Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.533
Filter
1.
Food Res Int ; 188: 114408, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823853

ABSTRACT

Biopreservation strategies such as the use of Mediterranean plant extracts to ensure food safety are promising to deal with the emergence of antimicrobial resistances and the overreliance on food chemical additives. In the last few decades, antimicrobial susceptibility testing (AST) for evaluating the in vitro antibacterial potential of plant extracts against the most relevant foodborne pathogens has been widely reported in the literature. The current meta-analysis aimed to summarise and analyse the extensive evidence available in the literature regarding the in vitro antimicrobial capability of Allium, Ocimum and Thymus spp. extracts against foodborne pathogens. A systematic review was carried out to gather data on AST results of these extracts against Listeria monocytogenes, Staphylococcus aureus, Salmonella spp., Escherichia coli and Bacillus cereus, including inhibition diameters (ID) and minimum inhibitory concentrations (MIC). A total of 742 records were gathered from a raw collection of 2,065 articles. Weighted mixed-effect linear models were adjusted to data to obtain pooled ID, pooled MIC and the relationship between both model estimations and observations. The pooled results revealed B. cereus as the most susceptible bacteria to Allium sativum (pooled ID = 20.64 ± 0.61 mm) by diffusion methods and S. aureus (pooled MIC = 0.146 mg/mL) by dilution methods. Diffusion methods did not yield conclusive results for Ocimum spp. extracts; however, the lowest pooled MIC was obtained for S. aureus (0.263 mg/mL). Among the foodborne pathogens evaluated, B. cereus showed the highest sensitivity to Thymus spp. extracts by both diffusion and dilution methods (pooled ID = 28.90 ± 2.34 mm and MIC = 0.075 mg/mL). The methodology used for plant extraction was found to not significantly affect MIC values (p > 0.05). Overall, the antimicrobial effectiveness of the studied extracts against Gram-positive and Gram-negative bacteria was demonstrated. Finally, the robustness of the meta-regression model was confirmed, also revealing an inversely proportional correlation between the ID and MIC measurements (p < 0.0001). These results provide a robust scientific basis on the factors affecting the in vitro antimicrobial efficacy of extracts from Mediterranean plants. They also provide valuable information for stakeholders involved in their industrial application in food, including producers, regulatory agencies and consumers which demand green-labelled foods.


Subject(s)
Allium , Anti-Bacterial Agents , Food Microbiology , Microbial Sensitivity Tests , Ocimum , Plant Extracts , Thymus Plant , Thymus Plant/chemistry , Plant Extracts/pharmacology , Ocimum/chemistry , Allium/chemistry , Anti-Bacterial Agents/pharmacology , Food Safety , Bacillus cereus/drug effects , Bacillus cereus/growth & development , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development
2.
Food Res Int ; 188: 114491, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823842

ABSTRACT

Minimum inhibitory concentrations (MIC) assays are often questioned for their representativeness. Especially when foodborne pathogens are tested, it is of crucial importance to also consider parameters of the human digestive system. Hence, the current study aimed to assess the inhibitory capacity of two antibiotics, ciprofloxacin and tetracycline, against Salmonella enterica and Listeria monocytogenes, under representative environmental conditions. More specifically, aspects of the harsh environment of the human gastrointestinal tract (GIT) were gradually added to the experimental conditions starting from simple aerobic lab conditions into an in vitro simulation of the GIT. In this way, the effects of parameters including the anoxic environment, physicochemical conditions of the GIT (low gastric pH, digestive enzymes, bile acids) and the gut microbiota were evaluated. The latter was simulated by including a representative consortium of selected gut bacteria species. In this study, the MIC of the two antibiotics against the relevant foodborne pathogens were established, under the previously mentioned environmental conditions. The results of S. enterica highlighted the importance of the anaerobic environment when conducting such studies, since the pathogen thrived under such conditions. Inclusion of physicochemical barriers led to exactly opposite results for S. enterica and L. monocytogenes since the former became more susceptible to ciprofloxacin while the latter showed lower susceptibility towards tetracycline. Finally, the inclusion of gut bacteria had a bactericidal effect against L. monocytogenes even in the absence of antibiotics, while gut bacteria protected S. enterica from the effect of ciprofloxacin.


Subject(s)
Anti-Bacterial Agents , Ciprofloxacin , Listeria monocytogenes , Microbial Sensitivity Tests , Salmonella enterica , Tetracycline , Ciprofloxacin/pharmacology , Listeria monocytogenes/drug effects , Salmonella enterica/drug effects , Tetracycline/pharmacology , Anti-Bacterial Agents/pharmacology , Humans , Gastrointestinal Tract/microbiology , Gastrointestinal Microbiome/drug effects , Food Microbiology , Hydrogen-Ion Concentration , Foodborne Diseases/microbiology , Foodborne Diseases/prevention & control
3.
Mikrochim Acta ; 191(6): 361, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38822891

ABSTRACT

A one-shot CO2 laser-based strategy to generate conductive reduced graphene oxide (rGO) decorated with nanoceria (nCe) is proposed. The 2D/0D rGO-nCe films, integrated as catalytic sensing layers in paper-based sensors, were employed for on-site monitoring of indoor fogging treatments against Listeria monocytogenes (Lm), a ubiquitous pathogenic bacterium. The rGO-nCe laser-assisted synthesis was optimized to preserve the rGO film morphological and electron-transfer features and simultaneously integrate catalytic nCe. The films were characterized by microscopical (SEM), spectroscopical (EDX, Raman, and FTIR), and electrochemical techniques. The most performing film was integrated into a nitrocellulose substrate, and the complete sensor was assembled via a combination of xurography and stencil printing. The rGO-nCe sensor's catalytic activity was proved toward the detection of H2O2, obtaining sensitive determination (LOD = 0.3 µM) and an extended linear range (0.5-1500 µM). Eventually, the rGO-nCe sensor was challenged for the real-time continuous monitoring of hydrogen peroxide aerosol during no-touch fogging treatment conducted following the EU's recommendation for biocidal product use. Treatment effectiveness was proved toward three Lm strains characterized by different origins, i.e., type strain ATCC 7644, clinical strain 338, and food strain 641/6II. The sensor allows for discrimination and quantification treatments at different environmental biocidal amounts and fogging times, and correlates with the microbiological inhibition, promoting the proposed sensor as a useful tool to modulate and monitor no-touch treatments.


Subject(s)
Disinfection , Graphite , Hydrogen Peroxide , Lasers , Listeria monocytogenes , Paper , Graphite/chemistry , Hydrogen Peroxide/chemistry , Listeria monocytogenes/drug effects , Listeria monocytogenes/isolation & purification , Disinfection/methods , Cerium/chemistry , Limit of Detection , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Catalysis
4.
Swiss Med Wkly ; 154: 3745, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701492

ABSTRACT

AIMS OF THE STUDY: Listeriosis is a notifiable disease in Switzerland. In summer 2022, the Swiss Federal Office of Public Health noticed an increase in reports of listeriosis cases, indicating a possible ongoing outbreak. Here we present the approaches applied for rapidly confirming the outbreak, detecting the underlying source of infection and the measures put in place to eliminate it and contain the outbreak. METHODS: For close surveillance and early detection of outbreak situations with their possible sources, listeriosis patients in Switzerland are systematically interviewed about risk behaviours and foods consumed prior to the infection. Listeria monocytogenes isolates derived from patients in medical laboratories are sent to the National Reference Laboratory for Enteropathogenic Bacteria and Listeria, where they routinely undergo whole-genome sequencing. Interview and whole-genome sequencing data are continuously linked for comparison and analysis. RESULTS: In summer 2022, 20 patient-derived L. monocytogenes serotype 4b sequence type 388 strains were found to belong to an outbreak cluster (≤10 different alleles between neighbouring isolates) based on core genome multilocus sequence typing analysis. Geographically, 18 of 20 outbreak cases occurred in northeastern Switzerland. The median age of patients was 77.4 years (range: 58.1-89.7), with both sexes equally affected. Rolling analysis of the interview data revealed smoked trout from a local producer as a suspected infection source, triggering an on-site investigation of the production facility and sampling of the suspected products by the responsible cantonal food inspection team on 15 July 2022. Seven of ten samples tested positive for L. monocytogenes and the respective cantonal authority ordered a ban on production and distribution as well as a product recall. The Federal Food Safety and Veterinary Office released a nationwide public alert covering the smoked fish products concerned. Whole-genome sequencing analysis confirmed the interrelatedness of the L. monocytogenes smoked trout product isolates and the patient-derived isolates. Following the ban on production and distribution and the product recall, reporting of new outbreak-related cases rapidly dropped to zero. CONCLUSIONS: This listeriosis outbreak could be contained within a relatively short time thanks to identification of the source of contamination through the established combined approach of timely interviewing of every listeriosis patient or a representative and continuous molecular analysis of the patient- and food-derived L. monocytogenes isolates. These findings highlight the effectiveness of this well-established, joint approach involving the federal and cantonal authorities and the research institutions mandated to contain listeriosis outbreaks in Switzerland.


Subject(s)
Disease Outbreaks , Listeria monocytogenes , Listeriosis , Whole Genome Sequencing , Humans , Switzerland/epidemiology , Listeria monocytogenes/genetics , Listeria monocytogenes/isolation & purification , Listeriosis/epidemiology , Listeriosis/diagnosis , Whole Genome Sequencing/methods , Male , Aged , Female , Aged, 80 and over , Multilocus Sequence Typing , Middle Aged , Food Microbiology , Foodborne Diseases/epidemiology , Foodborne Diseases/microbiology , Interviews as Topic
5.
Food Res Int ; 186: 114312, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729688

ABSTRACT

Listeria monocytogenes exhibits varying levels of pathogenicity when entering the host through contaminated food. However, little is known regarding the stress response and environmental tolerance mechanism of different virulence strains to host gastrointestinal (GI) stimuli. This study analyzed the differences in the survival and genes of stress responses among two strains of L. monocytogenes 10403S (serotype 1/2a, highly virulent strain) and M7 (serotype 4a, low-virulence strain) during simulated gastrointestinal digestion. The results indicated that L. monocytogenes 10403S showed greater acid and bile salt tolerance than L. monocytogenes M7, with higher survival rates and less cell deformation and cell membrane permeability during the in vitro digestion. KEGG analysis of the transcriptomes indicated that L. monocytogenes 10403S displayed significant activity in amino acid metabolism, such as glutamate and arginine, associated with acid tolerance. Additionally, L. monocytogenes 10403S demonstrated a higher efficacy in promoting activities that preserve bacterial cell membrane integrity and facilitate flagellar protein synthesis. These findings will contribute valuable practical insights into the tolerance distinctions among different virulence strains of L. monocytogenes in the GI environment.


Subject(s)
Food Microbiology , Gastrointestinal Tract , Listeria monocytogenes , Meat Products , Listeria monocytogenes/pathogenicity , Listeria monocytogenes/genetics , Listeria monocytogenes/metabolism , Meat Products/microbiology , Virulence , Gastrointestinal Tract/microbiology , Bile Acids and Salts/metabolism , Digestion , Food Contamination , Microbial Viability , Cell Membrane Permeability
6.
J Agric Food Chem ; 72(19): 10853-10861, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38708871

ABSTRACT

The purpose of this study was to investigate the antibacterial activity and mechanism of action of osthole against Listeria monocytogenes. The antibacterial activity of osthole was evaluated by determining the minimum inhibitory concentration (MIC) and growth curve. Cell morphology, membrane permeability, membrane integrity, bacterial physiology, and metabolism were explored using different methods to elucidate the mechanism of action of osthole. It was shown that the MIC of osthole against L. monocytogenes was 62.5 µg/mL and it inhibited the growth of L. monocytogenes effectively in a concentration-dependent manner. Scanning electron microscopy (SEM) images demonstrated morphology changes of L. monocytogenes, including rough surface, cell shrinkage, and rupture. It was found that extracellular conductivity and macromolecule content were increased significantly in the presence of osthole, indicating the disruption of cell membrane integrity and permeability. Laser confocal microscopy results supported the conclusion that osthole caused severe damage to the cell membrane. It was also noticed that osthole depleted intracellular adenosine triphosphate (ATP), inhibited Na+-K+-ATPase and Ca2+-Mg2+-ATPase activity, and promoted the accumulation of intracellular reactive oxygen species (ROS), leading to cell death. This study suggests that osthole is a promising antibacterial agent candidate against L. monocytogenes, and it shows potential in the prevention and control of foodborne pathogens.


Subject(s)
Anti-Bacterial Agents , Coumarins , Listeria monocytogenes , Microbial Sensitivity Tests , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Coumarins/pharmacology , Coumarins/chemistry , Cell Membrane/drug effects , Cell Membrane/metabolism , Reactive Oxygen Species/metabolism , Adenosine Triphosphate/metabolism , Cell Membrane Permeability/drug effects , Sodium-Potassium-Exchanging ATPase/metabolism
7.
J Food Prot ; 87(6): 100286, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697485

ABSTRACT

The effect of fermentation and drying temperatures, caliber, and sodium lactate on Listeria monocytogenes inactivation was studied in salami, produced in a pilot scale, inoculated with 107 CFU/g of Listeria innocua ATCC® 33090 as a surrogate microorganism for L. monocytogenes. Fermentation temperature varied between 24 and 30°C, drying temperature between 14 and 20°C, caliber between 5.1 and 13.2 cm, and sodium lactate initial concentrations in salamis were 0 and 2%. L. innocua counts, pH and water activity were determined in salamis over time. Sodium lactate (2%) decreased pH drop and Listeria inactivation during fermentation. Baranyi & Roberts equation was used to fit the experimental data and to estimate, for each test condition, inactivation rate (k), initial (Y0), and final counts of L. innocua (YEND). Total inactivation was calculated as Y0 minus YEND (Y0-YEND). Then, using a Box Benkhen experimental design, a quadratic model for k and a two-factor interaction model (2FI) for Y0 - YEND were obtained as functions of fermentation temperature, drying temperature, and caliber size. The models predicted that maximum k and Y0 -YEND, -2.62 ± 0.14 log10 CFU/g/day and 4.5 ± 0.1 log10 CFU/g, respectively, would be obtained fermenting at 30°C and drying at 20°C regardless of caliber. Drying at 14°C allowed Listeria growth until a water activity (aw) of 0.92 was reached. Therefore, if initial Listeria contamination is high (3 log10 CFU/g), drying at low temperatures will compromise product safety.


Subject(s)
Colony Count, Microbial , Fermentation , Food Microbiology , Listeria monocytogenes , Sodium Lactate , Temperature , Sodium Lactate/pharmacology , Meat Products/microbiology , Listeria , Hydrogen-Ion Concentration , Food Preservation/methods , Food Handling/methods
8.
J Food Prot ; 87(6): 100290, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701973

ABSTRACT

Two recent outbreaks of listeriosis have been linked to the consumption of enoki mushrooms. After the first outbreak, import sampling by the U.S. FDA identified that 43% of the samples evaluated were positive for Listeria monocytogenes (Lm). These observations raised questions about the potential sources of Lm contamination of enoki mushrooms. One potential source of contamination is during enoki mushroom cultivation, as growing conditions are comparatively cool and moist to induce mushroom germination, to which Lm is well adapted. Two varieties of enoki mushrooms were evaluated to determine the potential for Lm to contaminate enoki cultures when introduced at various points during cultivation (inoculation, scraping, pinning, and collaring). The results of two trials showed that Lm established contamination and grew to similar levels in the substrate regardless of when Lm was introduced and, with one exception, did not alter the rate of mushroom generation to below the control. Enumeration of Lm in enoki mushroom cultures at harvest found an average contamination of 103 cfu/g, though the results were variable. Refrigerated storage for six weeks was found to result in an increase in Lm. Additionally, no statistically significant difference in the levels of Lm was observed based on proximity to the substrate, though levels of Lm in the different enoki samples correlated with levels of Lm in the substrate at harvest, but not at scraping. The ability of Lm to grow independently in the media used to culture enoki was assessed, and Lm was found to be unable to grow but could sporadically survive in Masters Mix. No growth of Lm was observed in potato dextrose broth, though growth could occur on the agar. Overall, the data indicate a high potential for the establishment of Lm contamination at any point during enoki cultivation to result in Lm-contaminated mushrooms. These data indicate a need for active control mechanisms to prevent the introduction of Lm to enoki cultures.


Subject(s)
Agaricales , Colony Count, Microbial , Food Contamination , Listeria monocytogenes , Listeria monocytogenes/growth & development , Food Contamination/analysis , Humans , Agaricales/growth & development , Food Microbiology
9.
Int J Food Microbiol ; 418: 110713, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38718617

ABSTRACT

This research aimed to assess the potential of active food packaging as an innovative approach to enhance the quality of fresh food products. Specifically, our focus was on developing chitosan edible films combined with rosemary nanoemulsion (Ch-RNE) and carvacrol nano-emulsion (Ch-CNE) as effective antibacterial food packaging solutions. The efficacy of these films against artificially inoculated L. monocytogenes (NCTC 13372\ ATCC® 7644) as a Gram-positive bacterium, and S. enterica serovar Typhimurium (ATCC 14028) as a Gram-negative bacterium, in ground meat was investigated. The size of the prepared nano-emulsions was characterized using zeta sizer, FTIR and HRTEM. The MIC of both nano-emulsions against both pathogens was found to be 0.78 % and 1.56 %. Filmogenic mixtures were casted using these concentrations, which were then dried and evaluated for their physical and mechanical properties.


Subject(s)
Anti-Bacterial Agents , Chitosan , Cymenes , Edible Films , Emulsions , Food Packaging , Listeria monocytogenes , Monoterpenes , Salmonella typhimurium , Cymenes/pharmacology , Chitosan/pharmacology , Chitosan/chemistry , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Salmonella typhimurium/drug effects , Salmonella typhimurium/growth & development , Emulsions/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Food Packaging/methods , Monoterpenes/pharmacology , Rosmarinus/chemistry , Microbial Sensitivity Tests , Food Microbiology , Meat Products/microbiology , Food Preservation/methods
10.
Compr Rev Food Sci Food Saf ; 23(3): e13348, 2024 05.
Article in English | MEDLINE | ID: mdl-38720587

ABSTRACT

Listeria monocytogenes biofilms formed on food-contact surfaces within food-processing facilities pose a significant challenge, serving as persistent sources of cross-contamination. In this review, we examined documented cases of foodborne outbreaks and recalls linked to L. monocytogenes contamination on equipment surfaces and in the food production environment, provided an overview of the prevalence and persistence of L. monocytogenes in different food-processing facilities, and discussed environmental factors influencing its biofilm formation. We further delved into antimicrobial interventions, such as chemical sanitizers, thermal treatments, biological control, physical treatment, and other approaches for controlling L. monocytogenes biofilms on food-contact surfaces. This review provides valuable insights into the persistent challenge of L. monocytogenes biofilms in food processing, offering a foundation for future research and practical strategies to enhance food safety.


Subject(s)
Biofilms , Food Microbiology , Listeria monocytogenes , Listeria monocytogenes/physiology , Biofilms/growth & development , Food Handling/methods , Food Contamination/prevention & control , Equipment Contamination/prevention & control
11.
Anal Chem ; 96(21): 8543-8551, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38748432

ABSTRACT

In this study, the covalently fixed "end-on" orientation of a monoclonal Listeria monocytogenes antibody (mAb-Lis) to amino terminated oligo (ethylene glycol)-capped gold nanoparticles (NH2-TEG-AuNPs) was used to fabricate an in-house lateral flow strip (LFS), namely, the fixed "end-on" Lis-mAb-NH-TEG-AuNPs LFS. The aim was to evaluate the performance of the fixed "end-on" Lis-mAb-NH-TEG-AuNPs LFS in detecting L. monocytogenes. The proposed LFS enabled the sensitive detection of L. monocytogenes in 15 min with a visual limit of detection of 102 CFU/mL. Quantitative analysis indicated an LOD at 10 CFU/mL. The fixed "end-on" Lis-mAb-NH-TEG-AuNPs LFS showed no cross-reactivity with other pathogenic bacteria and practical performance across different food matrices, including human blood, milk, and mushroom samples. Furthermore, the clinical performance of the fixed "end-on" Lis-mAb-NH-TEG-AuNPs LFS for detecting L. monocytogenes was evaluated by using 12 clinical samples validated by the hemoculture method. It demonstrated excellent concordance with the reference methods, with no false-positive or false-negative results observed. Therefore, the fixed "end-on" Lis-mAb-NH-TEG-AuNPs LFS serves as a promising candidate for a point-of-care test (POCT), enabling the rapid, precise, and highly sensitive detection of L. monocytogenes in clinical samples and contaminated food.


Subject(s)
Antibodies, Monoclonal , Gold , Listeria monocytogenes , Metal Nanoparticles , Listeria monocytogenes/isolation & purification , Listeria monocytogenes/immunology , Gold/chemistry , Metal Nanoparticles/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/chemistry , Humans , Limit of Detection , Food Microbiology , Milk/microbiology , Milk/chemistry , Antibodies, Bacterial/chemistry , Antibodies, Bacterial/immunology , Antibodies, Immobilized/chemistry , Antibodies, Immobilized/immunology , Animals , Listeriosis/microbiology , Listeriosis/diagnosis
12.
Meat Sci ; 214: 109534, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38749270

ABSTRACT

This study investigated the synergistic effects of ε-poly- L -lysine (ε-PL) and lysozyme against P. aeruginosa and L. monocytogenes biofilms. Single-culture biofilms of two bacteria were formed on silicone rubber (SR), stainless steel (SS), and beef surfaces and then treated with lysozyme (0.05-5 mg/mL) and ε-PL at minimum inhibitory concentrations (MICs) of 1 to 4 separately or in combination. On the SR surface, P. aeruginosa biofilm was reduced by 1.4 and 1.9 log CFU/cm2 within 2 h when treated with lysozyme (5 mg/mL) and ε-PL (4 MIC), respectively, but this reduction increased significantly to 4.1 log CFU/cm2 (P < 0.05) with the combined treatment. On beef surface, P. aeruginosa and L. monocytogenes biofilm was reduced by 4.2-5.0, and 3.3-4.2 log CFU/g when lysozyme was combined with 1, 2, and 4 MIC of ε-PL at 25 °C, respectively. Compared to 5 mg/mL lysozyme alone, the combined treatment with 1, 2, and 4 MIC of ε-PL on beef surface achieved additional reduction against P. aeruginosa biofilm of 0.5, 0.8, and 0.7 log CFU/g, respectively, at 25 °C. In addition, 0.25 mg/mL lysozyme and 0.5 MIC of ε-PL significantly (P < 0.05) suppressed the quorum-sensing (agrA) and virulence-associated (hlyA and prfA) genes of L. monocytogenes.


Subject(s)
Biofilms , Listeria monocytogenes , Muramidase , Polylysine , Pseudomonas aeruginosa , Pseudomonas aeruginosa/drug effects , Muramidase/pharmacology , Biofilms/drug effects , Animals , Listeria monocytogenes/drug effects , Polylysine/pharmacology , Cattle , Drug Synergism , Microbial Sensitivity Tests , Red Meat/microbiology , Food Microbiology , Stainless Steel , Anti-Bacterial Agents/pharmacology
13.
Cell Syst ; 15(5): 425-444.e9, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38703772

ABSTRACT

The placenta is a selective maternal-fetal barrier that provides nourishment and protection from infections. However, certain pathogens can attach to and even cross the placenta, causing pregnancy complications with potential lifelong impacts on the child's health. Here, we profiled at the single-cell level the placental responses to three pathogens associated with intrauterine complications-Plasmodium falciparum, Listeria monocytogenes, and Toxoplasma gondii. We found that upon exposure to the pathogens, all placental lineages trigger inflammatory responses that may compromise placental function. Additionally, we characterized the responses of fetal macrophages known as Hofbauer cells (HBCs) to each pathogen and propose that they are the probable niche for T. gondii. Finally, we revealed how P. falciparum adapts to the placental microenvironment by modulating protein export into the host erythrocyte and nutrient uptake pathways. Altogether, we have defined the cellular networks and signaling pathways mediating acute placental inflammatory responses that could contribute to pregnancy complications.


Subject(s)
Placenta , Single-Cell Analysis , Humans , Female , Pregnancy , Placenta/microbiology , Placenta/immunology , Single-Cell Analysis/methods , Plasmodium falciparum , Listeria monocytogenes/pathogenicity , Listeria monocytogenes/physiology , Toxoplasma/pathogenicity , Macrophages/microbiology , Macrophages/immunology , Macrophages/metabolism , Toxoplasmosis/immunology , Toxoplasmosis/metabolism , Inflammation
14.
Int J Biol Macromol ; 270(Pt 1): 132382, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754652

ABSTRACT

Listeria monocytogenes (L. monocytogenes) and Staphylococcus aureus (S. aureus) are widely acknowledged as two of the most dangerous foodborne pathogens. Nevertheless, reports on the development of non-toxic food preservatives that specifically target these two bacterial strains are scarce. Here, we present an inclusion complex (IC) of Hinoki essential oil with ß-cyclodextrin, which exhibited dual anti-L. monocytogenes and anti-S. aureus activities. For the first time, an innovative ultrasound-aided co-precipitation technique was utilized for the preparation of IC. Compared with the traditional co-precipitation method, this new technique demonstrated superior encapsulation and time efficiencies, making it well-suited for large-scale production. X-ray diffraction and scanning electron microscopy analyses revealed a transition in the morphological and crystal structures after formation of the IC. Fourier transform infrared spectroscopy and Raman spectroscopy analyses indicated that Hinoki essential oil was effectively encapsulated by ß-cyclodextrin. The differential scanning calorimetry and thermogravimetric thermograms indicated that the formed IC was more thermally stable than the free Hinoki essential oil. Importantly, 100 % antibacterial ratios for both L. monocytogenes and S. aureus were determined, indicating that the IC prepared in this study is a promising food preservative.


Subject(s)
Anti-Bacterial Agents , Listeria monocytogenes , Oils, Volatile , Staphylococcus aureus , beta-Cyclodextrins , Listeria monocytogenes/drug effects , Staphylococcus aureus/drug effects , beta-Cyclodextrins/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Ultrasonic Waves , Pomegranate/chemistry , X-Ray Diffraction
15.
Sci Rep ; 14(1): 12375, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811807

ABSTRACT

Current knowledge about effects of disturbance on the fate of invaders in complex microbial ecosystems is still in its infancy. In order to investigate this issue, we compared the fate of Klebsiella pneumoniae (Kp) and Listeria monocytogenes (Lm) in soil microcosms. We then used environmental disturbances (freeze-thaw or heat cycles) to compare the fate of both invaders and manipulate soil microbial diversity. Population dynamics of the two pathogens was assessed over 50 days of invasion while microbial diversity was measured at times 0, 20 and 40 days. The outcome of invasion was strain-dependent and the response of the two invaders to disturbance differed. Resistance to Kp invasion was higher under the conditions where resident microbial diversity was the highest while a significant drop of diversity was linked to a higher persistence. In contrast, Lm faced stronger resistance to invasion in heat-treated microcosms where diversity was the lowest. Our results show that diversity is not a universal proxy of resistance to microbial invasion, indicating the need to properly assess other intrinsic properties of the invader, such as its metabolic repertoire, or the array of interactions between the invader and resident communities.


Subject(s)
Listeria monocytogenes , Microbiota , Soil Microbiology , Listeria monocytogenes/physiology , Humans , Klebsiella pneumoniae/physiology , Temperature , Biodiversity
16.
Int J Food Microbiol ; 418: 110739, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38749263

ABSTRACT

Risky home canning techniques are still performed for food preservation due to limited science-based recommendations. This study aimed to evaluate the inactivation of Shiga toxin-producing Escherichia coli O157:H7, Salmonella enterica (ser. Typhimurium, Enteritidis, and Infantis) and Listeria monocytogenes during home canning with a household dishwasher. The 450 mL of blended tomato (acidic liquid food) and potato puree (non-acidic solid food) were prepared with 1.5 % salt and 25 mL vinegar as model foods in glass jars (660 mL). The two model foods were sterilized, then inoculated with separate cocktails of each pathogen at 106-107 CFU/g. The prepared jars were placed in the bottom rack of a dishwasher and subjected to the following cycles: economic (50 °C, 122 min), express (60 °C, 54 min), and intensive (70 °C, 96 min). Temperature changes in jars were monitored by using thermocouples during heat treatment. Within the center of the jars, temperatures were measured as 45 to 53 °C in blended tomato and 44 to 52 °C in potato puree during all tested dishwasher cycles, respectively. The economic cycle treatment reduced S. enterica, E. coli O157:H7, and L. monocytogenes populations by 3.1, 4.6, and 4.2 log CFU/g in blended tomato (P ≤ 0.05), where a <1.0 log reduction was observed in potato puree (P > 0.05). All pathogens showed similar heat resistance during the express cycle treatment with a log reduction ranging from 4.2 to 5.0 log CFU/g in blended tomato and 0.6 to 0.7 log CFU/g in potato puree. Reduction in L. monocytogenes population was limited (0.6 log CFU/g) compared to E. coli O157:H7 (2.0 log CFU/g) and S. enterica (2.7 log CFU/g) in blended tomato during the intensive cycle treatment (P ≤ 0.05). Dishwasher cycles at manufacturer defined settings failed to adequately inactivate foodborne pathogens in model foods. This study indicates that home-canned vegetables may cause foodborne illnesses when dishwashers in home kitchens are used for heat processing.


Subject(s)
Escherichia coli O157 , Food Microbiology , Food Preservation , Listeria monocytogenes , Solanum lycopersicum , Listeria monocytogenes/growth & development , Escherichia coli O157/growth & development , Solanum lycopersicum/microbiology , Food Preservation/methods , Salmonella enterica/growth & development , Solanum tuberosum/microbiology , Food Handling/methods , Colony Count, Microbial , Food Contamination/prevention & control
17.
Front Biosci (Landmark Ed) ; 29(5): 176, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38812301

ABSTRACT

BACKGROUND: Listeria monocytogenes, a Gram-positive bacterium, is a prominent foodborne pathogen that causes listeriosis and poses substantial health hazards worldwide. The continuing risk of listeriosis outbreaks underlies the importance of designing an effective prevention strategy and developing a robust immune response by reverse vaccinology approaches. This study aimed to provide a critical approach for developing a potent multiepitope vaccine against this foodborne disease. METHODS: A chimeric peptide construct containing 5 B-cell epitopes, 16 major histocompatibility complex I (MHC-I) epitopes, and 18 MHC-II epitopes were used to create a subunit vaccination against L. monocytogenes. The vaccine safety was evaluated by several online methods, and molecular docking was performed using ClusPro to determine the binding affinity. Immune simulation was performed using the C-ImmSimm server to demonstrate the immune response. RESULTS: The results validated the antigenicity, non-allergenicity, and nontoxicity of the chimeric peptide construct, confirming its suitability as a subunit vaccine. Molecular docking showed a good score of 1276.5 and molecular dynamics simulations confirmed the construct's efficacy, demonstrating its promise as a good candidate for listeriosis prophylaxis. The population coverage was as high as 91.04% with a good immune response, indicating good antigen presentation with dendritic cells and production of memory cells. CONCLUSIONS: The findings of this study highlight the potential of the designed chimeric peptide construct as an effective subunit vaccine against Listeria, paving the way for future advances in preventive methods and vaccine design.


Subject(s)
Bacterial Vaccines , Computational Biology , Listeria monocytogenes , Listeriosis , Molecular Docking Simulation , Vaccines, Subunit , Listeria monocytogenes/immunology , Bacterial Vaccines/immunology , Vaccines, Subunit/immunology , Listeriosis/prevention & control , Listeriosis/immunology , Listeriosis/microbiology , Computational Biology/methods , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/chemistry , Humans , Epitopes/immunology , Molecular Dynamics Simulation , Animals , Foodborne Diseases/prevention & control , Foodborne Diseases/microbiology , Foodborne Diseases/immunology , Immunoinformatics
18.
BMC Infect Dis ; 24(1): 477, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720244

ABSTRACT

We report a very rare case of Listeria multiple brain abscesses manifested as delirium, which represented diagnostic and therapeutic challenges overcome only by the close cooperation between Infectious Diseases and Neuroradiology, without which a satisfactory outcome would not be achieved.An elderly man presented with confusion and drowsiness with a background of type-II diabetes mellitus. Although computed tomography of the brain only showed frontal lobe oedema, contrast magnetic resonance (MR) imaging showed numerous irregular rim-enhancing lesions containing central diffusion restriction, suggesting multiple pyogenic cerebral abscesses of unclear aetiology. Thereafter, Listeria monocytogenes was isolated from blood cultures, suggesting this as the causative organism. Deemed unsuitable for neurosurgical drainage, the patient received medical management with a protracted course of antibiotics. This case was extremely challenging, due to 1) the impossibility of source control, 2) the small number of effective antibiotics available to treat this condition, and 3) the inevitable antibiotic side-effects, derived from long-term exposure. A successful outcome was only possible thanks to strict close multidisciplinary follow up, requiring frequent MR imaging and a judicious antibiotic choice, including monitoring of their side-effects. Due to the rarity of this condition, there is lack of guidance on its management, hence the importance of multidisciplinary involvement with very close imaging and antibiotic monitoring.


Subject(s)
Anti-Bacterial Agents , Brain Abscess , Listeria monocytogenes , Listeriosis , Humans , Male , Brain Abscess/microbiology , Brain Abscess/drug therapy , Brain Abscess/diagnostic imaging , Listeriosis/drug therapy , Listeriosis/microbiology , Listeriosis/diagnosis , Anti-Bacterial Agents/therapeutic use , Listeria monocytogenes/isolation & purification , Aged , Magnetic Resonance Imaging , Tomography, X-Ray Computed , Brain/diagnostic imaging , Brain/pathology , Brain/microbiology , Delirium/drug therapy
19.
Euro Surveill ; 29(19)2024 May.
Article in English | MEDLINE | ID: mdl-38726694

ABSTRACT

Listeria monocytogenes (Lm) is a bacterium widely distributed in the environment. Listeriosis is a severe disease associated with high hospitalisation and mortality rates. In April 2019, listeriosis was diagnosed in two hospital patients in Finland. We conducted a descriptive study to identify the source of the infection and defined a case as a person with a laboratory-confirmed Lm serogroup IIa sequence type (ST) 37. Six cases with Lm ST 37 were notified to the Finnish Infectious Diseases Registry between 2015 and 2019. Patient interviews and hospital menus were used to target traceback investigation of the implicated foods. In 2021 and 2022, similar Lm ST 37 was detected from samples of a ready-to-eat plant-based food product including fava beans. Inspections by the manufacturer and the local food control authority indicated that the food products were contaminated with Lm after pasteurisation. Our investigation highlights the importance that companies producing plant-based food are subject to similar controls as those producing food of animal origin. Hospital menus can be a useful source of information that is not dependent on patient recall.


Subject(s)
Disease Outbreaks , Food Microbiology , Listeria monocytogenes , Listeriosis , Humans , Listeria monocytogenes/isolation & purification , Listeria monocytogenes/genetics , Listeriosis/epidemiology , Listeriosis/microbiology , Finland/epidemiology , Female , Male , Foodborne Diseases/epidemiology , Foodborne Diseases/microbiology , Middle Aged , Aged , Food Contamination , Adult , Fabaceae/microbiology
20.
Br J Hosp Med (Lond) ; 85(5): 1-4, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38815971

ABSTRACT

We present an unusual case of Listeria monocytogenes rhomboencephalitis in a young, healthy patient. Although L. monocytogenes meningitis is usually associated with immunodeficiency, rhomboencephalitis is more commonly seen in immunocompetent patients. The wide differential for rhomboencephalitis can create a diagnostic challenge. Without prompt pathogen identification and appropriate antibiotic regimen, L. monocytogenes central nervous system infections can be fatal. Cerebro-Spinal Fluid (CSF) Polymerase Chain Reaction (PCR) aided a prompt diagnosis and adjustment of therapy to achieve a good patient outcome.


Subject(s)
Immunocompetence , Listeria monocytogenes , Listeriosis , Humans , Listeria monocytogenes/isolation & purification , Listeriosis/diagnosis , Listeriosis/drug therapy , Anti-Bacterial Agents/therapeutic use , Male , Rhombencephalon/microbiology , Magnetic Resonance Imaging , Meningitis, Listeria/diagnosis , Meningitis, Listeria/drug therapy , Adult , Encephalitis/microbiology , Encephalitis/diagnosis , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...