Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Plant Cell Environ ; 45(2): 329-346, 2022 02.
Article in English | MEDLINE | ID: mdl-34902165

ABSTRACT

The coordination of plant leaf water potential (ΨL ) regulation and xylem vulnerability to embolism is fundamental for understanding the tradeoffs between carbon uptake and risk of hydraulic damage. There is a general consensus that trees with vulnerable xylem more conservatively regulate ΨL than plants with resistant xylem. We evaluated if this paradigm applied to three important eastern US temperate tree species, Quercus alba L., Acer saccharum Marsh. and Liriodendron tulipifera L., by synthesizing 1600 ΨL observations, 122 xylem embolism curves and xylem anatomical measurements across 10 forests spanning pronounced hydroclimatological gradients and ages. We found that, unexpectedly, the species with the most vulnerable xylem (Q. alba) regulated ΨL less strictly than the other species. This relationship was found across all sites, such that coordination among traits was largely unaffected by climate and stand age. Quercus species are perceived to be among the most drought tolerant temperate US forest species; however, our results suggest their relatively loose ΨL regulation in response to hydrologic stress occurs with a substantial hydraulic cost that may expose them to novel risks in a more drought-prone future.


Subject(s)
Acer/physiology , Droughts , Liriodendron/physiology , Quercus/physiology , Water/physiology , Xylem/physiology , Trees/physiology
2.
J Exp Bot ; 69(22): 5611-5623, 2018 11 26.
Article in English | MEDLINE | ID: mdl-30184113

ABSTRACT

According to the hydraulic vulnerability segmentation hypothesis, leaves are more vulnerable to decline of hydraulic conductivity than branches, but whether stem xylem is more embolism resistant than leaves remains unclear. Drought-induced embolism resistance of leaf xylem was investigated based on X-ray microcomputed tomography (microCT) for Betula pendula, Laurus nobilis, and Liriodendron tulipifera, excluding outside-xylem, and compared with hydraulic vulnerability curves for branch xylem. Moreover, bordered pit characters related to embolism resistance were investigated for both organs. Theoretical P50 values (i.e. the xylem pressure corresponding to 50% loss of hydraulic conductance) of leaves were generally within the same range as hydraulic P50 values of branches. P50 values of leaves were similar to branches for L. tulipifera (-2.01 versus -2.10 MPa, respectively), more negative for B. pendula (-2.87 versus -1.80 MPa), and less negative for L. nobilis (-6.4 versus -9.2 MPa). Despite more narrow conduits in leaves than branches, mean interconduit pit membrane thickness was similar in both organs, but significantly higher in leaves of B. pendula than in branches. This case study indicates that xylem shows a largely similar embolism resistance across leaves and branches, although differences both within and across organs may occur, suggesting interspecific variation with regard to the hydraulic vulnerability segmentation hypothesis.


Subject(s)
Betula/anatomy & histology , Droughts , Laurus/anatomy & histology , Liriodendron/anatomy & histology , Trees/anatomy & histology , Xylem/physiology , Betula/physiology , Laurus/physiology , Liriodendron/physiology , Plant Leaves/anatomy & histology , Plant Leaves/cytology , Plant Leaves/physiology , Plant Shoots/anatomy & histology , Plant Shoots/cytology , Plant Shoots/physiology , Trees/physiology , X-Ray Microtomography
3.
Tree Physiol ; 38(4): 582-590, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29036648

ABSTRACT

Predicted increases in the frequency and severity of droughts have led to a renewed focus on how plants physiologically adjust to low water availability. A popular framework for understanding plant responses to drought characterizes species along a spectrum from isohydry to anisohydry based on their regulation of gas exchange and leaf water potential under drying conditions. One prediction that arises from this theory is that plant drought responses may hinge, in part, on their usage of non-structural carbohydrate (NSC) pools. For example, trees that respond to drought by closing stomates (i.e., isohydric) are predicted to deplete NSC reserves to maintain metabolism, whereas plants that keep stomata open during water stress (i.e., anisohydric), may show little change or even increases in NSC concentration. However, empirical tests of this theory largely rely on aboveground measurements of NSC, ignoring the potentially conflicting responses of root NSC pools. We sought to test these predictions by subjecting potted saplings of Quercus alba L. (an anisohydric species) and Liriodendron tulipifera L. (an isohydric species) to a 6 week experimental drought. We found that stem NSC concentrations were depleted in the isohydric L. tulipifera but maintained in the anisohydric Q. alba-as predicted. However, when scaled to whole-plant NSC content, the drought-induced decreases in stem NSCs in L. tulipifera were offset by increases in root NSCs (especially soluble sugars), resulting in no net change to whole-plant NSC content. Similarly, root sugars increased in Q. alba in response to drought. This increase was concurrent with declines in growth, suggesting a potential trade-off between allocation of photoassimilates to root sugars vs biomass during drought. Collectively, our results suggest that the responses of NSC in coarse roots can differ from stems, and indicate a prominent role of coarse roots in mitigating drought-induced declines in whole-tree NSC pools.


Subject(s)
Carbohydrate Metabolism , Droughts , Liriodendron/physiology , Quercus/physiology , Carbon Sequestration , Plant Roots/physiology , Plant Stems/physiology
4.
Tree Physiol ; 37(10): 1415-1425, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28486656

ABSTRACT

In temperate deciduous forests, vertical gradients in leaf mass per area (LMA) and area-based leaf nitrogen (Narea) are strongly controlled by gradients in light availability. While there is evidence that hydrostatic constraints on leaf development may diminish LMA and Narea responses to light, inherent differences among tree species may also influence leaf developmental and morphological response to light. We investigated vertical gradients in LMA, Narea and leaf carbon isotope composition (δ13C) for three temperate deciduous species (Carpinus caroliniana Walter, Fagus grandifolia Ehrh., Liriodendron tulipifera L.) that differed in growth strategy (e.g., indeterminate and determinate growth), shade tolerance and leaf area to sapwood ratio (Al:As). Leaves were sampled across a broad range of light conditions within three vertical layers of tree crowns to maximize variation in light availability at each height and to minimize collinearity between light and height. All species displayed similar responses to light with respect to Narea and δ13C, but not for LMA. Light was more important for gradients in LMA for the shade-tolerant (C. caroliniana) and -intolerant (L. tulipifera) species with indeterminate growth, and height (e.g., hydrostatic gradients) and light were equally important for the shade-tolerant (F. grandifolia) species with determinate growth. Fagus grandifolia had a higher morphological plasticity in response to light, which may offer a competitive advantage in occupying a broader range of light conditions throughout the canopy. Differences in responses to light and height for the taller tree species, L. tulipifera and F. grandifolia, may be attributed to differences in growth strategy or Al:As, which may alter morphological and functional responses to light availability. While height was important in F. grandifolia, height was no more robust in predicting LMA than light in any of the species, confirming the strong role of light availability in determining LMA for temperate deciduous species.


Subject(s)
Betulaceae/physiology , Fagus/physiology , Liriodendron/physiology , Plant Leaves/growth & development , Plant Stems/growth & development , Betulaceae/growth & development , Carbon Isotopes/metabolism , Fagus/growth & development , Light , Liriodendron/growth & development , Species Specificity , Trees/growth & development , Trees/physiology
5.
Tree Physiol ; 37(10): 1379-1392, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28062727

ABSTRACT

Predicting the impact of drought on forest ecosystem processes requires an understanding of trees' species-specific responses to drought, especially in the Eastern USA, where species composition is highly dynamic due to historical changes in land use and fire regime. Here, we adapted a framework that classifies trees' water-use strategy along the spectrum of isohydric to anisohydric behavior to determine the responses of three canopy-dominant species to drought. We used a collection of leaf-level gas exchange, tree-level sap flux and stand-level eddy covariance data collected in south-central Indiana from 2011 to 2013, which included an unusually severe drought in the summer of 2012. Our goal was to assess how patterns in the radial profile of sap flux and reliance on hydraulic capacitance differed among species of contrasting water-use strategies. In isohydric species, which included sugar maple (Acer saccharum Marsh.) and tulip poplar (Liriodendron tulipifera L.), we found that the sap flux in the outer xylem experienced dramatic declines during drought, but sap flux at inner xylem was buffered from reductions in water availability. In contrast, for anisohydric oak species (Quercus alba L. and Quercus rubra L.), we observed relatively smaller variations in sap flux during drought in both inner and outer xylem, and higher nighttime refilling when compared with isohydric species. This reliance on nocturnal refilling, which occurred coincident with a decoupling between leaf- and tree-level water-use dynamics, suggests that anisohydric species may benefit from a reliance on hydraulic capacitance to mitigate the risk of hydraulic failure associated with maintaining high transpiration rates during drought. In the case of both isohydric and anisohydric species, our work demonstrates that failure to account for shifts in the radial profile of sap flux during drought could introduce substantial bias in estimates of tree water use during both drought and non-drought periods.


Subject(s)
Acer/physiology , Droughts , Liriodendron/physiology , Quercus/physiology , Water/physiology , Plant Stems/physiology , Species Specificity , Trees/physiology
6.
Environ Monit Assess ; 187(7): 458, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26100445

ABSTRACT

Ca/Al molar ratios are commonly used to assess the extent of aluminum stress in forests. This is among the first studies to quantify Ca/Al molar ratios for stemflow. Ca/Al molar ratios in bulk precipitation, throughfall, stemflow, litter leachate, near-trunk soil solution, and soil water were quantified for a deciduous forest in northeastern MD, USA. Data were collected over a 3-year period. The Ca/Al molar ratios in this study were above the threshold for aluminum stress (<1). Fagus grandifolia Ehrh. (American beech) had a median annual stemflow Ca/Al molar ratio of 15.7, with the leafed and leafless values of 12.4 and 19.2, respectively. The corresponding Ca/Al molar ratios for Liriodendron tulipifera L. (yellow poplar) were 11.9 at the annual time scale and 11.9 and 13.6 for leafed and leafless periods, respectively. Bayesian statistical analysis showed no significant effect of canopy state (leafed, leafless) on Ca/Al molar ratios. DOC was consistently an important predictor of calcium, aluminum, and Ca/Al ratios. pH was occasionally an important predictor of calcium and aluminum concentrations, but was not a good predictor of Ca/Al ratio in any of the best-fit models (of >500 examined). This study supplies new data on Ca/Al molar ratios for stemflow from two common deciduous tree species. Future work should examine Ca/Al molar ratios in stemflow of other species and examine both inorganic and organic aluminum species to better gauge the potential for, and understand the dynamics of, aluminum toxicity in the proximal area around tree boles.


Subject(s)
Aluminum/analysis , Calcium/analysis , Environmental Monitoring/methods , Fagus/physiology , Forests , Liriodendron/physiology , Bayes Theorem , Hydrogen-Ion Concentration , Linear Models , Plant Leaves/chemistry , Rain , Soil , Species Specificity , Trees , United States , Water/analysis
7.
Int J Biometeorol ; 58(10): 2059-69, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24615637

ABSTRACT

Many tree species have been shown to funnel substantial rainfall to their stem base as stemflow flux, given a favorable stand structure and storm conditions. As stemflow is a spatially concentrated flux, prior studies have shown its impact on ecohydrological and biogeochemical processes can be significant. Less work has been performed examining stemflow variability from meteorological conditions compared to canopy structural traits. As such, this study performs multiple regressions: (1) to examine stemflow variability due to event-based rainfall amount, intensity, mean wind speeds, and vapor pressure deficit; (2) across three diameter size classes (10-20, 21-40, and >41 cm DBH); and (3) for two common tree species in the northeastern USA of contrasting canopy morphology--Liriodendron tulipifera L. (yellow poplar) versus Fagus grandifolia Ehrh. (American beech). On the whole, multiple regression results yielded significant positive correlations with stemflow for rainfall amount, intensity, and mean wind speed and a significant negative correlation for vapor pressure deficit (VPD). Tree size altered stemflow-meteorological condition relationships, where larger trees strengthened indirect stemflow-VPD and direct stemflow-rainfall and stemflow-intensity associations. Canopies of rougher bark and lower branch angle (represented by L. tulipifera) enhanced correlations for nearly all meteorological conditions via greater stemflow residence time (and longer exposure to meteorological conditions). Multiple regressions performed on leafless canopy stemflow resulted in an inverse relationship with wind speeds, likely decoupling stemflow sheltered solely on bark surfaces from VPD influences. Leaf presence generally increased direct stemflow associations with rainfall intensity, yet diminished stemflow-rainfall relationships. F. grandifolia canopies (exemplifying structures of smoother bark and greater branch angle) strengthened differences in stemflow associations with rainfall/mean wind speed between leaf states. These findings are placed in a conceptual interception loss path analysis, which shows the potential to alter common interception loss estimates in high stemflow stands.


Subject(s)
Fagus , Liriodendron , Plant Stems/anatomy & histology , Plant Stems/physiology , Fagus/anatomy & histology , Fagus/physiology , Liriodendron/anatomy & histology , Liriodendron/physiology , Plant Leaves , Rain , Regression Analysis , Wind
8.
Tree Physiol ; 33(9): 940-8, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24128849

ABSTRACT

Resource exploitation of patches is influenced not simply by the rate of root production in the patches but also by the lifespan of the roots inhabiting the patches. We examined the effect of sustained localized nitrogen (N) fertilization on root lifespan in four tree species that varied widely in root morphology and presumed foraging strategy. The study was conducted in a 12-year-old common garden in central Pennsylvania using a combination of data from minirhizotron and root in-growth cores. The two fine-root tree species, Acer negundo L. and Populus tremuloides Michx., exhibited significant increases in root lifespan with local N fertilization; no significant responses were observed in the two coarse-root tree species, Sassafras albidum Nutt. and Liriodendron tulipifera L. Across species, coarse-root tree species had longer median root lifespan than fine-root tree species. Localized N fertilization did not significantly increase the N concentration or the respiration of the roots growing in the N-rich patch. Our results suggest that some plant species appear to regulate the lifespan of different portions of their root system to improve resource acquisition while other species do not. Our results are discussed in the context of different strategies of foraging of nutrient patches in species of different root morphology.


Subject(s)
Plant Roots/anatomy & histology , Plant Roots/physiology , Trees/anatomy & histology , Trees/physiology , Acer/anatomy & histology , Acer/drug effects , Acer/physiology , Cell Respiration/drug effects , Liriodendron/anatomy & histology , Liriodendron/drug effects , Liriodendron/physiology , Nitrogen/pharmacology , Pennsylvania , Plant Roots/cytology , Plant Roots/drug effects , Populus/anatomy & histology , Populus/drug effects , Populus/physiology , Proportional Hazards Models , Sassafras/anatomy & histology , Sassafras/drug effects , Sassafras/physiology , Trees/drug effects
9.
Sci China Life Sci ; 56(1): 82-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23269551

ABSTRACT

The characteristics of the interactions co-cultures of ultrafine mesoporous silica nanoparticles (MSNs) and the Liriodendron hybrid suspension cells were systematically investigated using laser scanning confocal microscope (LSCM) and scanning electron microscopy (SEM). Using fluorescein isothiocyanate (FITC) labeling, the LSCM observations demonstrated that MSNs (size, 5-15 nm) with attached FITC molecules efficiently penetrated walled plant cells through endocytic pathways, but free FITC could not enter the intact plant cells. The SEM measurements indicated that MSNs readily aggregated on the surface of intact plant cells, and also directly confirmed that MSNs could enter intact plant cells; this was achieved by determining the amount of silicon present. After 24 h of incubation with 1.0 mg mL(-1) of MSNs, the viability of the plant cells was analyzed using fluorescein diacetate staining; the results showed that these cells retained high viability, and no cell death was observed. Interestingly, after the incubation with MSNs, the Liriodendron hybrid suspension cells retained the capability for plant regeneration via somatic embryogenesis. Our results indicate that ultrafine MSNs hold considerable potential as nano-carriers of extracellular molecules, and can be used to investigate in vitro gene-delivery in plant cells.


Subject(s)
Liriodendron/cytology , Plant Cells/metabolism , Silicon Dioxide/metabolism , Silicones/metabolism , Biocompatible Materials/metabolism , Biocompatible Materials/toxicity , Biological Transport , Cell Survival/drug effects , Cells, Cultured , Fluorescein/metabolism , Fluorescein-5-isothiocyanate/metabolism , Liriodendron/embryology , Liriodendron/physiology , Microscopy, Confocal , Microscopy, Electron, Scanning , Nanoparticles/toxicity , Nanoparticles/ultrastructure , Particulate Matter , Plant Cells/drug effects , Plant Cells/ultrastructure , Plant Somatic Embryogenesis Techniques/methods , Regeneration , Time Factors
10.
PLoS One ; 7(9): e44696, 2012.
Article in English | MEDLINE | ID: mdl-23028583

ABSTRACT

BACKGROUND: Liriodendron chinense (L. chinense) is an endangered basal angiosperm plant in China because of its low reproductive efficiency. Recently, miRNAs have obtained great attention because they can play important roles. Through high throughput sequencing technique, large amount of miRNAs were identified from different plant species. But there were few studies about the miRNAs in the basal angiosperms especially in the sexual reproduction process. RESULTS: Deep sequencing technology was applied to discover miRNAs in L. chinense flowers at different stages. After bioinformatic analysis, 496 putative conserved miRNAs representing 97 families and 2 novel miRNAs were found. Among them, one is previously regarded as gymnosperm specific. Their expressions were further validated by Real-time PCR for 13 selected miRNAs. Putative targeting genes were predicted and categorized with gene ontology (GO) analysis. About ten percents of the targets are involved in the reproduction process. Further expressional analysis showed that many of these miRNAs were highly related to the reproductive growth. CONCLUSIONS: This is the first comprehensive identification of conserved and novel miRNAs in L. chinense. The data presented here might not only help to fill the gap of miRNA registered about basal angiosperm plants but also contribute to understanding the evolution of miRNAs. The differential expression of some of the miRNAs and the prediction of their target genes are also helpful in understanding the regulation of L. chinense sexual reproduction.


Subject(s)
Flowers/genetics , Liriodendron/genetics , MicroRNAs/genetics , RNA, Plant/genetics , Computational Biology , Flowers/physiology , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Liriodendron/physiology , Real-Time Polymerase Chain Reaction
11.
Tree Physiol ; 31(6): 659-68, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21724585

ABSTRACT

Adequate water transport is necessary to prevent stomatal closure and allow for photosynthesis. Dysfunction in the water transport pathway can result in stomatal closure, and can be deleterious to overall plant health and survival. Although much is known about small branch hydraulics, little is known about the coordination of leaf and stem hydraulic function. Additionally, the daily variations in leaf hydraulic conductance (K(leaf)), stomatal conductance and water potential (Ψ(L)) have only been measured for a few species. The objective of the current study was to characterize stem and leaf vulnerability to hydraulic dysfunction for three eastern U.S. tree species (Acer rubrum, Liriodendron tulipifera and Pinus virginiana) and to measure in situ daily patterns of K(leaf), leaf and stem Ψ, and stomatal conductance in the field. Sap flow measurements were made on two of the three species to compare patterns of whole-plant water use with changes in K(leaf) and stomatal conductance. Overall, stems were more resistant to hydraulic dysfunction than leaves. Stem P50 (Ψ resulting in 50% loss in conductivity) ranged from -3.0 to -4.2 MPa, whereas leaf P50 ranged from -0.8 to -1.7 MPa. Field Ψ(L) declined over the course of the day, but only P. virginiana experienced reductions in K(leaf) (nearly 100% loss). Stomatal conductance was greatest overall in P. virginiana, but peaked midmorning and then declined in all three species. Midday stem Ψ in all three species remained well above the threshold for embolism formation. The daily course of sap flux in P. virginiana was bell-shaped, whereas in A. rubrum sap flux peaked early in the morning and then declined over the remainder of the day. An analysis of our data and data for 39 other species suggest that there may be at least three distinct trajectories of relationships between maximum K(leaf) and the % K(leaf) at Ψ(min). In one group of species, a trade-off between maximum K(leaf) and % K(leaf) at Ψ(min) appeared to exist, but no trade-off was evident in the other two trajectories.


Subject(s)
Acer/physiology , Liriodendron/physiology , Pinus/physiology , Plant Transpiration/physiology , Circadian Rhythm/physiology , Pennsylvania , Plant Leaves/physiology , Plant Stems/physiology , Plant Stomata/physiology
12.
Planta ; 234(5): 959-77, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21688015

ABSTRACT

A cDNA library was constructed from secondary xylem in the stem of a 2-year-old yellow poplar after being bent for 6 h with a 45° configuration to isolate genes related to cell wall modification during the early stages of tension wood formation. A total of 6,141 ESTs were sequenced to generate a database of 5,982 high-quality expressed sequence tags (ESTs). These sequences were clustered into 1,733 unigenes, including 822 contigs and 911 singletons. Homologs of the genes regulate many aspects of secondary xylem development, including those for primary and secondary metabolism, plant growth hormones, transcription factors, cell wall biosynthesis and modification, and stress responses. Although there were only 1,733 annotated ESTs (28.9%), the annotated ESTs obtained in this study provided sequences for a broad array of transcripts expressed in the stem upon mechanical bending, and the majority of them were the first representatives of their respective gene families in Liriodendron tulipifera. In the case of lignin, xylem-specific COMTs were identified and their expressions were significantly downregulated in the tension wood-forming tissues. Additionally, the majority of the auxin- and BR-related genes were downregulated significantly in response to mechanical bending treatment. Despite the small number of ESTs sequenced in this study, many genes that are relevant to cell wall biosynthesis and modification have been isolated. Expression analysis of selected genes allow us to identify the regulatory genes that may perform essential functions during the early stages of tension wood formation and associated cell wall modification.


Subject(s)
Cell Wall/physiology , Expressed Sequence Tags , Liriodendron/physiology , Wood/physiology , Xylem/physiology , Carbohydrate Metabolism , Cell Wall/genetics , Cell Wall/metabolism , Cellulose/genetics , Cellulose/metabolism , Computational Biology , Gene Expression Regulation, Plant , Gene Library , Genes, Plant , Genes, Regulator , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Lignin/genetics , Lignin/metabolism , Liriodendron/genetics , Liriodendron/metabolism , Plant Stems/genetics , Plant Stems/metabolism , Plant Stems/physiology , Tensile Strength , Wood/genetics , Wood/metabolism , Xylem/genetics , Xylem/metabolism
13.
Ying Yong Sheng Tai Xue Bao ; 19(5): 961-8, 2008 May.
Article in Chinese | MEDLINE | ID: mdl-18655578

ABSTRACT

A factorial combination pot experiment was designed to study the growth response and foraging behavior of three South China forestation species Pinus massoniana, Schima superba and Liriodendron chinense under heterogenous nutrient envionment and different light conditions. The results demonstrated that under full light, the plant height and biomass of P. massoniana and S. superba were enhanced in heterogenous nutrient environment, with the root biomass increased by 99.5% and 66.7%, respectively, compared with that in homogenous environment; while L. chinense exhibited singnificant growth benefits in homogenous environment. The root scale, foraging precision, and nutrient uptake of S. superba reduced markedly under shading, which in turn decreased the growth benefits in heterogenous nutrient environment. The influence of shading was weaker on P. massoniana than on S. superba, still with some growth benefits for P. massoniana due to its root proliferation and enhanced nutrient uptake in nutrient rich patch. There was a slight influence of shading on the foraging precision and sensitivity of L. chinense root, with no growth response pattern change to heterogenous nutient environment occurred. It was concluded that three tree species not only differed in the inheritance of root foraging mechanism and behavior, but also varied in the response pattern to light condition. Therefore, different measures should be adopted in forestation with the three tree species to enhance the forest productivity.


Subject(s)
Light , Plant Roots/physiology , Soil/analysis , Trees/physiology , Adaptation, Physiological/radiation effects , Ecosystem , Liriodendron/growth & development , Liriodendron/physiology , Nitrogen/metabolism , Phosphorus/metabolism , Pinus/growth & development , Pinus/physiology , Plant Roots/growth & development , Species Specificity , Trees/growth & development
14.
Tree Physiol ; 23(16): 1125-36, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14522718

ABSTRACT

To evaluate indicators of whole-tree physiological responses to climate stress, we determined seasonal, daily and diurnal patterns of growth and water use in 10 yellow poplar (Liriodendron tulipifera L.) trees in a stand recently released from competition. Precise measurements of stem increment and sap flow made with automated electronic dendrometers and thermal dissipation probes, respectively, indicated close temporal linkages between water use and patterns of stem shrinkage and swelling during daily cycles of water depletion and recharge of extensible outer-stem tissues. These cycles also determined net daily basal area increment. Multivariate regression models based on a 123-day data series showed that daily diameter increments were related negatively to vapor pressure deficit (VPD), but positively to precipitation and temperature. The same model form with slight changes in coefficients yielded coefficients of determination of about 0.62 (0.57-0.66) across data subsets that included widely variable growth rates and VPDs. Model R2 was improved to 0.75 by using 3-day running mean daily growth data. Rapid recovery of stem diameter growth following short-term, diurnal reductions in VPD indicated that water stored in extensible stem tissues was part of a fast recharge system that limited hydration changes in the cambial zone during periods of water stress. There were substantial differences in the seasonal dynamics of growth among individual trees, and analyses indicated that faster-growing trees were more positively affected by precipitation, solar irradiance and temperature and more negatively affected by high VPD than slower-growing trees. There were no negative effects of ozone on daily growth rates in a year of low ozone concentrations.


Subject(s)
Liriodendron/physiology , Plant Stems/physiology , Trees/physiology , Circadian Rhythm/physiology , Environment , Liriodendron/growth & development , Plant Stems/growth & development , Plant Transpiration/physiology , Seasons , Trees/growth & development , Water/physiology
15.
Proc Biol Sci ; 270(1517): 791-7, 2003 Apr 22.
Article in English | MEDLINE | ID: mdl-12737656

ABSTRACT

Globally, the estimated total area planted with transgenic plants producing Bacillus thuringiensis (Bt) toxins was 12 million hectares in 2001. The risk of target pests becoming resistant to these toxins has led to the implementation of resistance-management strategies. The efficiency and sustainability of these strategies, including the high-dose plus refuge strategy currently recommended for North American maize, depend on the initial frequency of resistance alleles. In this study, we estimated the initial frequencies of alleles conferring resistance to transgenic Bt poplars producing Cry3A in a natural population of the poplar pest Chrysomela tremulae (Coleoptera: Chrysomelidae). We used the F(2) screen method developed for detecting resistance alleles in natural pest populations. At least three parents of the 270 lines tested were heterozygous for a major Bt resistance allele. We estimated mean resistance-allele frequency for the period 1999-2001 at 0.0037 (95% confidence interval = 0.00045-0.0080) with a detection probability of 90%. These results demonstrate that (i) the F(2) screen method can be used to detect major alleles conferring resistance to Bt-producing plants in insects and (ii) the initial frequency of alleles conferring resistance to Bt toxin can be close to the highest theoretical values that are expected prior to the use of Bt plants if considering fitness costs and typical mutation rates.


Subject(s)
Bacillus thuringiensis/genetics , Coleoptera/genetics , Coleoptera/physiology , Gene Frequency , Insecticide Resistance/genetics , Liriodendron/parasitology , Pest Control, Biological , Animals , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Coleoptera/growth & development , Female , Gene Expression , Heterozygote , Larva/genetics , Larva/physiology , Liriodendron/genetics , Liriodendron/physiology , Male , Plants, Genetically Modified
16.
Tree Physiol ; 22(6): 393-401, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11960764

ABSTRACT

Instantaneous measurements of photosynthesis are often implicitly or explicitly scaled to longer time frames to provide an understanding of plant performance in a given environment. For plants growing in a forest understory, results from photosynthetic light response curves in conjunction with diurnal light data are frequently extrapolated to daily photosynthesis (A(day)), ignoring dynamic photosynthetic responses to light. In this study, we evaluated the importance of two factors on A(day) estimates: dynamic physiological responses to photosynthetic photon flux density (PPFD); and time-resolution of the PPFD data used for modeling. We used a dynamic photosynthesis model to investigate how these factors interact with species-specific photosynthetic traits, forest type, and sky conditions to affect the accuracy of A(day) predictions. Increasing time-averaging of PPFD significantly increased the relative overestimation of A(day) similarly for all study species because of the nonlinear response of photosynthesis to PPFD (15% with 5-min PPFD means). Depending on the light environment characteristics and species-specific dynamic responses to PPFD, understory tree A(day) can be overestimated by 6-42% for the study species by ignoring these dynamics. Although these overestimates decrease under cloudy conditions where direct sunlight and consequently understory sunfleck radiation is reduced, they are still significant. Within a species, overestimation of A(day) as a result of ignoring dynamic responses was highly dependent on daily sunfleck PPFD and the frequency and irradiance of sunflecks. Overall, large overestimates of A(day) in understory trees may cause misleading inferences concerning species growth and competition in forest understories with < 2% full sunlight. We conclude that comparisons of A(day) among co-occurring understory species in deep shade will be enhanced by consideration of sunflecks by using high-resolution PPFD data and understanding the physiological responses to sunfleck variation.


Subject(s)
Photosynthesis/physiology , Plant Leaves/physiology , Trees/physiology , Acer/physiology , Cornus/physiology , Ecosystem , Liquidambar/physiology , Liriodendron/physiology , North Carolina , Pinus/physiology , Sunlight
17.
Plant Physiol ; 125(2): 891-9, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11161046

ABSTRACT

Minor vein ultrastructure and phloem loading were studied in leaves of the tulip tree (Liriodendron tulipifera; Magnoliaceae). Plasmodesmatal frequencies leading into minor vein companion cells are higher than in species known to load via the apoplast. However, these companion cells are not specialized as "intermediary cells" as they are in species in which the best evidence for symplastic phloem loading has been documented. Mesophyll cells plasmolyzed in 600 mM sorbitol, whereas sieve elements and companion cells did not plasmolyze even in 1.2 M sorbitol, indicating that solute accumulates in the phloem against a steep concentration gradient. Both [(14)C]sucrose and (14)C-labeled photo-assimilate accumulated in the minor vein network, as demonstrated by autoradiography. [(14)C]sucrose accumulation was prevented by p-chloromercuribenzenesulfonic acid, an inhibitor of sucrose-proton cotransport from the apoplast. p-Chloromercuribenzenesulfonic acid largely, but not entirely, inhibited exudation of radiolabeled photoassimilate. The evidence is most consistent with the presence of an apoplastic component to phloem loading in this species, contrary to speculation that the more basal members of the angiosperms load by an entirely symplastic mechanism.


Subject(s)
Biological Evolution , Liriodendron/cytology , Liriodendron/physiology , Sucrose/metabolism , Liriodendron/metabolism , Plant Leaves/metabolism , Sorbitol/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...