Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Article in English | MEDLINE | ID: mdl-34341107

ABSTRACT

The majority of viruses infecting hyperthermophilic archaea display unique virion architectures and are evolutionarily unrelated to viruses of bacteria and eukaryotes. The lack of relationships to other known viruses suggests that the mechanisms of virus-host interaction in Archaea are also likely to be distinct. To gain insights into archaeal virus-host interactions, we studied the life cycle of the enveloped, ∼2-µm-long Sulfolobus islandicus filamentous virus (SIFV), a member of the family Lipothrixviridae infecting a hyperthermophilic and acidophilic archaeon Saccharolobus islandicus LAL14/1. Using dual-axis electron tomography and convolutional neural network analysis, we characterize the life cycle of SIFV and show that the virions, which are nearly two times longer than the host cell diameter, are assembled in the cell cytoplasm, forming twisted virion bundles organized on a nonperfect hexagonal lattice. Remarkably, our results indicate that envelopment of the helical nucleocapsids takes place inside the cell rather than by budding as in the case of most other known enveloped viruses. The mature virions are released from the cell through large (up to 220 nm in diameter), six-sided pyramidal portals, which are built from multiple copies of a single 89-amino-acid-long viral protein gp43. The overexpression of this protein in Escherichia coli leads to pyramid formation in the bacterial membrane. Collectively, our results provide insights into the assembly and release of enveloped filamentous viruses and illuminate the evolution of virus-host interactions in Archaea.


Subject(s)
Host-Pathogen Interactions/physiology , Lipothrixviridae/physiology , Lipothrixviridae/pathogenicity , Sulfolobus/virology , Cytoplasm/virology , Electron Microscope Tomography , Escherichia coli/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Virion/metabolism , Virion/pathogenicity
2.
Environ Microbiol ; 21(6): 2002-2014, 2019 06.
Article in English | MEDLINE | ID: mdl-30451355

ABSTRACT

Viruses infecting hyperthermophilic archaea of the phylum Crenarchaeota display enormous morphological and genetic diversity, and are classified into 12 families. Eight of these families include only one or two species, indicating sparse sampling of the crenarchaeal virus diversity. In an attempt to expand the crenarchaeal virome, we explored virus diversity in the acidic, hot spring Umi Jigoku in Beppu, Japan. Environmental samples were used to establish enrichment cultures under conditions favouring virus replication. The host diversity in the enrichment cultures was restricted to members of the order Sulfolobales. Metagenomic sequencing of the viral communities yielded seven complete or near-complete double-stranded DNA virus genomes. Six of these genomes could be attributed to polyhedral and filamentous viruses that were observed by electron microscopy in the enrichment cultures. Two icosahedral viruses represented species in the family Portogloboviridae. Among the filamentous viruses, two were identified as new species in the families Rudiviridae and Lipothrixviridae, whereas two other formed a group seemingly distinct from the known virus genera. No particle morphotype could be unequivocally assigned to the seventh viral genome, which apparently represents a new virus type. Our results suggest that filamentous viruses are globally distributed and are prevalent virus types in extreme geothermal environments.


Subject(s)
Archaea/virology , Archaeal Viruses/isolation & purification , Bacteriophages/isolation & purification , Hot Springs/virology , Rudiviridae/genetics , Rudiviridae/isolation & purification , Archaea/genetics , Archaea/isolation & purification , Archaeal Viruses/classification , Archaeal Viruses/genetics , Archaeal Viruses/physiology , Bacteriophages/classification , Bacteriophages/genetics , Bacteriophages/physiology , Genome, Viral , Hot Springs/chemistry , Japan , Lipothrixviridae/classification , Lipothrixviridae/genetics , Lipothrixviridae/isolation & purification , Lipothrixviridae/physiology , Metagenome , Phylogeny , Rudiviridae/classification , Virus Replication
3.
Mol Microbiol ; 92(6): 1313-25, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24779456

ABSTRACT

The exceptional genomic content and genome organization of the Acidianus filamentous virus 1 (AFV1) that infects the hyperthermophilic archaeon Acidianus hospitalis suggest that this virus might exploit an unusual mechanism of genome replication. An analysis of replicative intermediates of the viral genome by two-dimensional (2D) agarose gel electrophoresis revealed that viral genome replication starts by the formation of a D-loop and proceeds via strand displacement replication. Characterization of replicative intermediates using dark-field electron microscopy, in combination with the 2D agarose gel electrophoresis data, suggests that recombination plays a key role in the termination of AFV1 genome replication through the formation of terminal loops. A terminal protein was found to be attached to the ends of the viral genome. The results allow us to postulate a model of genome replication that relies on recombination events for initiation and termination.


Subject(s)
Archaeal Viruses/physiology , Genome, Viral , Lipothrixviridae/physiology , Virus Replication , Archaeal Viruses/genetics , Electrophoresis, Agar Gel , Electrophoresis, Gel, Two-Dimensional , Microscopy, Electron
4.
Mol Microbiol ; 71(1): 23-34, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19007417

ABSTRACT

At present very little is known about interactions between extrachromosomal genetic elements in Archaea. Here we describe an Acidianus strain which carries naturally a novel 28 kb conjugative plasmid-like element, pAH1, and also serves as a laboratory host for lipothrixvirus AFV1. In an attempt to establish a system for studying plasmid-virus interactions we characterized the genome of pAH1 which closely resembles those of the Sulfolobus conjugative plasmids pARN3 and pARN4. pAH1 integrates site specifically into, and excises from, the host chromosome indicating a dynamic interaction with the latter. Although nucleotide sequence comparisons revealed extensive intergenomic exchange during the evolution of archaeal conjugative plasmids, pAH1 was shown to be stably maintained suggesting that the host system is suitable for studying plasmid-virus interactions. AFV1 infection and propagation leads to a loss of the circular form of pAH1 and this effect correlates positively with the increase in the intracellular quantity of AFV1 DNA. We infer that the virus inhibits plasmid replication since no pAH1 degradation was observed. This mechanism of archaeal viral inhibition of plasmid propagation is not observed in bacteria where relevant bacteriophages either are dependent on a conjugative plasmid for successful infection or are excluded by a resident plasmid.


Subject(s)
Acidianus/genetics , Acidianus/virology , Genome, Plastid , Lipothrixviridae/physiology , Plasmids/genetics , Conjugation, Genetic , DNA, Archaeal/genetics , Host-Pathogen Interactions , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...