Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.527
Filter
1.
J Phys Chem B ; 128(20): 5127-5134, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38736379

ABSTRACT

Lyotropic liquid crystals (LLCs) have attracted considerably growing interest in drug delivery applications over the last years. The structure of LLC matrices is complementary to cell membranes and provides an efficient, controlled, and selective release of drugs. In this work, a complex of experimental methods was used to characterize binary LLCs Pluronic P123/DMSO and triple LLC systems Pluronic P123/DMSO/Ibuprofen, which are interesting as transdermal drug delivery systems. Liquid crystalline, thermal, and rheological properties of LLCs were studied. Concentration and temperature areas of the lyomesophase existence were found, and phase transition enthalpies were evaluated. Intermolecular interactions among the components were studied by infrared (IR) spectroscopy. In vitro studies of Ibuprofen (Ibu) release from various LLCs allow differentiation of its release depending on the polymer content. Atomic force microscopy and contact angle methods were used to characterize the surface morphology of the hydrophobic membrane, which was used as a stratum corneum model, and also evaluate the adhesion work of the LLCs. A complex analysis of the results provided by these experimental methods allowed revealing correlations between the phase behavior and rheological characteristics of the LLCs and release kinetics of ibuprofen. The proposed biocompatible systems have considerable potential for a transdermal delivery of bioactive substances.


Subject(s)
Ibuprofen , Liquid Crystals , Poloxalene , Liquid Crystals/chemistry , Ibuprofen/chemistry , Ibuprofen/administration & dosage , Poloxalene/chemistry , Rheology , Administration, Topical , Drug Liberation
2.
ACS Appl Mater Interfaces ; 16(19): 25404-25414, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38692284

ABSTRACT

Liquid crystal elastomers (LCEs), as a classical two-way shape-memory material, are good candidates for developing artificial muscles that mimic the contraction, expansion, or rotational behavior of natural muscles. However, biomimicry is currently focused more on the actuation functions of natural muscles dominated by muscle fibers, whereas the tactile sensing functions that are dominated by neuronal receptors and synapses have not been well captured. Very few studies have reported the sensing concept for LCEs, but the signals were still donated by macroscopic actuation, that is, variations in angle or length. Herein, we develop a conductive porous LCE (CPLCE) using a solvent (dimethyl sulfoxide (DMSO))-templated photo-cross-linking strategy, followed by carbon nanotube (CNT) incorporation. The CPLCE has excellent reversible contraction/elongation behavior in a manner similar to the actuation functions of skeletal muscles. Moreover, the CPLCE shows excellent pressure-sensing performance by providing real-time electrical signals and is capable of microtouch sensing, which is very similar to natural tactile sensing. Furthermore, macroscopic actuation and tactile sensation can be integrated into a single system. Proof-of-concept studies reveal that the CPLCE-based artificial muscle is sensitive to external touch while maintaining its excellent actuation performance. The CPLCE with tactile sensation beyond reversible actuation is expected to benefit the development of versatile artificial muscles and intelligent robots.


Subject(s)
Elastomers , Liquid Crystals , Nanotubes, Carbon , Liquid Crystals/chemistry , Elastomers/chemistry , Nanotubes, Carbon/chemistry , Porosity , Solvents/chemistry , Touch/physiology , Artificial Organs , Muscle, Skeletal/physiology , Muscle, Skeletal/chemistry , Humans
3.
Mol Pharm ; 21(6): 3027-3039, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38755753

ABSTRACT

This study presents a novel approach by utilizing poly(vinylpyrrolidone)s (PVPs) with various topologies as potential matrices for the liquid crystalline (LC) active pharmaceutical ingredient itraconazole (ITZ). We examined amorphous solid dispersions (ASDs) composed of ITZ and (i) self-synthesized linear PVP, (ii) self-synthesized star-shaped PVP, and (iii) commercial linear PVP K30. Differential scanning calorimetry, X-ray diffraction, and broad-band dielectric spectroscopy were employed to get a comprehensive insight into the thermal and structural properties, as well as global and local molecular dynamics of ITZ-PVP systems. The primary objective was to assess the influence of PVPs' topology and the composition of ASD on the LC ordering, changes in the temperature of transitions between mesophases, the rate of their restoration, and finally the solubility of ITZ in the prepared ASDs. Our research clearly showed that regardless of the PVP type, both LC transitions, from smectic (Sm) to nematic (N) and from N to isotropic (I) phases, are effectively suppressed. Moreover, a significant difference in the miscibility of different PVPs with the investigated API was found. This phenomenon also affected the solubility of API, which was the greatest, up to 100 µg/mL in the case of starPVP 85:15 w/w mixture in comparison to neat crystalline API (5 µg/mL). Obtained data emphasize the crucial role of the polymer's topology in designing new pharmaceutical formulations.


Subject(s)
Calorimetry, Differential Scanning , Itraconazole , Liquid Crystals , Povidone , Solubility , X-Ray Diffraction , Itraconazole/chemistry , Liquid Crystals/chemistry , Povidone/chemistry , Calorimetry, Differential Scanning/methods , X-Ray Diffraction/methods , Polymers/chemistry , Antifungal Agents/chemistry , Drug Compounding/methods , Crystallization , Chemistry, Pharmaceutical/methods
4.
Sci Total Environ ; 932: 172987, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38734084

ABSTRACT

Liquid crystal monomers (LCMs) are emerging contaminants characterized by their persistence, bioaccumulation potential, and toxicity. They have been observed in several environmental matrices associated with electronic waste (e-waste) dismantling activities, particularly in China. However, there is currently no information on the pollution caused by LCMs in other developing countries, such as Pakistan. In this study, we collected soil samples (n = 59) from e-waste dismantling areas with different functions in Pakistan for quantification analysis of 52 target LCMs. Thirty out of 52 LCMs were detected in the soil samples, with the concentrations ranging from 2.14 to 191 ng/g (median: 16.3 ng/g), suggesting widespread contamination by these emerging contaminants. Fluorinated LCMs (median: 10.4 ng/g, range: 1.27-116 ng/g) were frequently detected and their levels were significantly (P < 0.05) higher than those of non-fluorinated LCMs (median: 6.11 ng/g, range: not detected (ND)-76.7 ng/g). The concentrations and profiles of the observed LCMs in the soil samples from the four functional areas varied. The informal dismantling of e-waste poses a potential exposure risk to adults and infants, with median estimated daily intake (EDI, ng/kg bw/day) values of 0.0420 and 0.1013, respectively. Calculation of the hazard quotient (HQ) suggested that some LCMs (e.g., ETFMBC (1.374) and EDFPB (1.257)) may pose potential health risks to occupational workers and their families. Considering the widespread contamination and risks associated with LCMs, we strongly recommend enhancing e-waste management and regulation in Pakistan.


Subject(s)
Electronic Waste , Environmental Monitoring , Liquid Crystals , Soil Pollutants , Pakistan , Electronic Waste/analysis , Environmental Monitoring/methods , Soil Pollutants/analysis , Humans , Environmental Exposure/statistics & numerical data , Risk Assessment
5.
Acta Pharm ; 74(2): 301-313, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38815204

ABSTRACT

The principal function of skin is to form an effective barrier between the human body and its environment. Impaired barrier function represents a precondition for the development of skin diseases such as atopic dermatitis (AD), which is the most common inflammatory skin disease characterized by skin barrier dysfunction. AD significantly affects patients' quality of life, thus, there is a growing interest in the development of novel delivery systems that would improve therapeutic outcomes. Herein, eight novel lyotropic liquid crystals (LCCs) were investigated for the first time in a double-blind, interventional, before-after, single-group trial with healthy adult subjects and a twice-daily application regimen. LCCs consisted of constituents with skin regenerative properties and exhibited lamellar micro-structure, especially suitable for dermal application. The short- and long-term effects of LCCs on TEWL, SC hydration, erythema index, melanin index, and tolerability were determined and compared with baseline. LCCs with the highest oil content and lecithin/Tween 80 mixture stood out by providing a remarkable 2-fold reduction in TEWL values and showing the most distinctive decrease in skin erythema levels in both the short- and long-term exposure. Therefore, they exhibit great potential for clinical use as novel delivery systems for AD treatment, capable of repairing skin barrier function.


Subject(s)
Administration, Cutaneous , Dermatitis, Atopic , Linseed Oil , Liquid Crystals , Skin , Humans , Liquid Crystals/chemistry , Double-Blind Method , Adult , Male , Female , Skin/drug effects , Skin/metabolism , Dermatitis, Atopic/drug therapy , Linseed Oil/chemistry , Linseed Oil/pharmacology , Young Adult , Erythema/drug therapy , Cannabis/chemistry , Middle Aged , Drug Delivery Systems/methods , Plant Extracts
6.
Int J Mol Sci ; 25(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38791556

ABSTRACT

Lyotropic liquid crystals represent an important class of anisotropic colloid systems. Their integration with optically active nanoparticles can provide us with responsive luminescent media that offer new fundamental and applied solutions for biomedicine. This paper analyzes the molecular-level behavior of such composites represented by tetraethylene glycol monododecyl ether and nanoscale carbon dots in microfluidic channels. Microfluidic confinement allows for simultaneously applying multiple factors, such as flow dynamics, wall effects, and temperature, for the precise control of the molecular arrangement in such composites and their resulting optical properties. The microfluidic behavior of composites was characterized by a set of analytical and modeling tools such as polarized and fluorescent microscopy, dynamic light scattering, and fluorescent spectroscopy, as well as image processing in Matlab. The composites were shown to form tunable anisotropic intermolecular structures in microchannels with several levels of molecular ordering. A predominant lamellar structure of the composites was found to undergo additional ordering with respect to the microchannel axis and walls. Such an alignment was controlled by applying shear and temperature factors to the microfluidic environment. The revealed molecular behavior of the composite may contribute to the synthesis of hybrid organized media capable of polarized luminescence for on-chip diagnostics and biomimetics.


Subject(s)
Carbon , Liquid Crystals , Microfluidics , Liquid Crystals/chemistry , Carbon/chemistry , Microfluidics/methods , Quantum Dots/chemistry , Temperature
7.
Anal Chem ; 96(22): 9159-9166, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38726669

ABSTRACT

Flexible photonics offers the possibility of realizing wearable sensors by bridging the advantages of flexible materials and photonic sensing elements. Recently, optical resonators have emerged as a tool to improve their oversensitivity by integrating with flexible photonic sensors. However, direct monitoring of multiple psychological information on human skin remains challenging due to the subtle biological signals and complex tissue interface. To tackle the current challenges, here, we developed a functional thin film laser formed by encapsulating liquid crystal droplet lasers in a flexible hydrogel for monitoring metabolites in human sweat (lactate, glucose, and urea). The three-dimensional cross-linked hydrophilic polymer serves as the adhesive layer to allow small molecules to penetrate from human tissue to generate strong light--matter interactions on the interface of whispering gallery modes resonators. Both the hydrogel and cholesteric liquid crystal microdroplets were modified specifically to achieve high sensitivity and selectivity. As a proof of concept, wavelength-multiplexed sensing and a prototype were demonstrated on human skin to detect human metabolites from perspiration. These results present a significant advance in the fabrication and potential guidance for wearable and functional microlasers in healthcare.


Subject(s)
Hydrogels , Lasers , Skin , Sweat , Wearable Electronic Devices , Humans , Skin/chemistry , Skin/metabolism , Hydrogels/chemistry , Sweat/chemistry , Sweat/metabolism , Glucose/analysis , Glucose/metabolism , Urea/chemistry , Urea/analysis , Lactic Acid/analysis , Lactic Acid/chemistry , Liquid Crystals/chemistry , Methylgalactosides
8.
Chemosphere ; 358: 142210, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704041

ABSTRACT

Liquid crystal monomers (LCMs) are of emerging concern due to their ubiquitous presence in indoor and outdoor environments and their potential negative impacts on human health and ecosystems. Suspect screening approaches have been developed to monitor thousands of LCMs that could enter the environment, but an updated suspect list of LCMs is difficult to maintain given the rapid development of material innovations. To facilitate suspect screening for LCMs, in-silico mass fragmentation model and quantitative structure-activity relationship (QSPR) models were applied to predict electron ionization (EI) mass spectra of LCMs. The in-silico model showed limited predictive power for EI mass spectra, while the QSPR models trained with 437 published mass spectra of LCMs achieved an acceptable absolute error of 12 percentage points in predicting the relative intensity of the molecular ion, but failed to predict the mass-to-charge ratio of the base peak. A total of 41 characteristic structures were identified from an updated suspect list of 1606 LCMs. Multi-phenyl groups form the rigid cores of 85% of LCMs and produce 154 characteristic peaks in EI mass spectra. Monitoring the characteristic structures and fragments of LCMs may help identify new LCMs with the same rigid cores as those in the suspect list.


Subject(s)
Liquid Crystals , Quantitative Structure-Activity Relationship , Liquid Crystals/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Computer Simulation
9.
J Colloid Interface Sci ; 669: 537-551, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38729002

ABSTRACT

Infectious diseases, particularly those associated with biofilms, are challenging to treat due to an increased tolerance to commonly used antibiotics. This underscores the urgent need for innovative antimicrobial strategies. Here, we present an alternative simple-by-design approach focusing on the development of biocompatible and antibiotic-free nanocarriers from docosahexaenoic acid (DHA) that has the potential to combat microbial infections and phosphatidylglycerol (DOPG), which is attractive for use as a biocompatible prominent amphiphilic component of Gram-positive bacterial cell membranes. We assessed the anti-bacterial and anti-biofilm activities of these nanoformulations (hexosomes and vesicles) against S. aureus and S. epidermidis, which are the most common causes of infections on catheters and medical devices by different methods (including resazurin assay, time-kill assay, and confocal laser scanning microscopy on an in vitro catheter biofilm model). In a DHA-concentration-dependent manner, these nano-self-assemblies demonstrated strong anti-bacterial and anti-biofilm activities, particularly against S. aureus. A five-fold reduction of the planktonic and a four-fold reduction of biofilm populations of S. aureus were observed after treatment with hexosomes. The nanoparticles had a bacteriostatic effect against S. epidermidis planktonic cells but no anti-biofilm activity was detected. We discuss the findings in terms of nanoparticle-bacterial cell interactions, plausible alterations in the phospholipid membrane composition, and potential penetration of DHA into these membranes, leading to changes in their structural and biophysical properties. The implications for the future development of biocompatible nanocarriers for the delivery of DHA alone or in combination with other anti-bacterial agents are discussed, as novel treatment strategies of Gram-positive infections, including biofilm-associated infections.


Subject(s)
Anti-Bacterial Agents , Biofilms , Docosahexaenoic Acids , Microbial Sensitivity Tests , Nanoparticles , Phosphatidylglycerols , Staphylococcus aureus , Staphylococcus epidermidis , Biofilms/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Phosphatidylglycerols/chemistry , Phosphatidylglycerols/pharmacology , Staphylococcus aureus/drug effects , Nanoparticles/chemistry , Docosahexaenoic Acids/chemistry , Docosahexaenoic Acids/pharmacology , Staphylococcus epidermidis/drug effects , Liquid Crystals/chemistry , Particle Size
10.
Soft Matter ; 20(15): 3243-3247, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38572565

ABSTRACT

In this study, by fabricating DNA doped with tetraphenylethene-containing ammonium surfactant, the resulting solvent-free DNA ionic complex could undergo a humidity-induced phase change that could be well tracked by the fluorescence signal of the surfactant. Taking advantage of the humidity-induced change in fluorescence, the reported ionic DNA complex could accurately indicate the humidity in real time.


Subject(s)
Liquid Crystals , Liquid Crystals/chemistry , Humidity , Biocompatible Materials , DNA/chemistry , Surface-Active Agents/chemistry
11.
Environ Sci Pollut Res Int ; 31(20): 29859-29869, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38592626

ABSTRACT

Liquid crystal monomers (LCMs) are widely used in electronic devices and emerging as an environmental pollutant, while their occurrence in indoor environments is still less studied. In this study, 32 out of 37 target LCMs were detected in indoor residential dust samples (n = 112) from Beijing, China. Concentrations of Σ32LCMs ranged from 17.8 to 197 ng/g, with a median value of 54.7 ng/g. Fluorinated biphenyls and analogs (FBAs) and cyanobiphenyls and analogs (CBAs), with median concentrations of 22.8 and 15.9 ng/g, respectively, were the main kinds of LCMs. Although 32 LCMs can be detected, four monomers with the highest contamination levels contributed to almost 70% of the total LCMs. Spearman correlation analysis found significant correlations among some monomers, which indicated that they might share similar sources in the residential environment. Estimated daily intakes (EDIs) of LCMs via indoor dust for Beijing residents were calculated, and the results showed that dust ingestion and dermal contact were both main intake pathways to LCMs, and younger people may face higher exposure to LCMs. A comparison to the results of China's total diet study showed that EDIs of LCMs via food consumption might be higher than that via dust intake, while health risks caused by exposure of LCMs for the general population, both through food and dust, were insignificant at present.


Subject(s)
Air Pollution, Indoor , Dust , Environmental Monitoring , Liquid Crystals , Dust/analysis , Beijing , Air Pollution, Indoor/analysis , Humans , Environmental Monitoring/methods , Environmental Exposure , China
12.
Sci Total Environ ; 928: 172459, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38615780

ABSTRACT

Liquid crystal monomers (LCMs) comprise a class of organic pollutants that have garnered considerable attention because of their dioxin-like toxicity (i.e., modulation of genes) and presence in various environments. However, limited information about the identities, occurrence, and distribution of LCMs has highlighted an urgent need for a high-throughput and sensitive analytical method. In this study, we developed and validated a rapid, simple, sensitive method that involves minimal solvent consumption. The method was applied for the simultaneous detection and identification of 78 LCMs in atmospheric total suspended particulate samples (dae < 100 µm) using gas chromatography coupled with triple quadrupole mass spectrometry. The results showed high degrees of linearity with correlation coefficients >0.995 in the concentration range of 5.0-500 ng/mL. The instrumental detection limits ranged from 0.7 to 5.3 pg, and the method detection limits ranged from 0.1 to 0.9 pg/m3. The accuracy of the method was between 70 % and 130 % for most analytes, and the relative standard deviations of six replicates were <15 % at three levels of spiking (10, 50, and 200 ng/mL). The developed analytical method was applied to analyze real air particulate samples from Beijing, China. Overall, 45 LCMs ranged from 65.5 to 145.7 pg/m3, with a mean concentration of 92.5 pg/m3. Among them, (trans,trans)-4-propyl-4'-ethenyl-1,1'-bicyclohexane (PVB) was the most abundant, with an average concentration of 33.6 pg/m3. The total estimated daily intakes of LCMs for adults and children were 15.6 and 46.6 pg/kg bw/day, respectively. Accordingly, the method described herein is suitable for quantifying LCMs in atmospheric particulate samples. This study will be valuable for investigating LCM environmental occurrence, behaviors, and risk assessments.


Subject(s)
Air Pollutants , Environmental Monitoring , Gas Chromatography-Mass Spectrometry , Liquid Crystals , Air Pollutants/analysis , Environmental Monitoring/methods , Gas Chromatography-Mass Spectrometry/methods , Beijing , Particulate Matter/analysis
13.
Lab Chip ; 24(10): 2774-2790, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38682609

ABSTRACT

The fabrication of microfluidic devices has progressed from cleanroom manufacturing to replica molding in polymers, and more recently to direct manufacturing by subtractive (e.g., laser machining) and additive (e.g., 3D printing) techniques, notably digital light processing (DLP) photopolymerization. However, many methods require technical expertise and DLP 3D printers remain expensive at a cost ∼15-30 K USD with ∼8 M pixels that are 25-40 µm in size. Here, we introduce (i) the use of low-cost (∼150-600 USD) liquid crystal display (LCD) photopolymerization 3D printing with ∼8-58 M pixels that are 18-35 µm in size for direct microfluidic device fabrication, and (ii) a poly(ethylene glycol) diacrylate-based ink developed for LCD 3D printing (PLInk). We optimized PLInk for high resolution, fast 3D printing and biocompatibility while considering the illumination inhomogeneity and low power density of LCD 3D printers. We made lateral features as small as 75 µm, 22 µm-thick embedded membranes, and circular channels with a 110 µm radius. We 3D printed microfluidic devices previously manufactured by other methods, including an embedded 3D micromixer, a membrane microvalve, and an autonomous capillaric circuit (CC) deployed for interferon-γ detection with excellent performance (limit of detection: 12 pg mL-1, CV: 6.8%). We made PLInk-based organ-on-a-chip devices in 384-well plate format and produced 3420 individual devices within an 8 h print run. We used the devices to co-culture two spheroids separated by a vascular barrier over 5 days and observed endothelial sprouting, cellular reorganization, and migration. LCD 3D printing together with tailored inks pave the way for democratizing access to high-resolution manufacturing of ready-to-use microfluidic and organ-on-a-chip devices by anyone, anywhere.


Subject(s)
Lab-On-A-Chip Devices , Liquid Crystals , Printing, Three-Dimensional , Liquid Crystals/chemistry , Humans , Polyethylene Glycols/chemistry , Equipment Design , Microfluidic Analytical Techniques/instrumentation , Microphysiological Systems
14.
Analyst ; 149(11): 3204-3213, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38655746

ABSTRACT

Controlling the enantiomeric purity of chiral drugs is of paramount importance in pharmaceutical chemistry. Isotropic 1H NMR spectroscopy involving chiral agents is a widely used method for discriminating enantiomers and quantifying their relative proportions. However, the relatively weak spectral separation of enantiomers (1H Δδiso(R, S)) in frequency units at low and moderate magnetic fields, as well as the lack of versatility of a majority of those agents with respect to different chemical functions, may limit the general use of this approach. In this article, we investigate the analytical potential of 19F NMR in anisotropic chiral media for the enantiomeric analysis of fluorinated active pharmaceutical ingredients (API) via two residual anisotropic NMR interactions: the chemical shift anisotropy (19F-RCSA) and dipolar coupling ((19F-19F)-RDC). Lyotropic chiral liquid crystals (CLC) based on poly-γ-benzyl-L-glutamate (PBLG) show an interesting versatility and adaptability to enantiodiscrimination as illustrated for two chiral drugs, Flurbiprofen® (FLU) and Efavirenz® (EFA), which have very different chemical functions. The approach has been tested on a routine 300 MHz NMR spectrometer equipped with a standard probe (5 mm BBFO probe) in a high-throughput context (i.e., ≈10 s of NMR experiments) while the performance for enantiomeric excess (ee) measurement is evaluated in terms of trueness and precision. The limits of detection (LOD) determined were 0.17 and 0.16 µmol ml-1 for FLU and EFA, respectively, allow working in dilute conditions even with such a short experimental duration. The enantiodiscrimination capabilities are also discussed with respect to experimental features such as CLC composition and temperature.


Subject(s)
Fluorine , Magnetic Resonance Spectroscopy , Stereoisomerism , Magnetic Resonance Spectroscopy/methods , Anisotropy , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/analysis , Fluorine/chemistry , Halogenation , Flurbiprofen/chemistry , Flurbiprofen/analysis , Liquid Crystals/chemistry , Bulk Drugs
15.
Biosensors (Basel) ; 14(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38667192

ABSTRACT

Rapid surface charge mapping of a solid surface remains a challenge. In this study, we present a novel microchip based on liquid crystals for assessing the surface charge distribution of a planar or soft surface. This chip enables rapid measurements of the local surface charge distribution of a charged surface. The chip consists of a micropillar array fabricated on a transparent indium tin oxide substrate, while the liquid crystal is used to fill in the gaps between the micropillar structures. When an object is placed on top of the chip, the local surface charge (or zeta potential) influences the orientation of the liquid crystal molecules, resulting in changes in the magnitude of transmitted light. By measuring the intensity of the transmitted light, the distribution of the surface charge can be accurately quantified. We calibrated the chip in a three-electrode configuration and demonstrated the validity of the chip for rapid surface charge mapping using a borosilicate glass slide. This chip offers noninvasive, rapid mapping of surface charges on charged surfaces, with no need for physical or chemical modifications, and has broad potential applications in biomedical research and advanced material design.


Subject(s)
Liquid Crystals , Surface Properties , Liquid Crystals/chemistry , Tin Compounds/chemistry , Electrodes , Biosensing Techniques
16.
Adv Sci (Weinh) ; 11(18): e2306129, 2024 May.
Article in English | MEDLINE | ID: mdl-38447146

ABSTRACT

Plants can autonomously adjust their growth direction based on the gravitropic response to maximize energy acquisition, despite lacking nerves and muscles. Endowing soft robots with gravitropism may facilitate the development of self-regulating systems free of electronics, but remains elusive. Herein, acceleration-regulated soft actuators are described that can respond to the gravitational field by leveraging the unique fluidity of liquid metal in its self-limiting oxide skin. The soft actuator is obtained by magnetic printing of the fluidic liquid metal heater circuit on a thermoresponsive liquid crystal elastomer. The Joule heat of the liquid metal circuit with gravity-regulated resistance can be programmed by changing the actuator's pose to induce the flow of liquid metal. The actuator can autonomously adjust its bending degree by the dynamic interaction between its thermomechanical response and gravity. A gravity-interactive soft gripper is also created with controllable grasping and releasing by rotating the actuator. Moreover, it is demonstrated that self-regulated oscillation motion can be achieved by interfacing the actuator with a monostable tape spring, allowing the electronics-free control of a bionic walker. This work paves the avenue for the development of liquid metal-based reconfigurable electronics and electronics-free soft robots that can perceive gravity or acceleration.


Subject(s)
Gravitropism , Robotics , Robotics/methods , Robotics/instrumentation , Gravitropism/physiology , Equipment Design/methods , Metals/chemistry , Liquid Crystals , Plants
17.
Carbohydr Polym ; 332: 121927, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38431420

ABSTRACT

Natural bone exhibits a complex anisotropic and micro-nano hierarchical structure, more importantly, bone extracellular matrix (ECM) presents liquid crystal (LC) phase and viscoelastic characteristics, providing a unique microenvironment for guiding cell behavior and regulating osteogenesis. However, in bone tissue engineering scaffolds, the construction of bone-like ECM microenvironment with exquisite microstructure is still a great challenge. Here, we developed a novel polysaccharide LC hydrogel supported 3D printed poly(l-lactide) (PLLA) scaffold with bone-like ECM microenvironment and micro-nano aligned structure. First, we prepared a chitin whisker/chitosan polysaccharide LC precursor, and then infuse it into the pores of 3D printed PLLA scaffold, which was previously surface modified with a polydopamine layer. Next, the LC precursor was chemical cross-linked by genipin to form a hydrogel network with bone-like ECM viscoelasticity and LC phase in the scaffold. Subsequently, we performed directional freeze-casting on the composite scaffold to create oriented channels in the LC hydrogel. Finally, we soaked the composite scaffold in phytic acid to further physical cross-link the LC hydrogel through electrostatic interactions and impart antibacterial effects to the scaffold. The resultant biomimetic scaffold displays osteogenic activity, vascularization ability and antibacterial effect, and is expected to be a promising candidate for bone repair.


Subject(s)
Chitosan , Liquid Crystals , Animals , Chitosan/chemistry , Hydrogels/pharmacology , Hydrogels/metabolism , Chitin/pharmacology , Chitin/metabolism , Vibrissae , Tissue Scaffolds/chemistry , Bone Regeneration , Tissue Engineering , Osteogenesis , Extracellular Matrix/metabolism , Anti-Bacterial Agents/pharmacology
18.
Food Chem ; 445: 138789, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38394911

ABSTRACT

We describe a simple and sensitive liquid-crystal (LC)-based method for quantifying carbendazim (CBZ) by exploiting aptamer-specific recognition at the aqueous-LC interface. The method relies on the interfacial interaction between an aptamer and cetyltrimethylammonium bromide (CTAB); this interaction varies depending on the amount of CBZ. In the absence of CBZ, the aptamer disrupts the CTAB monolayer through electrostatic attraction, leading to a transition from homeotropic to tilted ordering of the LCs. As CBZ concentrations rise, the formation of aptamer-CBZ complexes increases, preserving the vertical alignment of the LCs by reducing collapse of the CTAB layer caused by electrostatic interactions. Using these methods, we achieved a CBZ detection limit of 3.12 pM (0.000597 µg/L) over a linear range of 0.05-5 nM. Moreover, we quantified CBZ levels in peach, soil, and tap water samples. Our LC-based detection method has significant research potential, offering sensitive, and straightforward detection of CBZ.


Subject(s)
Aptamers, Nucleotide , Benzimidazoles , Biosensing Techniques , Carbamates , Liquid Crystals , Liquid Crystals/chemistry , Cetrimonium , Biosensing Techniques/methods , Aptamers, Nucleotide/chemistry , Water/chemistry
19.
Langmuir ; 40(8): 4321-4332, 2024 02 27.
Article in English | MEDLINE | ID: mdl-38364370

ABSTRACT

Different phases of lyotropic liquid crystals (LLCs), made up of mesogen-like sodium dodecyl sulfate (SDS), mainly bestow different bulk viscosities. Along with this, the role of microviscosities of the individual LLC phases is of immense interest because a minute change in it due to guest incorporation can cause significant alteration in their property as a potential energy transfer scaffold. Recently, LLCs have been identified as plausible drug delivery agents for ocular treatments. In this direction, the present work illustrates photophysical modulations of an important laser dye as well as an ophthalmic medicine, coumarin 6 (C6), inside different LLC phases in an aqueous medium. C6 molecules spontaneously accumulate in water, leading to aggregation-caused quenching (ACQ) of fluorescence. However, the different phases of the LLCs prepared from SDS and water helped in disintegrating the C6 colonies to various extents depending upon the microviscosity. The heterogeneity in the LLC phases, in turn, could modulate the Förster resonance energy transfer (FRET) between C6 and the LLC incorporated with N-doped carbon nanoparticles (N-CNPs). The N-CNPs act as potential photosensitizers and generate singlet oxygen (1O2), a reactive oxygen species (ROS), to different extents. Microviscosities of the prepared LLCs were calculated by using fluorescence correlation spectroscopy (FCS). The different phases of the LLCs, viz., lamellar and hexagonal, with different microviscosities controlled the extent of C6 disaggregation and hence the FRET and the ROS generation. The results are encouraging since ROS generation has a significant role in the vision mechanism and PDT-based applications. LLC-based drug administration with potential FRET to control ROS generation may become handy in ophthalmology. The LLC phases used in this experiment not only served the purpose of drug delivery but also the photophysical events therein are compatible with the ocular environment.


Subject(s)
Liquid Crystals , Singlet Oxygen , Reactive Oxygen Species , Fluorescence Resonance Energy Transfer , Liquid Crystals/chemistry , Viscosity , Water/chemistry
20.
Chem Phys Lipids ; 260: 105377, 2024 May.
Article in English | MEDLINE | ID: mdl-38325712

ABSTRACT

Atorvastatin calcium (ATV) and proanthocyanidins (PAC) have a strong antioxidant activity, that can benefit to reduce the atherosclerotic plaque progression. Unfortunately, the bioavailability of ATV is greatly reduced due to its limited drug solubility while the PAC drug is unstable upon exposure to the atmospheric oxygen. Herein, the lyotropic liquid crystalline nanoparticles (LLCNPs) constructed by a binary mixture of soy phosphatidylcholine (SPC) and citric acid ester of monoglyceride (citrem) at different weight ratios were used to encapsulate the hydrophobic ATV and hydrophilic PAC. The LLCNPs were further characterized by small-angle X-ray scattering and dynamic light scattering. Depending on the lipid composition, the systems have a size range of 140-190 nm and were able to encapsulate both drugs in the range of 90-100%. Upon increasing the citrem content of drug-loaded LLCNPs, the hexosomes (H2) was completely transformed to an emulsified inverse micellar (L2). The optimum encapsulation efficiency (EE) of ATV and PAC were obtained in citrem/SPC weight ratio 4:1 (L2) and 1:1 (H2), respectively. There was a substantial change in the mean size and PDI of the nanoparticles upon 30 days of storage with the ATV-loaded LLCNPs exhibiting greater colloidal instability than PAC-loaded LLCNPs. The biphasic released pattern (burst released at the initial stage followed by the sustained released at the later stage) was perceived in ATV formulation, while the burst drug released pattern was observed in PAC formulations that could be attributed by its internal H2 structure. Interestingly, the cytokine studies showed that the PAC-LLCNPs promisingly up regulate the expressions of tumor necrosis factor-alpha (TNF-α) better than the drug-free and ATV-loaded LLCNPs samples. The structural tunability of citrem/SPC nanoparticles and their effect on physicochemical characteristic, biological activities and potential as an alternative drug delivery platform in the treatment of atherosclerosis are discussed.


Subject(s)
Liquid Crystals , Nanoparticles , Proanthocyanidins , Atorvastatin/chemistry , Pharmaceutical Preparations , Nanoparticles/chemistry , Liquid Crystals/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...