystic Ovary Syndrome , Adolescent , Female , Humans , Hyperandrogenism/complications , Insulin , Lipoproteins, VLDL , Obesity/complications , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/complications
5.
Food Chem Toxicol ; 186: 114519, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38369053

ABSTRACT

N-Nitrosodiethylamine (NDEA), a carcinogen in some foods and medications, is linked to liver damage similar to non-alcoholic fatty liver disease (NAFLD). This study explores how NDEA disrupts liver lipid metabolism. Sprague-Dawley rats were given two doses of NDEA (100 mg/kg) orally, 24 h apart. Liver response was assessed through tissue staining, blood tests, and biochemical markers, including fatty acids, lipid peroxidation, and serum very-low density lipoprotein (VLDL) levels. Additionally, lipidomic analysis of liver tissues and serum was performed. The results indicated significant hepatic steatosis (fat accumulation in the liver) following NDEA exposure. Blood analysis showed signs of inflammation and liver damage. Biochemical tests revealed decreased liver protein synthesis and specific enzyme alterations, suggesting liver cell injury but maintaining mitochondrial function. Increased fatty acid levels without a rise in lipid peroxidation were observed, indicating fat accumulation. Lipidomic analysis showed increased polyunsaturated triglycerides in the liver and decreased serum VLDL, implicating impaired VLDL transport in liver dysfunction. In conclusion, NDEA exposure disrupts liver lipid metabolism, primarily through the accumulation of polyunsaturated triglycerides and impaired fat transport. These findings provide insight into the mechanisms of NDEA-induced liver injury and its progression to hepatic steatosis.


Subject(s)
Diethylnitrosamine , Non-alcoholic Fatty Liver Disease , Rats , Animals , Triglycerides/metabolism , Diethylnitrosamine/toxicity , Lipoproteins, VLDL/metabolism , Rats, Sprague-Dawley , Liver/metabolism , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/metabolism , Lipid Metabolism , Lipoproteins, LDL/metabolism , Diet, High-Fat
6.
Am J Pathol ; 194(6): 958-974, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38417694

ABSTRACT

Genetic polymorphisms that impair very low-density lipoprotein (VLDL) secretion are linked to hepatic steatosis, fibrosis, and hepatocellular cancer. Liver-specific deletion of microsomal triglyceride transfer protein (Mttp-LKO) impairs VLDL assembly, promoting hepatic steatosis and fibrosis, which are attenuated in Mttp-LKO X Fabp1-null [Fabp1/Mttp double knockout (DKO)] mice. The current study examined the impact of impaired VLDL secretion in Mttp-LKO mice on hepatocellular cancer incidence and progression in comparison to Fabp1/Mttp DKO mice. Diethylnitrosamine-treated Mttp-LKO mice exhibited steatosis with increased tumor burden compared with flox controls, whereas diethylnitrosamine-treated Fabp1/Mttp DKO mice exhibited a paradoxical increase in tumor burden and >50% mortality by 50 weeks. Serum high-density lipoprotein cholesterol was elevated in both Mttp-LKO and Fabp1/Mttp DKO mice, with increased intratumoral expression of apolipoprotein A1 and apolipoprotein E. Lipidomic surveys revealed progressive enrichment in distinct triglyceride species in livers from Mttp-LKO mice with further enrichment in Fabp1/Mttp DKO mice. RNA sequencing revealed mRNA changes suggesting altered monocarboxylic acid use and increased aerobic glycolysis, whereas hepatocytes from Fabp1/Mttp DKO mice exhibited increased capacity to use glucose and glutamine. These metabolic shifts were accompanied by reduced expression of HNF1 homeobox A (HNF1a), which correlated with tumor burden. Taken together, these findings demonstrate that hepatic tumorigenesis is increased in mice with impaired VLDL secretion and further accelerated via pathways including altered fatty acid compartmentalization and shifts in hepatic energy use.


Subject(s)
Carcinogenesis , Fatty Acid-Binding Proteins , Lipoproteins, VLDL , Liver Neoplasms , Mice, Knockout , Animals , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Lipoproteins, VLDL/metabolism , Mice , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinogenesis/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver/metabolism , Liver/pathology , Male , Fatty Liver/metabolism , Fatty Liver/pathology , Fatty Liver/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Gene Deletion , Carrier Proteins/metabolism , Carrier Proteins/genetics
7.
Int J Mol Sci ; 25(3)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38339135

ABSTRACT

To date, 14C tracer studies using accelerator mass spectrometry (AMS) have not yet resolved lipid-soluble analytes into individual lipoprotein density subclasses. The objective of this work was to develop a reliable method for lipoprotein separation and quantitative recovery for biokinetic modeling purposes. The novel method developed provides the means for use of small volumes (10-200 µL) of frozen plasma as a starting material for continuous isopycnic lipoprotein separation within a carbon- and pH-stable analyte matrix, which, following post-separation fraction clean up, created samples suitable for highly accurate 14C/12C isotope ratio determinations by AMS. Manual aspiration achieved 99.2 ± 0.41% recovery of [5-14CH3]-(2R, 4'R, 8'R)-α-tocopherol contained within 25 µL plasma recovered in triacylglycerol rich lipoproteins (TRL = Chylomicrons + VLDL), LDL, HDL, and infranatant (INF) from each of 10 different sampling times for one male and one female subject, n = 20 total samples. Small sample volumes of previously frozen plasma and high analyte recoveries make this an attractive method for AMS studies using newer, smaller footprint AMS equipment to develop genuine tracer analyses of lipophilic nutrients or compounds in all human age ranges.


Subject(s)
Lipoproteins , alpha-Tocopherol , Male , Female , Humans , Triglycerides , Carbon , Mass Spectrometry , Lipoproteins, VLDL , Lipoproteins, LDL
8.
Lipids Health Dis ; 23(1): 14, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38216994

ABSTRACT

Reducing circulating lipid levels is the centerpiece of strategies for preventing and treating atherosclerotic cardiovascular disease (ASCVD). Despite many available lipid-lowering medications, a substantial residual cardiovascular risk remains. Current clinical guidelines focus on plasma levels of low-density lipoprotein (LDL). Recent attention has been given to very low-density lipoprotein (VLDL), the precursor to LDL, and its role in the development of coronary atherosclerosis. Preclinical investigations have revealed that interventions targeting VLDL production or promoting VLDL metabolism, independent of the LDL receptor, can potentially decrease cholesterol levels and provide therapeutic benefits. Currently, methods, such as mipomersen, lomitapide, and ANGPTL3 inhibitors, are used to reduce plasma cholesterol and triglyceride levels by regulating the lipidation, secretion, and metabolism of VLDL. Targeting VLDL represents an avenue for new lipid-lowering strategies. Interventions aimed at reducing VLDL production or enhancing VLDL metabolism, independent of the LDL receptor, hold promise for lowering cholesterol levels and providing therapeutic benefits beyond LDL in the management of ASCVD.


Subject(s)
Atherosclerosis , Lipoproteins, VLDL , Humans , Lipoproteins, LDL , Receptors, LDL/genetics , Cholesterol , Angiopoietin-Like Protein 3
9.
Mol Metab ; 80: 101874, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38211723

ABSTRACT

OBJECTIVES: The assembly and secretion of hepatic very low-density lipoprotein (VLDL) plays pivotal roles in hepatic and plasma lipid homeostasis. Protein disulfide isomerase A1 (PDIA1/P4HB) is a molecular chaperone whose functions are essential for protein folding in the endoplasmic reticulum. Here we investigated the physiological requirement in vivo for PDIA1 in maintaining VLDL assembly and secretion. METHODS: Pdia1/P4hb was conditionally deleted in adult mouse hepatocytes and the phenotypes characterized. Mechanistic analyses in primary hepatocytes determined how PDIA1 ablation alters MTTP synthesis and degradation as well as altering synthesis and secretion of Apolipoprotein B (APOB), along with complementary expression of intact PDIA1 vs a catalytically inactivated PDIA1 mutant. RESULTS: Hepatocyte-specific deletion of Pdia1/P4hb inhibited hepatic MTTP expression and dramatically reduced VLDL production, leading to severe hepatic steatosis and hypolipidemia. Pdia1-deletion did not affect mRNA expression or protein stability of MTTP but rather prevented Mttp mRNA translation. We demonstrate an essential role for PDIA1 in MTTP synthesis and function and show that PDIA1 interacts with APOB in an MTTP-independent manner via its molecular chaperone function to support APOB folding and secretion. CONCLUSIONS: PDIA1 plays indispensable roles in APOB folding, MTTP synthesis and activity to support VLDL assembly. Thus, like APOB and MTTP, PDIA1 is an obligatory component of hepatic VLDL production.


Subject(s)
Hepatocytes , Lipoproteins, VLDL , Thymine Nucleotides , Animals , Mice , Apolipoproteins B/genetics , Apolipoproteins B/metabolism , Hepatocytes/metabolism , Lipoproteins, VLDL/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Triglycerides/metabolism
10.
Cell Rep Med ; 5(1): 101370, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38232692

ABSTRACT

Although a high amount of brown adipose tissue (BAT) is associated with low plasma triglyceride concentration, the mechanism responsible for this relationship in people is not clear. Here, we evaluate the interrelationships among BAT, very-low-density lipoprotein triglyceride (VLDL-TG), and free fatty acid (FFA) plasma kinetics during thermoneutrality in women with overweight/obesity who had a low (<20 mL) or high (≥20 mL) volume of cold-activated BAT (assessed by using positron emission tomography in conjunction with 2-deoxy-2-[18F]-fluoro-glucose). We find that plasma TG and FFA concentrations are lower and VLDL-TG and FFA plasma clearance rates are faster in women with high BAT than low BAT volume, whereas VLDL-TG and FFA appearance rates in plasma are not different between the two groups. These findings demonstrate that women with high BAT volume have lower plasma TG and FFA concentrations than women with low BAT volumes because of increased VLDL-TG and FFA clearance rates. This study was registered at ClinicalTrials.gov (NCT02786251).


Subject(s)
Fatty Acids, Nonesterified , Overweight , Humans , Female , Adipose Tissue, Brown/diagnostic imaging , Obesity , Triglycerides , Lipoproteins, VLDL
11.
J Lipid Res ; 65(3): 100503, 2024 03.
Article in English | MEDLINE | ID: mdl-38246235

ABSTRACT

Circulating levels of the soluble ligand-binding ectodomain of the LDL receptor (sLDLR) that is proteolytically cleaved from the cell surface have been shown to correlate with plasma triglycerides, but the lipid and lipoprotein effects of longitudinal changes in sLDLR have not been examined. We sought to assess associations between changes in sLDLR and detailed lipoprotein measurements between baseline and 6 months in participants in the DIETFITS (Diet Intervention Examining The Factors Interacting with Treatment Success) weight loss trial who were randomly assigned to the low-fat (n = 225) or low-carbohydrate (n = 236) diet arms. sLDLR was assayed using a proteomic procedure, lipids and apoprotein (apo) B and apoAI were measured by standard assays, and lipoprotein particle subfractions were quantified by ion mobility methodology. Changes in sLDLR were significantly positively associated with changes in plasma cholesterol, triglycerides, apoB, large-sized and medium-sized VLDL, and small and very small LDL, and inversely with changes in large LDL and HDL. The lipoprotein subfraction associations with sLDLR were independent of age, sex, diet, and BMI, but all except for large LDL were reduced to insignificance when adjusted for triglyceride change. Principal component analysis identified three independent clusters of changes in lipoprotein subfractions that accounted for 78% of their total variance. Change in sLDLR was most strongly correlated with change in the principal component that was loaded positively with large VLDL and small and very small LDL and negatively with large LDL and HDL. In conclusion, sLDLR is a component of a cluster of lipids and lipoproteins that are characteristic of atherogenic dyslipidemia.


Subject(s)
Lipoproteins , Proteomics , Humans , Triglycerides , Receptors, LDL , Diet , Weight Loss , Lipoproteins, LDL , Lipoproteins, VLDL
12.
Circ Res ; 134(2): 226-244, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38236950

ABSTRACT

The production and secretion of VLDLs (very-low-density lipoproteins) by hepatocytes has a direct impact on liver fat content, as well as the concentrations of cholesterol and triglycerides in the circulation and thus affects both liver and cardiovascular health, respectively. Importantly, insulin resistance, excess caloric intake, and lack of physical activity are associated with overproduction of VLDL, hepatic steatosis, and increased plasma levels of atherogenic lipoproteins. Cholesterol and triglycerides in remnant particles generated by VLDL lipolysis are risk factors for atherosclerotic cardiovascular disease and have garnered increasing attention over the last few decades. Presently, however, increased risk of atherosclerosis is not the only concern when considering today's cardiometabolic patients, as they often also experience hepatic steatosis, a prevalent disorder that can progress to steatohepatitis and cirrhosis. This duality of metabolic risk highlights the importance of understanding the molecular regulation of the biogenesis of VLDL, the lipoprotein that transports triglycerides and cholesterol out of the liver. Fortunately, there has been a resurgence of interest in the intracellular assembly, trafficking, degradation, and secretion of VLDL by hepatocytes, which has led to many exciting new molecular insights that are the topic of this review. Increasing our understanding of the biology of this pathway will aid to the identification of novel therapeutic targets to improve both the cardiovascular and the hepatic health of cardiometabolic patients. This review focuses, for the first time, on this duality.


Subject(s)
Cardiovascular Diseases , Fatty Liver , Humans , Lipoproteins , Lipoproteins, VLDL , Triglycerides , Liver/metabolism , Cholesterol/metabolism , Fatty Liver/metabolism , Cardiovascular Diseases/metabolism
13.
J Nat Med ; 78(1): 180-190, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37973705

ABSTRACT

An acylated flavonol glycoside, trans-tiliroside (1), is found in certain parts of different herbs, including the seeds of Rosa canina (Rosaceae). Previous studies on compound 1 have focused on triglyceride (TG) metabolism, including its anti-obesity and intracellular TG reduction effects. In the present study, the effects of compound 1 on cholesterol (CHO) metabolism were investigated using human hepatocellular carcinoma-derived HepG2 cells and mice. Compound 1 decreased CHO secretion in HepG2 cells, which was enhanced by mevalonate in a concentration-dependent manner and decreased the secretion of apoprotein B (apoB)-100, a marker of very low-density lipoprotein (VLDL). Compound 1 also inhibited the activity of microsomal triglyceride transfer proteins, which mediate VLDL formation from cholesterol and triglycerides in the liver. In vivo, compound 1 inhibited the accumulation of Triton WR-1339-induced TG in the blood of fasted mice and maintained low levels of apoB-100. These results suggest that compound 1 inhibits the secretion of CHO as VLDL from the liver and has the potential for use for the prevention of dyslipidemia.


Subject(s)
Lipoproteins, VLDL , Liver Neoplasms , Mice , Humans , Animals , Lipoproteins, VLDL/metabolism , Lipoproteins, VLDL/pharmacology , Apolipoproteins B/metabolism , Hep G2 Cells , Liver/metabolism , Triglycerides , Cholesterol , Lipoproteins, LDL/metabolism
14.
Am J Kidney Dis ; 83(1): 9-17, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37678743

ABSTRACT

RATIONALE & OBJECTIVE: Chronic kidney disease (CKD) leads to lipid and metabolic abnormalities, but a comprehensive investigation of lipids, lipoprotein particles, and circulating metabolites associated with the risk of CKD has been lacking. We examined the associations of nuclear magnetic resonance (NMR)-based metabolomics data with CKD risk in the UK Biobank study. STUDY DESIGN: Observational cohort study. SETTING & PARTICIPANTS: A total of 91,532 participants in the UK Biobank Study without CKD and not receiving lipid-lowering therapy. EXPOSURE: Levels of metabolites including lipid concentration and composition within 14 lipoprotein subclasses, as well as other metabolic biomarkers were quantified via NMR spectroscopy. OUTCOME: Incident CKD identified using ICD codes in any primary care data, hospital admission records, or death register records. ANALYTICAL APPROACH: Cox proportional hazards regression models were used to estimate hazard ratios and 95% confidence intervals. RESULTS: We identified 2,269 CKD cases over a median follow-up period of 13.1 years via linkage with the electronic health records. After adjusting for covariates and correcting for multiple testing, 90 of 142 biomarkers were significantly associated with incident CKD. In general, higher concentrations of very-low-density lipoprotein (VLDL) particles were associated with a higher risk of CKD whereas higher concentrations of high-density lipoprotein (HDL) particles were associated with a lower risk of CKD. Higher concentrations of cholesterol, phospholipids, and total lipids within VLDL were associated with a higher risk of CKD, whereas within HDL they were associated with a lower risk of CKD. Further, higher triglyceride levels within all lipoprotein subclasses, including all HDL particles, were associated with greater risk of CKD. We also identified that several amino acids, fatty acids, and inflammatory biomarkers were associated with risk of CKD. LIMITATIONS: Potential underreporting of CKD cases because of case identification via electronic health records. CONCLUSIONS: Our findings highlight multiple known and novel pathways linking circulating metabolites to the risk of CKD. PLAIN-LANGUAGE SUMMARY: The relationship between individual lipoprotein particle subclasses and lipid-related traits and risk of chronic kidney disease (CKD) in general population is unclear. Using data from 91,532 participants in the UK Biobank, we evaluated the associations of metabolites measured using nuclear magnetic resonance testing with the risk of CKD. We identified that 90 out of 142 lipid biomarkers were significantly associated with incident CKD. We found that very-low-density lipoproteins, high-density lipoproteins, the lipid concentration and composition within these lipoproteins, triglycerides within all the lipoprotein subclasses, fatty acids, amino acids, and inflammation biomarkers were associated with CKD risk. These findings advance our knowledge about mechanistic pathways that may contribute to the development of CKD.


Subject(s)
Lipoproteins , Renal Insufficiency, Chronic , Humans , Lipoproteins/chemistry , Lipoproteins, HDL/chemistry , Magnetic Resonance Spectroscopy/methods , Lipoproteins, VLDL/chemistry , Triglycerides , Biomarkers , Renal Insufficiency, Chronic/epidemiology
15.
Biochem Mol Biol Educ ; 52(1): 127-128, 2024.
Article in English | MEDLINE | ID: mdl-37905739

ABSTRACT

The poem Ode on the Odyssey of lipoproteins describes the structure, functions and metabolism of lipoproteins namely Chylomicrons, LDL, VLDL and HDL. This poem is a triolet with eight lines in each stanza. Odyssey is the travel experience of an adventurous journey when someone travels far and wide. This poem describes the transport adventures of Lipids when they travel in the form of lipoproteins. The poetic form of describing the metabolism of lipoproteins was intended to kindle the interest of the learners and to gain an imaginary experience in the metabolism of lipoproteins.


Subject(s)
Lipoproteins, HDL , Lipoproteins, LDL , Lipoproteins, HDL/metabolism , Lipoproteins, LDL/metabolism , Lipoproteins, VLDL/metabolism , Lipoproteins/chemistry , Lipoproteins/metabolism , Chylomicrons/metabolism
16.
Methods Mol Biol ; 2750: 175-184, 2024.
Article in English | MEDLINE | ID: mdl-38108977

ABSTRACT

Here we describe methods for investigating alpha-1 antitrypsin (AAT) and very-low-density lipoprotein receptor (VLDLR) interactions with infectious and non-infectious HIV-1 virions. Using silencing RNA to transiently block expression of VLDLR and the receptor-associated protein (RAP) to continuously block VLDLR activity, AAT is demonstrated to participate with VLDLR during internalization and infectivity of HIV-1 virions.


Subject(s)
HIV Infections , HIV-1 , Humans , HIV Infections/genetics , Defense Mechanisms , HIV-1/genetics , Virion/genetics , Lipoproteins, VLDL
17.
Arterioscler Thromb Vasc Biol ; 44(2): 435-451, 2024 02.
Article in English | MEDLINE | ID: mdl-38126174

ABSTRACT

BACKGROUND: Humans spend much of the day in the postprandial state. However, most research and clinical guidelines on plasma lipids pertain to blood drawn after a 12-hour fast. We aimed to study the metabolic differences of apoB lipoproteins between the fasting and postprandial states. METHODS: We investigated plasma apoB metabolism using stable isotope tracers in 12 adult volunteers under fasting and continuous postprandial conditions in a randomized crossover study. We determined the metabolism of apoB in multiple lipoprotein subfractions, including light and dense VLDLs (very-low-density lipoproteins), IDLs (intermediate-density lipoproteins), and light and dense LDLs (low-density lipoproteins) that do or do not contain apoE or apoC3. RESULTS: A major feature of the postprandial state is 50% lower secretion rate of triglyceride-rich lipoproteins and concurrent slowdown of their catabolism in circulation, as shown by 34% to 55% lower rate constants for the metabolic pathways of conversion by lipolysis from larger to smaller lipoproteins and direct clearance of lipoproteins from the circulation. In addition, the secretion pattern of apoB lipoprotein phenotypes was shifted from particles containing apoE and apoC3 in the fasting state to those without either protein in the postprandial state. CONCLUSIONS: Overall, during the fasting state, hepatic apoB lipoprotein metabolism is activated, characterized by increased production, transport, and clearance. After food intake, endogenous apoB lipoprotein metabolism is globally reduced as appropriate to balance dietary input to maintain the supply of energy to peripheral tissues.


Subject(s)
Apolipoproteins B , Lipoproteins, VLDL , Adult , Humans , Cross-Over Studies , Apolipoprotein B-100 , Triglycerides , Lipoproteins, LDL , Apolipoproteins E/metabolism , Eating
18.
Article in German | MEDLINE | ID: mdl-37956673

ABSTRACT

Hepatic lipidosis in dairy cows is the result of a disturbed balance between the uptake of non-esterified fatty acids (NEFA), their metabolism in the hepatocytes, and the limited efflux of TG as very-low-density lipoprotein (VLDL). Lipidosis and the associated risk for ketosis represents a consequence of selecting dairy cows primarily for milk production without considering the basic physiological mechanisms of this trait. The overall risk for lipidosis and ketosis possesses a genetic background and the recently released new breeding value of the German Holstein Friesian cows now sets the path for correction of this risk and in that confirms the assumed genetic threat. Ectopic fat deposition in the liver is the result of various steps including lipolysis, uptake of fat by the liver cell, its metabolism, and finally release as very-low-density lipoprotein (VLDL). These reactions may be modulated directly or indirectly and hence, serve as basis for prophylactic measures. The pertaining methods are described in order to support an improved understanding of the pathogenesis of lipidosis and ketosis. They consist of feeding a glucogenic diet, restricted feeding during the close-up time as well as supplementation with choline, niacin, carnitine, or the reduction of milking frequency. Prophylactic measures for the prevention of ketosis are also included in this discussion.


Subject(s)
Cattle Diseases , Ketosis , Lipidoses , Female , Cattle , Animals , Lactation/physiology , Genetic Predisposition to Disease , Liver/metabolism , Fatty Acids, Nonesterified , Milk/metabolism , Lipidoses/genetics , Lipidoses/prevention & control , Lipidoses/veterinary , Ketosis/veterinary , Lipoproteins, VLDL/metabolism , Cattle Diseases/genetics , Cattle Diseases/prevention & control
19.
J Lipid Res ; 64(12): 100471, 2023 12.
Article in English | MEDLINE | ID: mdl-37944753

ABSTRACT

Despite great progress in understanding lipoprotein physiology, there is still much to be learned about the genetic drivers of lipoprotein abundance, composition, and function. We used ion mobility spectrometry to survey 16 plasma lipoprotein subfractions in 500 Diversity Outbred mice maintained on a Western-style diet. We identified 21 quantitative trait loci (QTL) affecting lipoprotein abundance. To refine the QTL and link them to disease risk in humans, we asked if the human homologs of genes located at each QTL were associated with lipid traits in human genome-wide association studies. Integration of mouse QTL with human genome-wide association studies yielded candidate gene drivers for 18 of the 21 QTL. This approach enabled us to nominate the gene encoding the neutral ceramidase, Asah2, as a novel candidate driver at a QTL on chromosome 19 for large HDL particles (HDL-2b). To experimentally validate Asah2, we surveyed lipoproteins in Asah2-/- mice. Compared to wild-type mice, female Asah2-/- mice showed an increase in several lipoproteins, including HDL. Our results provide insights into the genetic regulation of circulating lipoproteins, as well as mechanisms by which lipoprotein subfractions may affect cardiovascular disease risk in humans.


Subject(s)
Collaborative Cross Mice , Genome-Wide Association Study , Female , Humans , Mice , Animals , Lipoproteins/genetics , Quantitative Trait Loci/genetics , Phenotype , Lipoproteins, VLDL
20.
Int J Mol Sci ; 24(22)2023 Nov 19.
Article in English | MEDLINE | ID: mdl-38003693

ABSTRACT

Betatrophin, also known as angiopoietin-like protein 8 (ANGPTL8), mainly plays a role in lipid metabolism. To date, associations between betatrophin and lipoprotein subfractions are poorly investigated. For this study, 50 obese patients with type 2 diabetes (T2D) and 70 nondiabetic obese (NDO) subjects matched in gender, age, and body mass index (BMI) as well as 49 gender- and age-matched healthy, normal-weight controls were enrolled. Serum betatrophin levels were measured with ELISA, and lipoprotein subfractions were analyzed using Lipoprint gel electrophoresis. Betatrophin concentrations were found to be significantly higher in the T2D and NDO groups compared to the controls in all subjects and in females, but not in males. We found significant positive correlations between triglyceride, very low density lipoprotein (VLDL), large LDL (low density lipoprotein), small LDL, high density lipoprotein (HDL) -6-10 subfractions, and betatrophin, while negative correlations were detected between betatrophin and IDL, mean LDL size, and HDL-1-5. Proportion of small HDL was the best predictor of betatrophin in all subjects. Small LDL and large HDL subfractions were found to be the best predictors in females, while in males, VLDL was found to be the best predictor of betatrophin. Our results underline the significance of serum betatrophin measurement in the cardiovascular risk assessment of obese patients with and without T2D, but gender differences might be taken into consideration.


Subject(s)
Diabetes Mellitus, Type 2 , Peptide Hormones , Male , Female , Humans , Angiopoietin-Like Protein 8 , Diabetes Mellitus, Type 2/complications , Lipoproteins , Lipoproteins, LDL , Obesity/complications , Lipoproteins, VLDL
SELECTION OF CITATIONS
SEARCH DETAIL
...