Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 190
Filter
1.
STAR Protoc ; 5(1): 102839, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38261516

ABSTRACT

Numerous interacting protein partners exist without recognized interactive domains, necessitating a standardized methodology to decipher more in-depth interaction profiles. Here, we present a protocol to reveal the binding partner of a secreted housekeeping enzyme, alcohol acetaldehyde dehydrogenase (Listeria adhesion protein), in Listeria monocytogenes through in silico modeling and in vivo experiments. We describe steps for target protein modeling, biophysical profiling, ClusPro docking optimization, protein variant modeling, and docking comparison. We then provide detailed procedures for in vitro and in vivo protein binding validation. For complete details on the use and execution of this protocol, please refer to Liu et al.1.


Subject(s)
Listeria monocytogenes , Listeria , Listeria/metabolism , Computer Simulation , Protein Binding
2.
Environ Microbiol Rep ; 15(6): 669-683, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37864319

ABSTRACT

The foodborne pathogen Listeria monocytogenes can grow in a wide range of environmental conditions. For the study of the physiology of this organism, several chemically defined media have been developed over the past decades. Here, we examined the ability of L. monocytogenes wildtype strains EGD-e and 10403S to grow under salt and pH stress in Listeria synthetic medium (LSM). Furthermore, we determined that a wide range of carbon sources could support the growth of both wildtype strains in LSM. However, for hexose phosphate sugars such as glucose-1-phosphate, both L. monocytogenes strains need to be pre-grown under conditions, where the major virulence regulator PrfA is active. In addition, growth of both L. monocytogenes strains was observed when LSM was supplemented with the amino acid sugar N-acetylmannosamine (ManNAc). We were able to show that some of the proteins encoded in the operon lmo2795-nanE, such as the ManNAc-6-phosphate epimerase NanE, are required for growth in the presence of ManNAc. The first gene of the operon, lmo2795, encodes a transcriptional regulator of the RpiR family. Using electrophoretic mobility shift assays and quantitative real-time PCR analysis, we were able to show that Lmo2795 binds to the promoter region of the operon lmo2795-nanE and activates its expression.


Subject(s)
Listeria monocytogenes , Listeria , Listeria monocytogenes/genetics , Listeria/genetics , Listeria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Virulence/genetics , Operon , Gene Expression Regulation, Bacterial
3.
Cell Rep ; 42(10): 113089, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37734382

ABSTRACT

Form and function are often interdependent throughout biology. Inside cells, mitochondria have particularly attracted attention since both their morphology and functionality are altered under pathophysiological conditions. However, directly assessing their causal relationship has been beyond reach due to the limitations of manipulating mitochondrial morphology in a physiologically relevant manner. By engineering a bacterial actin regulator, ActA, we developed tools termed "ActuAtor" that inducibly trigger actin polymerization at arbitrary subcellular locations. The ActuAtor-mediated actin polymerization drives striking deformation and/or movement of target organelles, including mitochondria, Golgi apparatus, and nucleus. Notably, ActuAtor operation also disperses non-membrane-bound entities such as stress granules. We then implemented ActuAtor in functional assays, uncovering the physically fragmented mitochondria being slightly more susceptible to degradation, while none of the organelle functions tested are morphology dependent. The modular and genetically encoded features of ActuAtor should enable its application in studies of the form-function interplay in various intracellular contexts.


Subject(s)
Listeria monocytogenes , Listeria , Actins/metabolism , Listeria/metabolism , Listeria monocytogenes/physiology , Polymerization , Organelles/metabolism , Bacterial Proteins/metabolism
4.
Cell Rep ; 42(5): 112515, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37171960

ABSTRACT

Listeria adhesion protein (LAP) is a secreted acetaldehyde alcohol dehydrogenase (AdhE) that anchors to an unknown molecule on the Listeria monocytogenes (Lm) surface, which is critical for its intestinal epithelium crossing. In the present work, immunoprecipitation and mass spectrometry identify internalin B (InlB) as the primary ligand of LAP (KD ∼ 42 nM). InlB-deleted and naturally InlB-deficient Lm strains show reduced LAP-InlB interaction and LAP-mediated pathology in the murine intestine and brain invasion. InlB-overexpressing non-pathogenic Listeria innocua also displays LAP-InlB interplay. In silico predictions reveal that a pocket region in the C-terminal domain of tetrameric LAP is the binding site for InlB. LAP variants containing mutations in negatively charged (E523S, E621S) amino acids in the C terminus confirm altered binding conformations and weaker affinity for InlB. InlB transforms the housekeeping enzyme, AdhE (LAP), into a moonlighting pathogenic factor by fastening on the cell surface.


Subject(s)
Listeria monocytogenes , Listeria , Animals , Mice , Bacterial Proteins/metabolism , Membrane Proteins/metabolism , Listeria/metabolism , Listeria monocytogenes/metabolism , Cell Membrane/metabolism , Alcohol Dehydrogenase/metabolism
5.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36708166

ABSTRACT

Biopreservation is an alternative to prevent the growth of pathogens and reduce microbial spoilage in food based on the use of microorganisms and/or their metabolic products. The objective of this study was to determine the optimal mode of application and the effectiveness of cell-free supernatant (CFS) from Lactobacillus curvatus ACU-1, containing sakacin G, in Vienna-type sausages to control Listeria and spoilage flora. The functionality and the optimal dosage form between CFS, producing bacteria, a combination or concentrate of bacteriocin applied on Vienna-type sausages before and after stuffing the casings on an industrial scale were determined. Sakacin G was effective for the control of Listeria applied to the casing both before and after stuffing. The application of the antimicrobial on the ready sausages inhibits both lactic acid bacteria and mesophilic microorganisms from zero sampling time. The heat resistance of the bacteriocin in the food was verified under industrial manufacturing conditions. The antimicrobial activity of sakacin G was maintained throughout the period studied in all the conditions tested. In conclusion, the application of CFS containing bacteriocin is useful given both before and after casing stuffing; but the application prior to the stuffing is more practical for the process of elaboration.


Subject(s)
Bacteriocins , Listeria , Meat Products , Bacteriocins/pharmacology , Bacteriocins/metabolism , Lactobacillus/metabolism , Listeria/metabolism , Meat Products/microbiology
6.
Anat Rec (Hoboken) ; 306(5): 1140-1148, 2023 05.
Article in English | MEDLINE | ID: mdl-35488878

ABSTRACT

The actin cytoskeleton forms much of the structure needed for the intracellular motility of an assortment of microbes as well as entire cells. The co-factor to the ubiquitin conjugating enzyme Ube2N (Ube2V1) has been implicated in both cancer cell metastasis and lysine-63 ubiquitylation of ß actin. As this protein complexes with Ube2N, we sought to investigate whether Ube2N itself was involved in actin-based events occurring during the Listeria monocytogenes infections as well as within motile whole cells. Through examination of L. monocytogenes actin clouds, comet tails and membrane protrusions as well as lamellipodia in migrating cells, we show that Ube2N is recruited to actin-rich structures. When pharmacologically inhibited we demonstrate that Ube2N is crucial for the function of actin-rich structures when associated with the plasma membrane.


Subject(s)
Listeria monocytogenes , Listeria , Actins/metabolism , Listeria/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Pseudopodia/metabolism , Listeria monocytogenes/metabolism
7.
Vet Res ; 53(1): 113, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36587206

ABSTRACT

Listeriolysin O (LLO) is the main virulence protein of Listeria monocytogenes (LM), that helps LM escape lysosomes. We previously found that the cellular immune response elicited by L.ivanovii (LI) is weaker than that elicited by LM. We speculated that this may be related to the function of ivanolysin O (ILO). Here, we constructed hemolysin gene deletion strain, LIΔilo, and a modified strain, LIΔilo::hly, in which ilo was replaced by hly. Prokaryotic transcriptome sequencing was performed on LI, LIΔilo, and LIΔilo::hly. Transcriptome differences between the three strains were compared, and genes and pathways with significant differences between the three strains were analyzed. Prokaryotic transcriptome sequencing results revealed the relationship of ilo to the ribosome, quorum sensing, and phosphotransferase system (PTS) pathways, etc. LIΔilo exhibited attenuated biofilm formation ability compared to LI. Biofilm formation was significantly recovered or even increased after replenishing hly. After knocking out ilo, the relative expression levels of some virulence genes, including sigB, prfA, actA, smcL, and virR, were up-regulated compared to LI. After replenishing hly, these genes were down-regulated compared to LIΔilo. The trend and degree of such variation were not completely consistent when cultured in media containing only monosaccharides or disaccharides. The results confirmed that hemolysin is related to some important biological properties of Listeria, including biofilm formation and virulence gene expression levels. This is the first comprehensive study on ILO function at the transcriptomic level and the first evidence of a relationship between Listeria hemolysin and biofilm formation.


Subject(s)
Listeria monocytogenes , Listeria , Animals , Listeria/genetics , Listeria/metabolism , Hemolysin Proteins/genetics , Transcriptome , Listeria monocytogenes/genetics , Biofilms , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
8.
Microb Biotechnol ; 15(11): 2831-2844, 2022 11.
Article in English | MEDLINE | ID: mdl-36069650

ABSTRACT

Expressing heterologous antigens by plasmids may cause antibiotic resistance. Additionally, antigen expression via plasmids is unstable due to the loss of the plasmid. Here, we developed a balanced-lethal system. The Listeria monocytogenes (LM) balanced-lethal system has been previously used as an antigen carrier to induce cellular immune response. However, thus far, there has been no reports on Listeria ivanovii (LI) balanced-lethal systems. The dal and dat genes from the LI-attenuated LIΔatcAplcB (LIΔ) were deleted consecutively, resulting in a nutrient-deficient LIΔdd strain. Subsequently, an antibiotic resistance-free plasmid carrying the LM dal gene was transformed into the nutrient-deficient strain to generate the LI balanced-lethal system LIΔdd:dal. The resultant bacterial strain retains the ability to proliferate in phagocytic cells, as well as the ability to adhere and invade hepatocytes. Its genetic composition was stable, and compared to the parent strain, the balanced-lethal system was substantially attenuated. In addition, LIΔdd:dal induced specific CD4+ /CD8+ T-cell responses and protected mice against LIΔ challenge. Similarly, we constructed an LM balanced-lethal system LMΔdd:dal. Sequential immunization with different recombinant Listeria strains will significantly enhance the immunotherapeutic effect. Thus, LIΔdd:dal combined with LMΔdd:dal, or with other balanced-lethal systems will be more promising alternative for vaccine development.


Subject(s)
Listeria monocytogenes , Listeria , Tuberculosis Vaccines , Mice , Animals , Listeria/genetics , Listeria/metabolism , Tuberculosis Vaccines/genetics , Listeria monocytogenes/genetics , Vaccines, Attenuated/genetics , Anti-Bacterial Agents/metabolism
9.
Microb Genom ; 8(7)2022 07.
Article in English | MEDLINE | ID: mdl-35904424

ABSTRACT

Listeria monocytogenes (Lm) is a bacterial pathogen that causes listeriosis in immunocompromised individuals, particularly pregnant women. Several virulence factors support the intracellular lifecycle of Lm and facilitate cell-to-cell spread, allowing it to occupy multiple niches within the host and cross-protective barriers, including the placenta. One family of virulence factors, internalins, contributes to Lm pathogenicity by inducing specific uptake and conferring tissue tropism. Over 25 internalins have been identified thus far, but only a few have been extensively studied. Internalins contain leucine-rich repeat (LRR) domains that enable protein-protein interactions, allowing Lm to bind host proteins. Notably, other Listeria species express internalins but cannot colonize human hosts, prompting questions regarding the evolution of internalins within the genus Listeria. Internalin P (InlP) promotes placental colonization through interaction with the host protein afadin. Although prior studies of InlP have begun to elucidate its role in Lm pathogenesis, there remains a lack of information regarding homologs in other Listeria species. Here, we have used a computational evolutionary approach to identify InlP homologs in additional Listeria species. We found that Listeria ivanovii londoniensis (Liv) and Listeria seeligeri (Ls) encode InlP homologs. We also found InlP-like homologs in Listeria innocua and the recently identified species Listeria costaricensis. All newly identified homologs lack the full-length LRR6 and LRR7 domains found in Lm's InlP. These findings are informative regarding the evolution of one key Lm virulence factor, InlP, and serve as a springboard for future evolutionary studies of Lm pathogenesis as well as mechanistic studies of Listeria internalins.


Subject(s)
Listeria monocytogenes , Listeria , Listeriosis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Female , Humans , Listeria/genetics , Listeria/metabolism , Listeria monocytogenes/genetics , Listeriosis/microbiology , Placenta/metabolism , Placenta/microbiology , Pregnancy , Virulence Factors/genetics , Virulence Factors/metabolism
10.
Appl Environ Microbiol ; 88(10): e0003522, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35477262

ABSTRACT

The Gram-positive bacterium Listeria monocytogenes is an important pathogen that causes a foodborne illness with a high percentage of fatalities. Surface proteins, specifically expressed from a wide range of L. monocytogenes serotypes under selective enrichment culture conditions, can serve as targets for the detection and isolation of this pathogen using antibody-based methods. Among a number of surface proteins identified by mass spectrometry in a previous proteomic study, six candidates (annotated as LMOf2365_0148, LMOf2365_0312, LMOf2365_0546, LMOf2365_1883, LMOf2365_2111, and LMOf2365_2742) were selected here for investigating their expression in the bacterial cells cultured in vitro by raising rabbit polyclonal antibodies (PAbs) against the recombinant form of each candidate. These protein candidates contained regions conserved among various L. monocytogenes isolates but variable in other Listeria species. LMOf2365_0148, an uncharacterized protein with a LPXTG motif accountable for covalent linkage to the cell wall peptidoglycan, exhibited a strong reaction signal from anti-LMOf2365_0148 PAb binding to the cell surface, as detected by immunofluorescence microscopy. Further study, through the generation of a panel of mouse monoclonal antibodies (MAbs) to the recombinant LMOf2365_0148, showed that one of the MAbs, M3686, reacted to bacterial isolates belonging to all three lineages of L. monocytogenes under Health Canada's standard enrichment culture conditions (MFHPB-07 and MFHPB-30). These results demonstrated the potential of using LMOf2365_0148 as a surface biomarker, in conjunction with specific MAbs developed here, for the isolation and detection of L. monocytogenes from foods and food processing environments. IMPORTANCE Strains of Listeria monocytogenes are differentiated serologically into at least 13 serotypes and grouped phylogenetically into 4 distinct lineages (I, II, III, and IV). No single monoclonal antibody (MAb) reported to date is capable of binding to the surface of L. monocytogenes strains representing all the serotypes. This study assessed the expression of six surface proteins selected from a previous proteomic study and demonstrated that surface protein LMOf2365_0148 has the greatest potential as a surface biomarker. A panel of 24 MAbs to LMOf2365_0148 were assessed extensively, revealing that one of the MAbs, M3686, reacted to a wide range of L. monocytogenes isolates (lineage I, II, and III isolates) grown under standard enrichment culture conditions and thus led to the conclusion that LMOf2365_0148 is a useful novel surface biomarker for identifying, detecting, and isolating the pathogen from food and environmental samples.


Subject(s)
Listeria monocytogenes , Proteomics , Antibodies, Monoclonal , Biomarkers/metabolism , Listeria/chemistry , Listeria/metabolism , Listeria monocytogenes/chemistry , Listeria monocytogenes/metabolism , Membrane Proteins/metabolism
11.
Carbohydr Res ; 511: 108499, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35007911

ABSTRACT

Listeria innocua is genetically closely related to the foodborne human pathogen Listeria monocytogenes. However, as most L. innocua strains are non-pathogenic, it has been proposed as a surrogate organism for determining the efficacy of antimicrobial strategies against L. monocytogenes. Teichoic acids are one of the three major cell wall components of Listeria, along with the peptidoglycan backbone and cell wall-associated proteins. The polymeric teichoic acids make up the majority of cell wall carbohydrates; the type of teichoic acids directly attached to the peptidoglycan are termed wall teichoic acids (WTAs). WTAs play vital physiological roles, are important virulence factors, antigenic determinants, and phage-binding ligands. The structures of the various WTAs of L. monocytogenes are well known, whereas those of L. innocua are not. In the present study, the WTA structure of L. innocua ZM39 was determined mainly by 1D and 2D NMR spectroscopy and it was found to be the following: [→4)-[α-D-GlcpNAc-(1→3)]-ß-D-GlcpNAc-(1→4)-D-Rbo-(1P→]n This structure is new with respect to all currently known Listeria WTAs and it shares structural similarities with type II WTA serovar 6a. In addition, the genome of strain L. innocua ZM39 was sequenced and the majority of putative WTA synthesis genes were identified.


Subject(s)
Listeria monocytogenes , Listeria , Cell Wall/chemistry , Humans , Listeria/genetics , Listeria/metabolism , Listeria monocytogenes/genetics , Teichoic Acids
12.
Cell Death Differ ; 29(2): 306-322, 2022 02.
Article in English | MEDLINE | ID: mdl-34999730

ABSTRACT

Phosphorylation of the pseudokinase mixed lineage kinase domain-like protein (MLKL) by the protein kinase RIPK3 targets MLKL to the cell membrane, where it triggers necroptotic cell death. We report that conjugation of K63-linked polyubiquitin chains to distinct lysine residues in the N-terminal HeLo domain of phosphorylated MLKL (facilitated by the ubiquitin ligase ITCH that binds MLKL via a WW domain) targets MLKL instead to endosomes. This results in the release of phosphorylated MLKL within extracellular vesicles. It also prompts enhanced endosomal trafficking of intracellular bacteria such as Listeria monocytogenes and Yersinia enterocolitica to the lysosomes, resulting in decreased bacterial yield. Thus, MLKL can be directed by specific covalent modifications to differing subcellular sites, whence it signals either for cell death or for non-deadly defense mechanisms.


Subject(s)
Listeria , Yersinia , Endosomes/metabolism , Listeria/metabolism , Lysosomes/metabolism , Phosphorylation , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Ubiquitination , Yersinia/metabolism
13.
J Bacteriol ; 203(16): e0013621, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34096780

ABSTRACT

Listeria ivanovii (Liv) is an intracellular Gram-positive pathogen that primarily infects ruminants but also occasionally causes enteric infections in humans. Albeit rare, this bacterium possesses the capacity to cross the intestinal epithelium of humans, similar to its more frequently pathogenic cousin, Listeria monocytogenes (Lmo). Recent studies in Lmo have shown that specific glycosyl modifications on the cell wall-associated glycopolymers (termed wall teichoic acid [WTA]) of Lmo are responsible for bacteriophage adsorption and retention of the major virulence factor internalin B (InlB). However, the relationship between InlB and WTA in Liv remains unclear. Here, we report the identification of the unique gene liv1070, which encodes a putative glucosyltransferase in the polycistronic WTA gene cluster of the Liv WSLC 3009 genome. We found that in-frame deletion of liv1070 led to loss of the glucose substitution on WTA, as revealed by ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) analysis. Interestingly, the glucose-deficient mutant became resistant to phage B025 infection due to an inability of the phage to adsorb to the bacterial surface, a binding process mediated by the receptor-binding protein B025_Gp17. As expected, deletion of liv1070 led to loss of InlB retention on the bacterial cell wall, which corresponded to a drastic decrease in cellular invasion. Genetic complementation of liv1070 restored the characteristic phenotypes, including glucose decoration, phage adsorption, and cellular invasion. Taken together, our data demonstrate that an interplay between phage, bacteria, and host cells also exists in Listeria ivanovii, suggesting that the trade-off between phage resistance and virulence attenuation may be a general feature in the genus Listeria. IMPORTANCE Listeria ivanovii is a Gram-positive bacterial pathogen known to cause enteric infection in rodents and ruminants and occasionally in immunocompromised humans. Recent investigations revealed that in its better-known cousin Listeria monocytogenes, strains develop resistance to bacteriophage attack due to loss of glycosylated surface receptors, which subsequently results in disconnection of one of the bacterium's major virulence factors, InlB. However, the situation in L. ivanovii remains unclear. Here, we show that L. ivanovii acquires phage resistance following deletion of a unique glycosyltransferase. This deletion also leads to dysfunction of InlB, making the resulting strain unable to invade host cells. Overall, this study suggests that the interplay between phage, bacteria, and the host may be a feature common to the genus Listeria.


Subject(s)
Bacterial Proteins/metabolism , Bacteriophages/pathogenicity , Cell Wall/metabolism , Glucose/metabolism , Lipopolysaccharides/metabolism , Listeria/virology , Teichoic Acids/metabolism , Adsorption , Bacterial Proteins/genetics , Bacteriophages/physiology , Cell Wall/genetics , Cell Wall/virology , Glycosylation , Host-Pathogen Interactions , Listeria/genetics , Listeria/metabolism , Listeria monocytogenes/genetics , Listeria monocytogenes/metabolism , Listeria monocytogenes/virology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Virulence
14.
Appl Environ Microbiol ; 86(22)2020 10 28.
Article in English | MEDLINE | ID: mdl-32917749

ABSTRACT

Class IIa bacteriocin antimicrobial peptides (AMPs) are a compelling alternative to current antimicrobials because of potential specific activity toward antibiotic-resistant bacteria, including vancomycin-resistant enterococci. Engineering of these molecules would be enhanced by a better understanding of AMP sequence-activity relationships to improve efficacy in vivo and limit effects of off-target activity. Toward this goal, we experimentally evaluated 210 natural and variant class IIa bacteriocins for antimicrobial activity against six strains of enterococci. Inhibitory activity was ridge regressed to AMP sequence to predict performance, achieving an area under the curve of 0.70 and demonstrating the potential of statistical models for identifying and designing AMPs. Active AMPs were individually produced and evaluated against eight enterococcus strains and four Listeria strains to elucidate trends in susceptibility. It was determined that the mannose phosphotransferase system (manPTS) sequence is informative of susceptibility to class IIa bacteriocins, yet other factors, such as membrane composition, also contribute strongly to susceptibility. A broadly potent bacteriocin variant (lactocin DT1) from a Lactobacillus ruminis genome was identified as the only variant with inhibitory activity toward all tested strains, while a novel enterocin variant (DT2) from an Enterococcus faecium genome demonstrated specificity toward Listeria strains. Eight AMPs were evaluated for proteolytic stability to trypsin, chymotrypsin, and pepsin, and three C-terminal disulfide-containing variants, including divercin V41, were identified as compelling for future in vivo studies, given their high potency and proteolytic stability.IMPORTANCE Class IIa bacteriocin antimicrobial peptides (AMPs), an alternative to traditional small-molecule antibiotics, are capable of selective activity toward various Gram-positive bacteria, limiting negative side effects associated with broad-spectrum activity. This selective activity is achieved through targeting of the mannose phosphotransferase system (manPTS) of a subset of Gram-positive bacteria, although factors affecting this mechanism are not entirely understood. Peptides identified from genomic data, as well as variants of previously characterized AMPs, can offer insight into how peptide sequence affects activity and selectivity. The experimental methods presented here identify promising potent and selective bacteriocins for further evaluation, highlight the potential of simple computational modeling for prediction of AMP performance, and demonstrate that factors beyond manPTS sequence affect bacterial susceptibility to class IIa bacteriocins.


Subject(s)
Bacteriocins/metabolism , Enterococcus/drug effects , Listeria/drug effects , Pore Forming Cytotoxic Proteins/metabolism , Enterococcus/metabolism , Gene Library , Genes, Bacterial , Listeria/metabolism
15.
Res Microbiol ; 171(3-4): 115-121, 2020.
Article in English | MEDLINE | ID: mdl-32119904

ABSTRACT

Listeria ivanovii is one of the two pathogenic species within the genus Listeria, the other being Listeria monocytogenes. In this study, we generated a stable pediocin resistant mutant Liv-r1 of a L. ivanovii strain, compared phenotypic differences between the wild-type and the mutant, localised the pediocin-induced mutations in the chromosome, and analysed the mechanisms behind the bacteriocin resistance. In addition to pediocin resistance, Liv-r1 was also less sensitive to nisin. The growth of Liv-r1 was significantly reduced with glucose and mannose, but less with cellobiose. The cells of Liv-r1 adsorbed less pediocin than the wild-type cells. Consequently, with less pediocin on the cell surface, the mutant was also less leaky, as shown as the release of intracellular lactate dehydrogenase to the supernatant. The surface of the mutant cells was more hydrophobic than that of the wild-type. Whole genome sequencing revealed numerous changes in the Liv-r1 chromosome. The mutations were found e.g., in genes encoding sigma-54-dependent transcription regulator and internalin B, as well as in genes involved in metabolism of carbohydrates such as glucose and cellobiose. Genetic differences observed in the mutant may be responsible for resistance to pediocin but no direct evidence is provided.


Subject(s)
Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/pharmacology , Drug Resistance, Bacterial , Listeria/drug effects , Listeria/genetics , Listeriosis/microbiology , Pediocins/genetics , Pediocins/pharmacology , Antimicrobial Cationic Peptides/chemistry , Carbohydrate Metabolism , Genome, Bacterial , Genomics/methods , Listeria/metabolism , Listeriosis/drug therapy , Microbial Sensitivity Tests , Pediocins/chemistry , Whole Genome Sequencing
16.
Mol Microbiol ; 113(3): 627-637, 2020 03.
Article in English | MEDLINE | ID: mdl-31972870

ABSTRACT

Teichoic acids (TAs) are the most abundant glycopolymers in the cell wall of Listeria, an opportunistic Gram-positive pathogen that causes severe foodborne infections. Two different structural classes of Listeria TA exist: the polyribitolphosphate-based wall teichoic acid (WTA) that is covalently anchored to the peptidoglycan, and the polyglycerolphosphate-based lipoteichoic acid (LTA) that is tethered to the cytoplasmic membrane. While TA polymers govern many important physiological processes, the diverse glycosylation patterns of WTA result in a high degree of surface variation across the species and serovars of Listeria, which in turn bestows varying effects on fitness, biofilm formation, bacteriophage susceptibility and virulence. We review the advances made over the past two decades, and our current understanding of the relationship between TA structure and function. We describe the various types of TA that have been structurally determined to date, and discuss the genetic determinants known to be involved in TA glycosylation. We elaborate on surface proteins functionally related to TA decoration, as well as the molecular and analytical tools used to probe TAs. We anticipate that the growing knowledge of the Listeria surface chemistry will also be exploited to develop novel diagnostic and therapeutic strategies for this pathogen.


Subject(s)
Listeria/metabolism , Structure-Activity Relationship , Teichoic Acids/metabolism , Cell Membrane/metabolism , Cell Wall/metabolism , Glycosylation , Lipopolysaccharides/metabolism , Listeria/pathogenicity , Membrane Proteins/metabolism , Peptidoglycan/metabolism , Virulence
17.
Mol Microbiol ; 113(3): 560-569, 2020 03.
Article in English | MEDLINE | ID: mdl-31972871

ABSTRACT

Metal homeostasis in bacteria is a complex and delicate balance. While some metals such as iron and copper are essential for cellular functions, others such as cadmium and arsenic are inherently cytotoxic. While bacteria regularly encounter essential metals, exposure to high levels of toxic metals such as cadmium and arsenic is only experienced in a handful of special habitats. Nonetheless, Listeria and other Gram-positive bacteria have evolved an impressively diverse array of genetic tools for acquiring enhanced tolerance to such metals. Here, we summarize this fascinating collection of resistance determinants in Listeria, with special focus on resistance to cadmium and arsenic, as well as to biocides and antibiotics. We also provide a comparative description of such resistance determinants and adaptations in other Gram-positive bacteria. The complex coselection of heavy metal resistance and other types of resistance seems to be universal across the Gram-positive bacteria, while the type of coselected traits reflects the lifestyle of the specific microbe. The roles of heavy metal resistance genes in environmental adaptation and virulence appear to vary by genus, highlighting the need for further functional studies to explain the mystery behind the array of heavy metal resistance determinants dispersed and maintained among Gram-positive bacteria.


Subject(s)
Arsenic/metabolism , Cadmium/metabolism , Listeria/metabolism , Anti-Bacterial Agents/pharmacology , Arsenic/toxicity , Cadmium/toxicity , Drug Resistance, Bacterial/drug effects , Genes, Bacterial/drug effects , Gram-Positive Bacteria/genetics , Gram-Positive Bacteria/metabolism , Homeostasis/physiology , Listeria/genetics , Listeria monocytogenes/genetics , Listeria monocytogenes/metabolism , Metals, Heavy/toxicity , Virulence/drug effects
18.
Food Microbiol ; 87: 103381, 2020 May.
Article in English | MEDLINE | ID: mdl-31948622

ABSTRACT

Indirect impedance has been used for the detection and enumeration of bacteria, however there is limited data regarding the ability of the method to measure growth and inhibition of microorganisms in food in response to preservatives. The aim of this study was to evaluate the suitability of the technique to determine maximum growth rates of Listeria innocua (used as a surrogate for Listeria monocytogenes) in complex food matrices to which multiple preservative factors had been applied and assess the suitability of the data for use in predictive microbiology. Growth of L. innocua in laboratory medium (BHI broth) and two food matrices (zucchini purée and béarnaise sauce) under varying conditions of pH (5 & 5.3), water activity (0.93, 0.96 & 0.98) and acetic and propionic acid concentration (0, 1 & 2 mM) was monitored by the conductimetric Rapid Automated Bacterial Impedance Technology (R.A.B.I.T) system by means of CO2 emission for up to 120 h. Growth rates of L. innocua were determined for several conditions across the three test matrices and a good correlation between detection times and initial inoculum level was observed in most cases (R2 ≥ 0.82). However, growth of L. innocua was not detected in a large number of conditions and comparison of growth rates determined by indirect impedance to those determined by plate counts indicated that in general, the R.A.B.I.T. system under-estimated growth. This study demonstrates that there are limitations associated with the technology, and as a result the system may be unsuitable for measuring microbial growth rates in complex food matrices under the environmental conditions tested and within the time duration of the study.


Subject(s)
Colony Count, Microbial/methods , Electrochemical Techniques/methods , Food Microbiology/methods , Listeria/chemistry , Listeria/growth & development , Carbon Dioxide/analysis , Carbon Dioxide/metabolism , Electric Impedance , Food Contamination/analysis , Hydrogen-Ion Concentration , Listeria/metabolism , Listeria monocytogenes/chemistry , Listeria monocytogenes/growth & development , Listeria monocytogenes/metabolism , Water/analysis , Water/metabolism
19.
Sci Rep ; 10(1): 302, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31942003

ABSTRACT

We have previously demonstrated that a recombinant Listeria ivanovii (LI) strain expressing the ESAT-6 or Ag85C protein of Mycobacterium tuberculosis (Mtb) as a tuberculosis (TB) vaccine candidates induced antigen-specific cellular immune responses after intravenous immunization of mice. However, whether such recombinant strains could induce desired immune responses in the lung, where TB infection occurs, is not clear. In this paper, C57BL/6 J mice were intranasally vaccinated with attenuated LIΔactAplcB-Rv3875 (Δ refers to gene deletion in the bacterial genome) or LIΔactAplcB-Rv0129c, the two vaccine candidates that utilize LI as an antigen delivery vector. Bacterial load in the target organs, histological changes in the infected organs, the percentage of specific cytokine-secreting T cells in the lung and spleen, IgG levels in the serum and secretory IgA (SIgA) levles in bronchoalveolar lavage (BAL) fluid were determined at specific days post inoculation (dpi). The results showed that both strains were mainly confined to the lung and were eliminated at 10 dpi. The histological damage caused by the infection in the lung was slight and recovered by day 5. Intranasal vaccination of the mice twice at an interval of 4 weeks notably elicited TB antigen-specific CD4+ and CD8+ T cell responses in the lung and SIgA secretion in the pulmonary mucosa, and significantly enhanced the percentage of double-functional CD8+ T cells (IFN-γ+ TNF-α+ CD8+). To our knowledge, this is the first report regarding the used of LI vector vaccines to induce promising lung-localized cellular and humoral immune responses by intranasal vaccination. These data suggest that LI could be a novel and promising live vector to construct an intranasal vaccine against respiratory diseases.


Subject(s)
Antigens, Bacterial/metabolism , Immunity, Cellular , Immunity, Humoral , Listeria/metabolism , Lung/immunology , Administration, Intranasal , Animals , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Bacterial Load , Bronchoalveolar Lavage Fluid/chemistry , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Female , Immunoglobulin A/metabolism , Immunoglobulin G/blood , Interferon-gamma/metabolism , Listeria/pathogenicity , Lung/metabolism , Lung/pathology , Mice , Mice, Inbred C57BL , Tuberculosis Vaccines/immunology , Tumor Necrosis Factor-alpha/metabolism , Vaccination
20.
PLoS One ; 14(10): e0222484, 2019.
Article in English | MEDLINE | ID: mdl-31596855

ABSTRACT

In nature, protozoa play a major role in controlling bacterial populations. This paper proposes a microfluidic device for the study of protozoa behaviors change due to their chemotactic response in the presence of bacterial cells. A three-channel microfluidic device was designed using a nitrocellulose membrane into which channels were cut using a laser cutter. The membrane was sandwiched between two glass slides; a Euglena suspension was then allowed to flow through the central channel. The two side channels were filled with either, 0.1% peptone as a negative control, or a Listeria suspension respectively. The membrane design prevented direct interaction but allowed Euglena cells to detect Listeria cells as secretions diffused through the nitrocellulose membrane. A significant number of Euglena cells migrated toward the chambers near the bacterial cells, indicating a positive chemotactic response of Euglena toward chemical cues released from Listeria cells. Filtrates collected from Listeria suspension with a series of molecular weight cutoffs (3k, 10k and 100k) were examined in Euglena chemotaxis tests. Euglena cells were attracted to all filtrates collected from the membrane filtration with different molecular weight cutoffs, suggesting small molecules from Listeria might be the chemical cues to attract protozoa. Headspace volatile organic compounds (VOC) released from Listeria were collected, spiked to 0.1% peptone and tested as the chemotactic effectors. It was discovered that the Euglena cells responded quickly to Listeria VOCs including decanal, 3,5- dimethylbenzaldehyde, ethyl acetate, indicating bacterial VOCs were used by Euglena to track the location of bacteria.


Subject(s)
Euglena/metabolism , Lab-On-A-Chip Devices , Listeria/metabolism , Chemotactic Factors/pharmacology , Euglena/cytology , Euglena/drug effects , Listeria/cytology , Listeria/drug effects , Microspheres , Volatile Organic Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...