Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.120
Filter
1.
Int J Nanomedicine ; 19: 4411-4427, 2024.
Article in English | MEDLINE | ID: mdl-38774028

ABSTRACT

Background: Rheumatoid arthritis (RA) is a chronic and systemic autoimmune disease characterized by synovial inflammation and joint destruction. Despite progress in RA therapy, it remains difficult to achieve long-term remission in RA patients. Phosphodiesterase 3B (Pde3b) is a member of the phosphohydrolyase family that are involved in many signal transduction pathways. However, its role in RA is yet to be fully addressed. Methods: Studies were conducted in arthritic DBA/1 mice, a suitable mouse strain for collagen-induced rheumatoid arthritis (CIA), to dissect the role of Pde3b in RA pathogenesis. Next, RNAi-based therapy with Pde3b siRNA-loaded liposomes was assessed in a CIA model. To study the mechanism involved, we investigated the effect of Pde3b knockdown on macrophage polarization and related signaling pathway. Results: We demonstrated that mice with CIA exhibited upregulated Pde3b expression in macrophages. Notably, intravenous administration of liposomes loaded with Pde3b siRNA promoted the macrophage anti-inflammatory program and alleviated CIA in mice, as indicated by the reduced inflammatory response, synoviocyte infiltration, and bone and cartilage erosion. Mechanistic study revealed that depletion of Pde3b increased cAMP levels, by which it enhanced PKA-CREB-C/EBPß pathway to transcribe the expression of anti-inflammatory program-related genes. Conclusion: Our results support that Pde3b is involved in the pathogenesis of RA, and Pde3b siRNA-loaded liposomes might serve as a promising therapeutic approach against RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Cyclic Nucleotide Phosphodiesterases, Type 3 , Genetic Therapy , Liposomes , Macrophages , Mice, Inbred DBA , RNA, Small Interfering , Animals , Liposomes/chemistry , Liposomes/administration & dosage , Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/therapy , Arthritis, Rheumatoid/chemically induced , Mice , Arthritis, Experimental/genetics , Arthritis, Experimental/prevention & control , Arthritis, Experimental/therapy , Macrophages/drug effects , RNA, Small Interfering/genetics , RNA, Small Interfering/administration & dosage , Genetic Therapy/methods , Male , Signal Transduction/drug effects
2.
J Clin Anesth ; 95: 111470, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38604047

ABSTRACT

STUDY OBJECTIVE: To investigate the timing of peak blood concentrations and potential toxicity when using a combination of plain and liposomal bupivacaine for thoracic fascial plane blocks. DESIGN: Pharmacokinetic analysis. SETTING: Operating room. PATIENTS: Eighteen adult patients undergoing robotically-assisted mitral valve surgery. INTERVENTIONS: Ultrasound-guided pecto-serratus and serratus anterior plane blocks using a mixture of 0.5% bupivacaine HCl up to 2.5 mg/kg and liposomal bupivacaine up to 266 mg. MEASUREMENTS: Arterial plasma bupivacaine concentration. MAIN RESULTS: Samples from 13 participants were analyzed. There was substantial inter-patient variability in plasma concentrations. A geometric mean maximum bupivacaine concentration was 1492 ng/ml (range 660 to 4650 ng/ml) at median time of 30 min after injection. In 4/13 (31%) patients, plasma bupivacaine concentrations exceeded our predefined 2000 ng/ml toxic threshold. A second much smaller peak was observed about 32 h after the injection. No obvious signs of local anesthetic toxicity were observed. CONCLUSIONS: Combined injection of plain and liposomal bupivacaine for pecto-serratus/serratus anterior plane blocks produced a biphasic pattern, with the highest arterial plasma concentrations observed within 30 min. Maximum concentrations exceeded the potential toxic threshold in nearly a third of patients, but without clinical evidence of toxicity. Clinicians should not assume that routine combinations of plain and liposomal bupivacaine for thoracic fascial plane blocks are inherently safe.


Subject(s)
Anesthetics, Local , Bupivacaine , Liposomes , Mitral Valve , Nerve Block , Robotic Surgical Procedures , Ultrasonography, Interventional , Humans , Bupivacaine/administration & dosage , Bupivacaine/blood , Bupivacaine/pharmacokinetics , Anesthetics, Local/administration & dosage , Anesthetics, Local/blood , Anesthetics, Local/pharmacokinetics , Male , Female , Middle Aged , Nerve Block/methods , Liposomes/administration & dosage , Mitral Valve/surgery , Adult , Robotic Surgical Procedures/methods , Robotic Surgical Procedures/adverse effects , Aged
3.
Poult Sci ; 103(6): 103695, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38626693

ABSTRACT

This research assessed the impacts of dietary nano-propolis liposomes (NPRL) inclusion on the growth, blood biochemical components, immune function, and oxidative status of broilers exposed to cyclic heat stress (HS). Birds were fed with a basal diet supplemented with various levels of NPRL at 0 (HS), 100 (NPRL100), 250 (NPRL250) and 400 (NPRL400) mg/kg diets. Diets supplemented with NPRL significantly improved the growth indices and feed utilization, hemoglobin and red blood cells (P < 0.01). White blood cells, lymphocytes and monocytes were significantly decreased by NPRL inclusion (P < 0.001). Dietary supplementation of 250 or 400 mg of NPRL /kg reduced the pathogenic bacteria counts (Salmonella, E. coli and Enterococci) (P < 0.01). The birds fed diets with NPRL (400 mg/kg diet) significantly downregulated the mRNA IFNγ gene (p < 0.001), while both groups (NPRL100 and NPRL250) had similar results (P > 0.05). The iNOS gene was significantly decreased by the dietary NPRL inclusion in a dose-dependent manner. Birds in NRPL groups had inferior levels of the mRNA of interleukin-4 and tumor necrosis factor genes. The lysosome activity was significantly reduced by dietary 250 or 400 mg of NPRL inclusion (P < 0.001). Birds in NPRL250 and NPRL100 had greater IgG (P < 0.05) than the other groups. Regarding oxidative-related biomarkers, dietary NPRL inclusion decreased myeloperoxidase and malondialdehyde levels significantly compared to those with the HS group (P < 0.001). Broilers in the NPRL400 group had the lowest levels of total bilirubin and gamma-glutamyl transferase. NPRL250 had the lowest values of urea compared with other groups (P < 0.001). Dietary NPRL inclusion improved the broiler's hepatic and intestinal architecture exposed to cyclic heat stress. These results indicate that employing NPRL in the diets of stressed broilers can enhance heat resistance by enhancing blood metabolites and immunity, reducing inflammation and oxidative stress.


Subject(s)
Animal Feed , Chickens , Diet , Dietary Supplements , Liposomes , Animals , Chickens/physiology , Chickens/growth & development , Animal Feed/analysis , Liposomes/administration & dosage , Liposomes/chemistry , Diet/veterinary , Dietary Supplements/analysis , Male , Random Allocation , Heat-Shock Response/drug effects , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Dose-Response Relationship, Drug , Poultry Diseases/prevention & control , Heat Stress Disorders/veterinary
4.
Adv Drug Deliv Rev ; 200: 115028, 2023 09.
Article in English | MEDLINE | ID: mdl-37517778

ABSTRACT

Lipid-based nanocarriers have been extensively investigated for their application in drug delivery. Particularly, liposomes are now clinically established for treating various diseases such as fungal infections. In contrast, extracellular vesicles (EVs) - small cell-derived nanoparticles involved in cellular communication - have just recently sparked interest as drug carriers but their development is still at the preclinical level. To drive this development further, the methods and technologies exploited in the context of liposome research should be applied in the domain of EVs to facilitate and accelerate their clinical translation. One of the crucial steps for EV-based therapeutics is designing them as proper dosage forms for specific applications. This review offers a comprehensive overview of state-of-the-art polysaccharide-based hydrogel platforms designed for artificial and natural vesicles with application in drug delivery to the skin. We discuss their various physicochemical and biological properties and try to create a sound basis for the optimization of EV-embedded hydrogels as versatile therapeutic avenues.


Subject(s)
Drug Carriers , Extracellular Vesicles , Hydrogels , Liposomes , Skin Diseases , Humans , Drug Delivery Systems , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Hydrogels/administration & dosage , Hydrogels/chemistry , Polysaccharides/chemistry , Skin Diseases/drug therapy , Liposomes/administration & dosage
5.
Int. j. morphol ; 41(3): 804-810, jun. 2023. ilus, tab
Article in English | LILACS | ID: biblio-1514282

ABSTRACT

SUMMARY: The preserved form of all components of the nerve fiber is a prerequisite for the proper conduction of the nerve impulse. various factors can change the shape of nerve fibers. In everyday practice, qualitative histological analysis is the gold standard for detecting changes in shape. Geometric morphometry is an innovative method that objectively enables the assessment of changes in nerve fibers' shape after local anesthetics action. A total of sixty sciatic nerves were used as material, which was intraneural injected with saline solution in the control group (n=30), and a solution of 1.33 % liposomal bupivacaine (n=30) in the test group. After the animals were sacrificed, nerve samples were taken and histological preparations were made. The preparations were first described and examined using a qualitative histological method, after which digital images were made. The images were entered into the MorphoJ program and processed using the method of geometric morphometry. Qualitative histological examination revealed no differences in nerve fibers after intraneurally applied physiological solution and liposomal bupivacaine. Using the method of geometric morphometry, a statistically significant change in the shape of axons was found after intraneurally applied saline solution and liposomal bupivacaine (p=0.0059). No significant differences in histological changes were found after the qualitative histological analysis of nerve fiber cross-section preparations. A statistically significant change in the shape of nerve fiber axons was observed after geometric morphometric analysis of digital images after intraneural application of saline and liposomal bupivacaine.


La forma conservada de todos los componentes de la fibra nerviosa es un requisito previo para la conducción correcta del impulso nervioso. Varios factores pueden cambiar la forma de las fibras nerviosas. En la práctica diaria, el análisis histológico cualitativo es el estándar de oro para detectar cambios de forma. La morfometría geométrica es un método innovador que permite evaluar objetivamente los cambios en la forma de las fibras nerviosas después de la acción de los anestésicos locales. Se utilizó como material un total de sesenta nervios ciáticos, que se inyectaron intraneuralmente con solución salina en el grupo control (n=30), y una solución de bupivacaína liposomal al 1,33 % (n=30) en el grupo de prueba. Después de sacrificados los animales, se tomaron muestras de nervios y se realizaron preparaciones histológicas. Primero se describieron y examinaron las preparaciones utilizando un método histológico cualitativo, después de lo cual se tomaron imágenes digitales. Las imágenes fueron ingresadas al programa MorphoJ y procesadas mediante el método de morfometría geométrica. El examen histológico cualitativo no reveló diferencias en las fibras nerviosas después de la aplicación intraneural de solución fisiológica y bupivacaína liposomal. Usando el método de morfometría geométrica, se encontró un cambio estadísticamente significativo en la forma de los axones después de la aplicación intraneural de solución salina y bupivacaína liposomal (p = 0,0059). No se encontraron diferencias significativas en los cambios histológicos después del análisis histológico cualitativo de las preparaciones de secciones transversales de fibras nerviosas. Se observó un cambio estadísticamente significativo en la forma de los axones de las fibras nerviosas después del análisis de morfometría geométrica de imágenes digitales después de la aplicación intraneural de solución salina y bupivacaína liposomal.


Subject(s)
Animals , Rats , Bupivacaine/administration & dosage , Histological Techniques/methods , Anesthetics, Local/administration & dosage , Nerve Fibers/drug effects , Discriminant Analysis , Rats, Wistar , Principal Component Analysis , Saline Solution/administration & dosage , Injections , Liposomes/administration & dosage
6.
J Pharm Sci ; 112(5): 1401-1410, 2023 05.
Article in English | MEDLINE | ID: mdl-36596392

ABSTRACT

Delivery of messenger RNA (mRNA) using lipid nanoparticles (LNPs) is expected to be applied to various diseases following the successful clinical use of the mRNA COVID-19 vaccines. This study aimed to evaluate the effect of the cholesterol molar percentage of mRNA-LNPs on protein expression in hepatocellular carcinoma-derived cells and in the liver after intramuscular or subcutaneous administration of mRNA-LNPs in mice. For mRNA-LNPs with cholesterol molar percentages reduced to 10 mol% and 20 mol%, we formulated neutral charge particles with a diameter of approximately 100 nm and polydispersity index (PDI) <0.25. After the intramuscular or subcutaneous administration of mRNA-LNPs with different cholesterol molar percentages in mice, protein expression in the liver decreased as the cholesterol molar percentage in mRNA-LNPs decreased from 40 mol% to 20 mol% and 10 mol%, suggesting that reducing the cholesterol molar percentage in mRNA-LNPs decreases protein expression in the liver. Furthermore, in HepG2 cells, protein expression decreased as cholesterol in mRNA-LNPs was reduced by 40 mol%, 20 mol%, and 10 mol%. These results suggest that the downregulated expression of mRNA-LNPs with low cholesterol content in the liver involves degradation in systemic circulating blood and decreased protein expression after hepatocyte distribution.


Subject(s)
Cholesterol , Liver , RNA, Messenger , RNA, Messenger/administration & dosage , Animals , Mice , Cholesterol/analysis , Cholesterol/blood , Cholesterol/metabolism , Cell Line, Tumor , Carcinoma, Hepatocellular , Liver Neoplasms, Experimental , Liver/metabolism , Luciferases/metabolism , Male , Humans , Liposomes/administration & dosage , Liposomes/analysis , Liposomes/chemistry , Nanoparticles/administration & dosage , Nanoparticles/analysis , Nanoparticles/chemistry
7.
Front Immunol ; 13: 930103, 2022.
Article in English | MEDLINE | ID: mdl-36090987

ABSTRACT

Objective: To address the role of methyl-CpG-binding domain 2 (MBD2) in the pathogenesis of asthma and its potential as a target for the asthmatic therapy. Methods: Studies were conducted in asthmatic patients and macrophage-specific Mbd2 knockout mice to dissect the role of MBD2 in asthma pathogenesis. Additionally, RNAi-based therapy with Mbd2 siRNA-loaded liposomes was conducted in an ovalbumin (OVA)-induced allergic airway inflammation mouse model. Results: Asthmatic patients and mice challenged with OVA exhibited upregulated MBD2 expression in macrophages, especially in alternatively activated (M2) macrophages. In particular, macrophage-specific knockout of Mbd2 protected mice from OVA-induced allergic airway inflammation and suppressed the M2 program. Notably, intratracheal administration of liposomes carrying Mbd2 siRNA decreased the expression of Mbd2 and prevented OVA-induced allergic airway inflammation in mice, as indicated by the attenuated airway inflammation and mucus production. Conclusions: The above data indicate that Mbd2 implicates in the pathogenesis of asthma predominantly by regulating the polarization of M2 macrophages, which supports that Mbd2 could be a viable target for treatment of asthma in clinical settings.


Subject(s)
Asthma , DNA-Binding Proteins , Liposomes , Macrophages , RNA, Small Interfering , Animals , Asthma/chemically induced , Asthma/genetics , Asthma/metabolism , Asthma/prevention & control , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Inflammation/chemically induced , Inflammation/genetics , Inflammation/metabolism , Inflammation/prevention & control , Liposomes/administration & dosage , Liposomes/therapeutic use , Macrophages/metabolism , Mice , Mice, Knockout , Ovalbumin/adverse effects , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/therapeutic use
8.
Sci Rep ; 12(1): 10423, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35729230

ABSTRACT

Blocking CD73 ectonucleotidase has been proposed as a potential therapeutic approach for cancer treatment. The present study aimed to investigate the antitumor effect of a novel EGFR-Targeted liposomal CD73 siRNA formulation in combination therapy with liposomal doxorubicin in the 4T1 mouse model. CD73 siRNA was encapsulated into nanoliposomes by the ethanol injection method. After preparation, characterization, morphology, and stability evaluation of formulations, the toxicity was measured by MTT assay. Uptake assay and efficiency of the liposomal formulations were investigated on the 4T1 cell line. The liposomal formulation containing CD73 siRNA was targeted with GE11 peptide for in vivo evaluations. Following biodistribution analysis, the antitumor activity of prepared formulations in combination with liposomal doxorubicin was studied in mice bearing 4T1 metastatic breast cancer cells. Finally, the induction of immune response of formulations in concomitant treatment with liposomal doxorubicin was evaluated in the tumor microenvironment of a mouse model of breast cancer. The size of prepared liposomal formulations at N/P = 16 for the liposomal CD73 siRNA and GE11-liposomal CD73 siRNA groups were 89 nm ± 4.4 and 95 nm ± 6.6, respectively. The nanoparticle's PDI was less than 0.3 and their surface charge was below 10 mV. The results demonstrated that N/P = 16 yielded the best encapsulation efficiency which was 94% ± 3.3. AFM results showed that the liposomes were spherical in shape and were less than 100 nm in size. The results of the MTT assay showed significant toxicity of the liposomes containing CD73 siRNA during the 48-h cell culture. Real-time PCR and flow cytometry results showed that liposomes containing CD73 siRNA could effectively downregulate CD73 expression. Liposomal formulations were able to significantly downregulate CD73 gene expression, in vivo. However, CD73 downregulation efficiency was significantly higher for the targeted form compared to the non-targeted formulation (P value < 0.01). The combination showed maximum tumor growth delay with remarkable survival improvement compared to the control group. Studying the immune responses in the treatment groups which received doxorubicin, showed decreased number of lymphocytes in the tumor environment. However, this decrease was lower in the combination therapy group. Finally, our results clearly showed that CD73 downregulation increases the activity of CD8+ lymphocytes (IFN-ℽ production) and also significantly decreases the Foxp3 in the CD25+ lymphocytes compared to the control group. GE11-Lipo CD73 siRNA formulation can efficiently knockdown CD73 ectonucleotidase. Also, the efficacy of liposomal doxorubicin is significantly enhanced via the downregulation of CD73 ectonucleotidase.


Subject(s)
Breast Neoplasms , Doxorubicin , ErbB Receptors , Liposomes , RNA, Small Interfering , 5'-Nucleotidase/genetics , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Disease Models, Animal , Down-Regulation/drug effects , Doxorubicin/analogs & derivatives , Doxorubicin/therapeutic use , ErbB Receptors/metabolism , Female , GPI-Linked Proteins/genetics , Humans , Liposomes/administration & dosage , Liposomes/chemistry , Mice , Molecular Targeted Therapy , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/chemistry , RNA, Small Interfering/metabolism , Tissue Distribution , Tumor Microenvironment
9.
Biomater Sci ; 10(10): 2650-2664, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35420075

ABSTRACT

Liver fibrosis results from excessive extracellular matrix accumulation due to injury and leads to cirrhosis, cancer, and death. Herein, we propose a chemokine receptor 4 (CXCR4)-targeted combination (CTC) liposomal therapy to treat carbon tetrachloride (CCl4)-induced liver fibrosis in a mouse model. This study aims to combine small molecules such as pirfenidone and AMD3100 in a single nanoplatform to investigate their synergistic antifibrotic effects in a setting of CCl4-induced liver fibrosis. CTC liposomes (CTC lipo) were prepared using the thin-film hydration method. CTC lipo exhibited a spherical shape, and the particle size was recorded at the nanoscale which confirms its appropriateness for in vitro and in vivo applications. CTC lipo had good storage and serum stability. The entrapped drugs in CTC lipo showed reduced toxicity at higher concentrations. CTC lipo displayed CXCR4 mediated cell uptake and were internalized by caveolae-mediated endocytosis. CTC lipo showed CXCR4 targeting and stromal cell-derived factor 1α (SDF1-α)/CXCR4 axis blocking activity. CTC lipo reduced the elevated serum aspartate aminotransferase (AST), alanine transaminase (ALT), and hydroxyproline (HYP) levels. The histological studies showed improved liver architecture and reduced collagen deposition after treatment. Transforming growth factor ß (TGFß), alpha-smooth muscle actin (α-SMA), and collagen I were elevated by CCl4 in comparison with the Sham. Upon CTC liposomal treatment, the quantitative score for the elevated fibrotic proteins such as TGFß, α-SMA, and collagen I was normalized. CTC lipo displayed significant downregulation of the upregulated TGFß, α-SMA, collagen I, and P-p38 expressions at the molecular level. The CXCR4 targeted liposomes showed prolonged biodistribution at 24 h. Our findings indicated that CTC lipo might be an alternative antifibrotic therapy that may offer new access to research and development. In a nutshell, the present study suggests that systemic administration of CTC lipo has efficient antifibrotic potential and deserves to be investigated for further clinical applications.


Subject(s)
Liposomes , Liver Cirrhosis , Receptors, CXCR4 , Animals , Collagen Type I/metabolism , Fibrosis , Liposomes/administration & dosage , Liposomes/pharmacokinetics , Liver/drug effects , Liver/pathology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Mice , Molecular Targeted Therapy , Receptors, CXCR4/metabolism , Tissue Distribution , Transforming Growth Factor beta/metabolism
10.
Mol Pharm ; 19(6): 1814-1824, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35302764

ABSTRACT

Continuous outbreaks of pertussis around the world suggest inadequate immune protection in infants and weakened immune responses induced over time by the acellular pertussis vaccine. Vaccine adjuvants provide a means to improve vaccine immunogenicity and support long-term adaptive immunity against pertussis. An acellular pertussis vaccine was prepared with pertactin, pertussis toxin, and fimbriae 2/3 antigens combined with a triple-adjuvant system consisting of innate defense regulator peptide IDR 1002, a Toll-like receptor-3 agonist poly(I:C), and a polyphosphazene in a fixed combination. The vaccine was delivered intranasally in a cationic lipid nanoparticle formulation fabricated by simple admixture and two schema for addition of antigens (LT-A, antigens associated outside of L-TriAdj, and LAT, antigens associated inside of L-TriAdj) to optimize particle size and cationic surface charge. In the former, antigens were associated with the lipidic formulation of the triple adjuvant by electrostatic attraction. In the latter, the antigens resided in the interior of the lipid nanoparticle. Two dose levels of antigens were used with adjuvant comprised of the triple adjuvant with or without the lipid nanoparticle carrier. Formulation of vaccines with the triple adjuvant stimulated systemic and mucosal immune responses. The lipid nanoparticle vaccines favored a Th1 type of response with higher IgG2a and IgA serum antibody titers particularly for pertussis toxin and pertactin formulated at the 5 µg dose level in the admixed formulation. Additionally, the lipid nanoparticle vaccines resulted in high nasal SIgA antibodies and an early (4 weeks post vaccination) response after a single vaccination dose. The LT-A nanoparticles trended toward higher titers of serum antibodies compared to LAT. The cationic lipid-based vaccine nanoparticles formulated with a triple adjuvant showed encouraging results as a potential formulation for intranasally administered pertussis vaccines.


Subject(s)
Adjuvants, Immunologic , Liposomes , Nanoparticles , Pertussis Vaccine , Whooping Cough , Animals , Antibodies, Bacterial , Bordetella pertussis , Cations , Humans , Liposomes/administration & dosage , Mice , Mice, Inbred BALB C , Nanoparticles/administration & dosage , Pertussis Toxin/administration & dosage , Pertussis Toxin/immunology , Pertussis Vaccine/administration & dosage , Pertussis Vaccine/chemistry , Pertussis Vaccine/immunology , Vaccination , Whooping Cough/prevention & control
11.
Molecules ; 27(3)2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35164326

ABSTRACT

Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer and is characterized by poor clinical outcomes, with the majority of patients not being eligible for curative therapy and treatments only being applicable for early-stage tumors. CD44 is a receptor for hyaluronic acid (HA) and is involved in HCC progression. The aim of this work is to propose HA- and PEGylated-liposomes as promising approaches for the treatment of HCC. It has been found, in this work, that CD44 transcripts are up-regulated in HCC patients, as well as in a murine model of NAFLD/NASH-related hepatocarcinogenesis. Cell culture experiments indicate that HA-liposomes are more rapidly and significantly internalized by Huh7 cells that over-express CD44, compared with HepG2 cells that express low levels of the receptor, in which the uptake seems due to endocytic events. By contrast, human and murine macrophage cell lines (THP-1, RAW264.7) show improved and rapid uptake of PEG-modified liposomes without the involvement of the CD44. Moreover, the internalization of PEG-modified liposomes seems to induce polarization of THP1 towards the M1 phenotype. In conclusion, data reported in this study indicate that this strategy can be proposed as an alternative for drug delivery and one that dually and specifically targets liver cancer cells and infiltrating tumor macrophages in order to counteract two crucial aspect of HCC progression.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Drug Delivery Systems , Hyaluronic Acid/pharmacology , Liposomes/administration & dosage , Macrophages/drug effects , Non-alcoholic Fatty Liver Disease/drug therapy , Polyethylene Glycols/chemistry , Animals , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Humans , Hyaluronic Acid/chemistry , Liposomes/chemistry , Liver Neoplasms/drug therapy , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/pathology
12.
Molecules ; 27(3)2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35164370

ABSTRACT

Fibrin-based systems offer promises in drug and gene delivery as well as tissue engineering. We established earlier a fibrin-based plasma beads (PB) system as an efficient carrier of drugs and antigens. In the present work, attempts were made to further improve its therapeutic efficacy exploiting innovative ideas, including the use of plasma alginate composite matrices, proteolytic inhibitors, cross linkers, and dual entrapment in various liposomal formulations. In vitro efficacy of the different formulations was examined. Pharmacokinetics of the formulations encapsulating Amphotericin B (AmpB), an antifungal compound, were investigated in Swiss albino mice. While administration of the free AmpB led to its rapid elimination (<72 h), PB/liposome-PB systems were significantly effective in sustaining AmpB release in the circulation (>144 h) and its gradual accumulation in the vital organs, also compared to the liposomal formulations alone. Interestingly, the slow release of AmpB from PB was unusual compared to other small molecules in our earlier findings, suggesting strong interaction with plasma proteins. Molecular interaction studies of bovine serum albumin constituting approximately 60% of plasma with AmpB using isothermal titration calorimetry and in silico docking verify these interactions, explaining the slow release of AmpB entrapped in PB alone. The above findings suggest that PB/liposome-PB could be used as safe and effective delivery systems to combat fungal infections in humans.


Subject(s)
Amphotericin B/pharmacology , Antifungal Agents/pharmacology , Drug Delivery Systems , Fungi/drug effects , Liposomes/administration & dosage , Mycoses/drug therapy , Plasma/chemistry , Alginates/chemistry , Amphotericin B/chemistry , Animals , Antifungal Agents/chemistry , Female , Liposomes/chemistry , Mice , Rabbits
13.
Molecules ; 27(2)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35056658

ABSTRACT

The supply of nutrients, such as antioxidant agents, to fish cells still represents a challenge in aquaculture. In this context, we investigated solid lipid nanoparticles (SLN) composed of a combination of Gelucire® 50/13 and Precirol® ATO5 to administer a grape seed extract (GSE) mixture containing several antioxidant compounds. The combination of the two lipids for the SLN formation resulted in colloids exhibiting mean particle sizes in the range 139-283 nm and zeta potential values in the range +25.6-43.4 mV. Raman spectra and X-ray diffraction evidenced structural differences between the free GSE and GSE-loaded SLN, leading to the conclusion that GSE alters the structure of the lipid nanocarriers. From a biological viewpoint, cell lines from gilthead seabream and European sea bass were exposed to different concentrations of GSE-SLN for 24 h. In general, at appropriate concentrations, GSE-SLN increased the viability of the fish cells. Furthermore, regarding the gene expression in those cells, the expression of antioxidant genes was upregulated, whereas the expression of hsp70 and other genes related to the cytoskeleton was downregulated. Hence, an SLN formulation containing Gelucire® 50/13/Precirol® ATO5 and GSE may represent a compelling platform for improving the viability and antioxidant properties of fish cells.


Subject(s)
Antioxidants/administration & dosage , Fish Proteins/metabolism , Gene Expression Regulation/drug effects , Grape Seed Extract/administration & dosage , Liposomes/administration & dosage , Nanoparticles/administration & dosage , Polyphenols/administration & dosage , Vitis/chemistry , Animals , Antioxidants/pharmacology , Aquaculture , Fish Proteins/genetics , Fishes , Grape Seed Extract/pharmacology , Liposomes/chemistry , Nanoparticles/chemistry , Oxidative Stress , Polyphenols/pharmacology
14.
Molecules ; 27(2)2022 Jan 09.
Article in English | MEDLINE | ID: mdl-35056718

ABSTRACT

The advancements in the field of nanotechnology have provided a great platform for the development of effective antiviral vaccines. Liposome-mediated delivery of antigens has been shown to induce the antigen-specific stimulation of the humoral and cell-mediated immune responses. Here, we prepared dried, reconstituted vesicles (DRVs) from DPPC liposomes and used them as the vaccine carrier system for the Middle East respiratory syndrome coronavirus papain-like protease (DRVs-MERS-CoV PLpro). MERS-CoV PLpro emulsified in the Incomplete Freund's Adjuvant (IFA-MERS-CoV PLpro) was used as a control. Immunization of mice with DRVs-MERS-CoV PLpro did not induce any notable toxicity, as revealed by the levels of the serum alanine transaminase (ALT), aspartate transaminase (AST), blood urea nitrogen (BUN) and lactate dehydrogenase (LDH) in the blood of immunized mice. Immunization with DRVs-MERS-CoV PLpro induced greater antigen-specific antibody titer and switching of IgG1 isotyping to IgG2a as compared to immunization with IFA-MERS-CoV PLpro. Moreover, splenocytes from mice immunized with DRVs-MERS-CoV PLpro exhibited greater proliferation in response to antigen stimulation. Moreover, splenocytes from DRVs-MERS-CoV PLpro-immunized mice secreted significantly higher IFN-γ as compared to splenocytes from IFA-MERS-CoV PLpro mice. In summary, DRVs-MERS-CoV PLpro may prove to be an effective prophylactic formulation to prevent MERS-CoV infection.


Subject(s)
Coronavirus Papain-Like Proteases/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/immunology , Animals , Cell Proliferation , Coronavirus Infections/prevention & control , Female , Immunity, Cellular , Immunity, Humoral , Immunization/methods , Immunoglobulin G/blood , Interferon-gamma/metabolism , Liposomes/administration & dosage , Liposomes/chemistry , Liposomes/immunology , Liposomes/toxicity , Lymphocytes/metabolism , Mice , Viral Vaccines/chemistry , Viral Vaccines/toxicity
15.
Nutrients ; 14(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35011085

ABSTRACT

A sea fennel (Crithmum maritimum) aqueous extract was prepared and loaded into soybean phosphatidylcholine liposomes. Both the free extract (FE), and the empty (L) and loaded (L-FE) liposomes were shown to be non-cytotoxic to THP-1 and Caco-2 cells. The anti-inflammatory effect was tested on THP-1 cells differentiated into macrophages. FE showed anti-inflammatory activity, revealed by the induced secretion of IL-10 cytokines in macrophages that were subsequently stimulated with LPS. Also, a decrease in TNF-α production by L was observed, evidencing that liposomes reduced the pro-inflammatory mediators' secretion. The liposomes (L) showed protective anti-inflammatory activity and also were able to downregulate the inflammation. Furthermore, L-FE were also found to downregulate the inflammation response, as they were able to decrease TNF-α secretion in macrophages previously exposed to LPS. The simulated in vitro gastrointestinal digestion (GID) of FE diminished the chlorogenic acid content (the main polyphenolic compound of the extract) by 40%, while in L-FE, the amount of this phenolic compound increased with respect to the undigested liposomes. The amount of bioaccessible chlorogenic, however, was similar for FE and L-FE. The percentage of chlorogenic acid absorbed through a Caco-2 cell monolayer after 3 h of incubation, was significantly similar for the extract and the liposomes (~1.5%), without finding significant differences once the extract and liposomes were digested.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Apiaceae/chemistry , Intestinal Absorption , Liposomes/administration & dosage , Plant Extracts/administration & dosage , Plant Extracts/pharmacokinetics , Biological Availability , Caco-2 Cells , Chlorogenic Acid/administration & dosage , Chlorogenic Acid/analysis , Chlorogenic Acid/pharmacokinetics , Humans , Phosphatidylcholines , Salt-Tolerant Plants/chemistry , Glycine max/chemistry , THP-1 Cells
16.
Clin Sci (Lond) ; 136(1): 81-101, 2022 01 14.
Article in English | MEDLINE | ID: mdl-34904644

ABSTRACT

RATIONALE: The FDA-approved Dimethyl Fumarate (DMF) as an oral drug for Multiple Sclerosis (MS) treatment based on its immunomodulatory activities. However, it also caused severe adverse effects mainly related to the gastrointestinal system. OBJECTIVE: Investigated the potential effects of solid lipid nanoparticles (SLNs) containing DMF, administered by inhalation on the clinical signs, central nervous system (CNS) inflammatory response, and lung function changes in mice with experimental autoimmune encephalomyelitis (EAE). MATERIALS AND METHODS: EAE was induced using MOG35-55 peptide in female C57BL/6J mice and the mice were treated via inhalation with DMF-encapsulated SLN (CTRL/SLN/DMF and EAE/SLN/DMF), empty SLN (CTRL/SLN and EAE/SLN), or saline solution (CTRL/saline and EAE/saline), every 72 h during 21 days. RESULTS: After 21 days post-induction, EAE mice treated with DMF-loaded SLN, when compared with EAE/saline and EAE/SLN, showed decreased clinical score and weight loss, reduction in brain and spinal cord injury and inflammation, also related to the increased influx of Foxp3+ cells into the spinal cord and lung tissues. Moreover, our data revealed that EAE mice showed signs of respiratory disease, marked by increased vascular permeability, leukocyte influx, production of TNF-α and IL-17, perivascular and peribronchial inflammation, with pulmonary mechanical dysfunction associated with loss of respiratory volumes and elasticity, which DMF-encapsulated reverted in SLN nebulization. CONCLUSION: Our study suggests that inhalation of DMF-encapsulated SLN is an effective therapeutic protocol that reduces not only the CNS inflammatory process and disability progression, characteristic of EAE disease, but also protects mice from lung inflammation and pulmonary dysfunction.


Subject(s)
Dimethyl Fumarate/administration & dosage , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Liposomes/administration & dosage , Nanoparticles/administration & dosage , Pneumonia/drug therapy , Administration, Inhalation , Animals , Disease Models, Animal , Female , Immunosuppressive Agents/administration & dosage , Mice, Inbred C57BL , Multiple Sclerosis
17.
Bioengineered ; 12(2): 12383-12393, 2021 12.
Article in English | MEDLINE | ID: mdl-34895063

ABSTRACT

The potential of antibodies, especially for the bispecific antibodies, are limited by high cost and complex technical process of development and manufacturing. A cost-effective and rapid platform for the endogenous antibodies expression via using the in vitro transcription (IVT) technique to produce nucleoside-modified mRNA and then encapsulated into lipid nanoparticle (LNP) may turn the body to a manufactory. Coinhibitory pathway of programmed death ligand 1 (PD-L1) and programmed cell death protein 1 receptor (PD-1) could suppress the T-cell mediated immunity. We hypothesized that the coblocking of PD-L1 and PD-1 via bispecific antibodies may achieve more potential antitumor efficacies compare with the monospecific ones. Here, we described the application of mRNA to encode a bispecific antibody with ablated Fc immune effector functions that targets both human PD-L1 and PD-1, termed XA-1, which was further assessed the in vitro functional activities and in vivo antitumor efficacies. The in vitro mRNA-encoded XA-1 held comparable abilities to fully block the PD-1/PD-L1 pathway as well as to enhance functional T cell activation compared to XA-1 protein from CHO cell source. Pharmacokinetic tests showed enhanced area under curve (AUC) of mRNA-encoded XA-1 compared with XA-1 at same dose. Chronic treatment of LNP-encapsulated XA-1 mRNA in the mouse tumor models which were reconstituted with human immune cells effectively induced promising antitumor efficacies compared to XA-1 protein. Current results collectively demonstrated that LNP-encapsulated mRNA represents the viable delivery platform for treating cancer and hold potential to be applied in the treatment of many diseases.Abbreviations: IVT: in vitro transcription; LNP: lipid nanoparticle; hPD-1: human PD-1; hPD-L1: human PD-L1; ITS-G: Insulin-Transferrin-Selenium; Pen/Strep: penicillin-streptomycin; FBS: fetal bovine serum; TGI: tumor growth inhibition; IE1: cytomegalovirus immediate early 1; SP: signal peptide; hIgLC: human immunoglobulin kappa light chain; hIgHC: human IgG1 heavy chain; AUC: area under the curve; Cl: serum clearance; Vss: steady-state distributed volume; MLR: mixed lymphocyte reaction.


Subject(s)
Antibodies, Bispecific/administration & dosage , Intestinal Neoplasms/prevention & control , Liposomes/administration & dosage , Nanoparticles/administration & dosage , RNA, Messenger/administration & dosage , Animals , B7-H1 Antigen/metabolism , CHO Cells , Cell Line , Cell Line, Tumor , Cricetulus , Disease Models, Animal , Female , Humans , Intestinal Neoplasms/metabolism , Mice , Mice, Inbred C57BL
18.
Immunity ; 54(12): 2877-2892.e7, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34852217

ABSTRACT

Adjuvants are critical for improving the quality and magnitude of adaptive immune responses to vaccination. Lipid nanoparticle (LNP)-encapsulated nucleoside-modified mRNA vaccines have shown great efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the mechanism of action of this vaccine platform is not well-characterized. Using influenza virus and SARS-CoV-2 mRNA and protein subunit vaccines, we demonstrated that our LNP formulation has intrinsic adjuvant activity that promotes induction of strong T follicular helper cell, germinal center B cell, long-lived plasma cell, and memory B cell responses that are associated with durable and protective antibodies in mice. Comparative experiments demonstrated that this LNP formulation outperformed a widely used MF59-like adjuvant, AddaVax. The adjuvant activity of the LNP relies on the ionizable lipid component and on IL-6 cytokine induction but not on MyD88- or MAVS-dependent sensing of LNPs. Our study identified LNPs as a versatile adjuvant that enhances the efficacy of traditional and next-generation vaccine platforms.


Subject(s)
B-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Germinal Center/immunology , SARS-CoV-2/physiology , T-Lymphocytes, Helper-Inducer/immunology , mRNA Vaccines/immunology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adjuvants, Immunologic , Animals , HEK293 Cells , Humans , Immunity, Humoral , Interleukin-6/genetics , Interleukin-6/metabolism , Liposomes/administration & dosage , Mice , Mice, Inbred BALB C , Nanoparticles/administration & dosage , Protein Subunits/genetics , mRNA Vaccines/genetics
19.
Sci Rep ; 11(1): 23525, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34876613

ABSTRACT

As a powerful antioxidant compound, crocin can partially protect against renal ischemia/reperfusion (I/R) injuries. The encapsulation of components in niosomes (non-ionic surfactant-based vesicle) as nano-sized carrier systems has been proposed as they improve the solubility, stability, and bioavailability of drugs. Herein, the encapsulation of crocin in nano-niosomes and the effects of crocin-loaded nano-niosomes on renal ischemia/reperfusion-induced damages were evaluated. Nano-niosomes containing crocin were formulated by a modified heating method and were characterized for their physicochemical characteristics. Ischemia was induced by clamping the renal artery for 30 min followed by 1 or 24 h of reperfusion. Rats received an intra-arterial injection of nano-niosome-loaded crocin at the outset of reperfusion. Blood samples were taken after reperfusion to measure urea, creatinine (Cr), malondialdehyde (MDA), and superoxide dismutase (SOD) activity. The right kidney was removed for histological examination. The results showed that crocin-contain nano-niosomes have appropriate size and morphology, acceptable encapsulation efficiency, and a proper release pattern of crocin. I/R enhanced creatinine (Cr), urea, and malondialdehyde (MDA) serum levels and reduced SOD activity and histological damages in the renal tissue.


Subject(s)
Carotenoids/pharmacology , Kidney Diseases/drug therapy , Kidney/drug effects , Liposomes/administration & dosage , Nanoparticles/administration & dosage , Reperfusion Injury/drug therapy , Animals , Antioxidants/metabolism , Blood Urea Nitrogen , Creatinine/metabolism , Glutathione Peroxidase/metabolism , Kidney/metabolism , Kidney Diseases/metabolism , Male , Malondialdehyde/metabolism , Oxidative Stress/drug effects , Protective Agents/pharmacology , Rats , Rats, Wistar , Renal Artery/drug effects , Renal Artery/metabolism , Reperfusion Injury/metabolism , Superoxide Dismutase/metabolism
20.
Bull Exp Biol Med ; 172(2): 195-201, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34855087

ABSTRACT

We analyzed advantages of the liposomal form of Xymedon (50 and 100 mg/kg) over free Xymedon (in the corresponding doses) in leukopoiesis restoration in rats with Walker-256 carcinoma treated with liposomal combination of doxorubicin (4 mg/kg) and cyclophosphamide (45 mg/kg) (single intravenous injection on day 11 after transplantation of tumor cells). Liposomal and free Xymedon were injected intravenously over 5 days starting from day 11 of the experiment. Changes in leukopoiesis in peripheral blood and myelograms were assessed on days 3 and 7 after chemotherapy. Liposomal Xymedon in both doses (unlike its free form) 2-fold increased the number of lymphocytes on day 3 after chemotherapy in comparison with the level observed after administration of liposomal cytostatics alone. Liposomal Xymedon in a dose of 50 mg/kg (but not 100 mg/kg) promoted the maintenance of monocyte count at the level of intact control on days 3 and 7 after chemotherapy. Liposomal Xymedon in a dose of 50 mg/kg and free Xymedon in a dose of 100 mg/kg equally stimulated the increase in myelocytes content in the bone marrow to the level of intact control on day 3 after chemotherapy, thus promoting restoration of granulocytopoiesis.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Leukopoiesis/drug effects , Pyrimidines/administration & dosage , Animals , Carcinoma 256, Walker/drug therapy , Carcinoma 256, Walker/pathology , Cyclophosphamide/administration & dosage , Dosage Forms , Doxorubicin/administration & dosage , Female , Leukopoiesis/physiology , Liposomes/administration & dosage , Myeloablative Agonists/therapeutic use , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...