Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 176.845
Filter
1.
PLoS One ; 19(5): e0303189, 2024.
Article in English | MEDLINE | ID: mdl-38768165

ABSTRACT

OBJECTIVES: To establish a rat model that accurately replicates the clinical characteristics of male infertility (MI) with Liver Depression and Kidney Deficiency (LD & KD) and investigate the pathogenesis. METHODS: After subjecting the rats to chronic restraint stress (CRS) and adenine treatment, a series of tests were conducted, including ethological assessments, evaluations of reproductive characteristics, measurements of biochemical parameters, histopathological examinations, and analyses of urinary metabolites. Additionally, bioinformatics predictions were performed for comprehensive analysis. RESULTS: Compared to the control, the model exhibited significant manifestations of MI with LD & KD, including reduced responsiveness, diminished frequency of capturing estrous female rats, and absence of mounting behavior. Additionally, the kidney coefficient increased markedly, while the coefficients of the testis and epididymis decreased significantly. Sperm counts and viabilities decreased notably, accompanied by an increase in sperm abnormalities. Dysregulation of reproductive hormone levels in the serum was observed, accompanied by an upregulation of proinflammatory cytokines expressions in the liver and kidney, as well as exacerbated oxidative stress in the penile corpus cavernosum and testis. The seminiferous tubules in the testis exhibited a loose arrangement, loss of germ cells, and infiltration of inflammatory cells. Furthermore, utilizing urinary metabolomics and bioinformatics analysis, 5 key biomarkers and 2 crucial targets most closely linked to MI were revealed. CONCLUSION: The study successfully established a clinically relevant animal model of MI with LD & KD. It elucidates the pathogenesis of the condition, identifies key biomarkers and targets, and provides a robust scientific foundation for the prediction, diagnosis, and treatment of MI with LD & KD.


Subject(s)
Biomarkers , Disease Models, Animal , Infertility, Male , Animals , Male , Rats , Biomarkers/metabolism , Infertility, Male/metabolism , Infertility, Male/etiology , Testis/metabolism , Testis/pathology , Kidney/metabolism , Kidney/pathology , Rats, Sprague-Dawley , Liver/metabolism , Liver/pathology , Oxidative Stress , Liver Diseases/metabolism , Liver Diseases/pathology , Renal Insufficiency/metabolism , Renal Insufficiency/pathology , Renal Insufficiency/etiology
2.
AAPS J ; 26(3): 59, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724865

ABSTRACT

Drug clearance in obese subjects varies widely among different drugs and across subjects with different severity of obesity. This study investigates correlations between plasma clearance (CLp) and drug- and patient-related characteristics in obese subjects, and evaluates the systematic accuracy of common weight-based dosing methods. A physiologically-based pharmacokinetic (PBPK) modeling approach that uses recent information on obesity-related changes in physiology was used to simulate CLp for a normal-weight subject (body mass index [BMI] = 20) and subjects with various severities of obesity (BMI 25-60) for hypothetical hepatically cleared drugs with a wide range of properties. Influential variables for CLp change were investigated. For each drug and obese subject, the exponent that yields perfect allometric scaling of CLp from normal-weight subjects was assessed. Among all variables, BMI and relative changes in enzyme activity resulting from obesity proved highly correlated with obesity-related CLp changes. Drugs bound to α1-acid glycoprotein (AAG) had lower CLp changes compared to drugs bound to human serum albumin (HSA). Lower extraction ratios (ER) corresponded to higher CLp changes compared to higher ER. The allometric exponent for perfect scaling ranged from -3.84 to 3.34 illustrating that none of the scaling methods performed well in all situations. While all three dosing methods are generally systematically accurate for drugs with unchanged or up to 50% increased enzyme activity in subjects with a BMI below 30 kg/m2, in any of the other cases, information on the different drug properties and severity of obesity is required to select an appropriate dosing method for individuals with obesity.


Subject(s)
Body Mass Index , Models, Biological , Obesity , Humans , Obesity/metabolism , Metabolic Clearance Rate/physiology , Pharmaceutical Preparations/metabolism , Pharmaceutical Preparations/administration & dosage , Liver/metabolism , Orosomucoid/metabolism , Serum Albumin, Human/metabolism , Serum Albumin, Human/analysis , Male , Adult
3.
Chem Biol Drug Des ; 103(5): e14532, 2024 May.
Article in English | MEDLINE | ID: mdl-38725089

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is a progressive form of nonalcoholic fatty liver disease (NAFLD) that causes severe liver damage, fibrosis, and scarring. Despite its potential to progress to cirrhosis or hepatic failure, approved drugs or treatments are currently unavailable. We developed 4,4-diallyl curcumin bis(2,2-hydroxymethyl)propanoate, also known as 35e, which induces upregulation of mitochondrial proteins including carnitine palmitoyltransferase I (CPT-I), carnitine palmitoyltransferase II, heat shock protein 60, and translocase of the outer mitochondrial membrane 20. Among these proteins, the upregulated expression of CPT-I was most prominent. CPT-I plays a crucial role in transporting carnitine across the mitochondrial inner membrane, thereby initiating mitochondrial ß-oxidation of fatty acids. Given recent research showing that CPT-I activation could be a viable pathway for NASH treatment, we hypothesized that 35e could serve as a potential agent for treating NASH. The efficacy of 35e in treating NASH was evaluated in methionine- and choline-deficient (MCD) diet- and Western diet (WD)-induced models that mimic human NASH. In the MCD diet-induced model, both short-term (2 weeks) and long-term (7 weeks) treatment with 35e effectively regulated elevated serum alanine aminotransferase (ALT)/aspartate aminotransferase (AST) concentrations and histological inflammation. However, the antisteatotic effect of 35e was obtained only in the short-term treatment group. As a comparative compound in the MCD diet-induced model, curcumin treatment did not produce significant regulatory effects on the liver triglyceride/total cholesterol, serum ALT/AST, or hepatic steatosis. In the WD-induced model, 35e ameliorated hepatic steatosis and hepatic inflammation, while increasing serum AST and hepatic lipid content. A decrease in epididymal adipose tissue weight and serum free fatty acid concentration suggested that 35e may promote lipid metabolism or impede lipid accumulation. Overall, 35e displayed significant antilipid accumulation and antifibrotic effects in the two complementary mice models. The development of new curcumin derivatives with the ability to induce CPT-I upregulation could further underscore their efficacy as anti-NASH agents.


Subject(s)
Curcumin , Disease Models, Animal , Methionine , Non-alcoholic Fatty Liver Disease , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Methionine/metabolism , Methionine/deficiency , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/therapeutic use , Mice , Male , Diet, Western/adverse effects , Mice, Inbred C57BL , Carnitine O-Palmitoyltransferase/metabolism , Liver/metabolism , Liver/drug effects , Liver/pathology , Propionates/pharmacology , Propionates/therapeutic use , Propionates/metabolism , Humans , Choline/metabolism , Choline/pharmacology
4.
Mol Biol Rep ; 51(1): 634, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727746

ABSTRACT

BACKGROUND: The Chinese soft-shelled turtle, Pelodiscus sinensis, exhibits distinct sexual dimorphism, with the males growing faster and larger than the females. During breeding, all-male offspring can be obtained using 17ß-estradiol (E2). However, the molecular mechanisms underlying E2-induced sexual reversal have not yet been elucidated. Previous studies have investigated the molecular sequence and expression characteristics of estrogen receptors (ERs). METHODS AND RESULTS: In this study, primary liver cells and embryos of P. sinensis were treated with ER agonists or inhibitors. Cell incubation experiments revealed that nuclear ERs (nERs) were the main pathway for the transmission of estrogen signals. Our results showed that ERα agonist (ERα-ag) upregulated the expression of Rspo1, whereas ERα inhibitor (ERα-Inh) downregulated its expression. The expression of Dmrt1 was enhanced after ERα-Inh + G-ag treatment, indicating that the regulation of male genes may not act through a single estrogen receptor, but a combination of ERs. In embryos, only the ERα-ag remarkably promoted the expression levels of Rspo1, Wnt4, and ß-catenin, whereas the ERα-Inh had a suppressive effect. Additionally, Dmrt1, Amh, and Sox9 expression levels were downregulated after ERß inhibitor (ERß-Inh) treatment. GPER agonist (G-ag) has a significant promotion effect on Rspo1, Wnt4, and ß-catenin, while the inhibitor G-Inh does not affect male-related genes. CONCLUSIONS: Overall, these results suggest that ERs play different roles during sexual reversal in P. sinensis and ERα may be the main carrier of estrogen-induced sexual reversal in P. sinensis. Further studies need to be performed to analyze the mechanism of ER action.


Subject(s)
Receptors, Estrogen , Turtles , Animals , Turtles/genetics , Turtles/metabolism , Male , Female , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Estradiol/pharmacology , Estradiol/metabolism , Sex Characteristics , Estrogens/metabolism , Estrogens/pharmacology , beta Catenin/metabolism , beta Catenin/genetics , Liver/metabolism , Signal Transduction/genetics , Signal Transduction/drug effects
5.
Mol Biol Rep ; 51(1): 643, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727775

ABSTRACT

BACKGROUND: Baicalein is the main active flavonoid in Scutellariae Radix and is included in shosaikoto, a Kampo formula used for treating hepatitis and jaundice. However, little is known about its hepatoprotective effects against hepatic ischemia-reperfusion injury (HIRI), a severe clinical condition directly caused by interventional procedures. We aimed to investigate the hepatoprotective effects of baicalein against HIRI and partial hepatectomy (HIRI + PH) and its potential underlying mechanisms. METHODS AND RESULTS: Male Sprague-Dawley rats received either baicalein (5 mg/kg) or saline intraperitoneally and underwent a 70% hepatectomy 15 min after hepatic ischemia. After reperfusion, liver and blood samples were collected. Survival was monitored 30 min after hepatic ischemia and hepatectomy. In interleukin 1ß (IL-1ß)-treated primary cultured rat hepatocytes, the influence of baicalein on inflammatory mediator production and the associated signaling pathway was analyzed. Baicalein suppressed apoptosis and neutrophil infiltration, which are the features of HIRI + PH treatment-induced histological injury. Baicalein also reduced the mRNA expression of the proinflammatory cytokine tumor necrosis factor-α (TNF-α). In addition, HIRI + PH treatment induced liver enzyme deviations in the serum and hypertrophy of the remnant liver, which were suppressed by baicalein. In the lethal HIRI + PH treatment group, baicalein significantly reduced mortality. In IL-1ß-treated rat hepatocytes, baicalein suppressed TNF-α and chemokine mRNA expression as well as the activation of nuclear factor-kappa B (NF-κB) and Akt. CONCLUSIONS: Baicalein treatment attenuates HIRI + PH-induced liver injury and may promote survival. This potential hepatoprotection may be partly related to suppressing inflammatory gene induction through the inhibition of NF-κB activity and Akt signaling in hepatocytes.


Subject(s)
Apoptosis , Disease Models, Animal , Flavanones , Hepatectomy , Hepatocytes , Interleukin-1beta , Liver , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Flavanones/pharmacology , Flavanones/therapeutic use , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Hepatectomy/methods , Male , Rats , Liver/drug effects , Liver/metabolism , Liver/pathology , Hepatocytes/drug effects , Hepatocytes/metabolism , Apoptosis/drug effects , Interleukin-1beta/metabolism , NF-kappa B/metabolism , Protective Agents/pharmacology , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism , Proto-Oncogene Proteins c-akt/metabolism
6.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731494

ABSTRACT

Figs are the edible fruits of the fig tree, Ficus carica L., that have been used for centuries for human consumption and in traditional medicine, to treat skin problems, inflammation, and gastrointestinal disorders. Our previous study investigated the presence of phenolic compounds in aqueous extracts of two Algerian popular fig varieties, azendjar (Az) and taamriouth (Ta), as well as their in vitro antioxidant activity. In this study, we assessed hydroethanolic extracts of these fig varieties. The total phenolic content was measured, along with the phenolic profile. Rutin was determined to be the dominant phenolic compound, followed by vanillic acid, 3,4-dihydroxybenzoic acid, quercetin, 4-hydroxybenzoic acid, rosmarinic acid (in Az only), and cinnamic acid. The antioxidant activity of the extracts was evaluated both in vitro (DPPH and FRAP assays) and in vivo, in rats intoxicated with carbon tetrachloride. In all assays, the fig extract-especially the dark-peeled fig variety azendjar-showed antioxidant potency. The administration of fig extract resulted in a reduction in liver damage, expressed by both different biochemical markers and histopathological study (less degraded liver architecture, reduced fibrosis, and only mild inflammation). A dose-dependent therapeutic effect was observed. The extract from the dark-peeled fig variety, Az, was characterized by a higher phenolic content and a stronger antioxidant activity than the extract from the light-peeled variety-Ta. Our study justifies the use of figs in traditional healing and shows the potential of using fig extracts in natural medicines and functional foods.


Subject(s)
Antioxidants , Carbon Tetrachloride , Ficus , Oxidative Stress , Plant Extracts , Animals , Ficus/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Rats , Oxidative Stress/drug effects , Phenols/pharmacology , Phenols/chemistry , Male , Liver/drug effects , Liver/metabolism , Liver/pathology , Rats, Wistar
7.
Int J Nanomedicine ; 19: 4103-4120, 2024.
Article in English | MEDLINE | ID: mdl-38736658

ABSTRACT

Introduction: Gold nanoparticles are promising candidates as vehicles for drug delivery systems and could be developed into effective anticancer treatments. However, concerns about their safety need to be identified, addressed, and satisfactorily answered. Although gold nanoparticles are considered biocompatible and nontoxic, most of the toxicology evidence originates from in vitro studies, which may not reflect the responses in complex living organisms. Methods: We used an animal model to study the long-term effects of 20 nm spherical AuNPs coated with bovine serum albumin. Mice received a 1 mg/kg single intravenous dose of nanoparticles, and the biodistribution and accumulation, as well as the organ changes caused by the nanoparticles, were characterized in the liver, spleen, and kidneys during 120 days. Results: The amount of nanoparticles in the organs remained high at 120 days compared with day 1, showing a 39% reduction in the liver, a 53% increase in the spleen, and a 150% increase in the kidneys. The biological effects of chronic nanoparticle exposure were associated with early inflammatory and fibrotic responses in the organs and were more pronounced in the kidneys, despite a negligible amount of nanoparticles found in renal tissues. Conclusion: Our data suggest, that although AuNPs belong to the safest nanomaterial platforms nowadays, due to their slow tissue elimination leading to long-term accumulation in the biological systems, they may induce toxic responses in the vital organs, and so understanding of their long-term biological impact is important to consider their potential therapeutic applications.


Subject(s)
Gold , Kidney , Liver , Metal Nanoparticles , Serum Albumin, Bovine , Spleen , Animals , Gold/chemistry , Gold/pharmacokinetics , Gold/toxicity , Gold/administration & dosage , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Metal Nanoparticles/administration & dosage , Spleen/drug effects , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/pharmacokinetics , Kidney/drug effects , Kidney/metabolism , Tissue Distribution , Liver/drug effects , Liver/metabolism , Mice , Male , Particle Size
8.
J Agric Food Chem ; 72(19): 10923-10935, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691832

ABSTRACT

This study aimed to explore the ameliorative effects and potential mechanisms of Huangshan Umbilicaria esculenta polysaccharide (UEP) in dextran sulfate sodium-induced acute ulcerative colitis (UC) and UC secondary liver injury (SLI). Results showed that UEP could ameliorate both colon and liver pathologic injuries, upregulate mouse intestinal tight junction proteins (TJs) and MUC2 expression, and reduce LPS exposure, thereby attenuating the effects of the gut-liver axis. Importantly, UEP significantly downregulated the secretion levels of TNF-α, IL-1ß, and IL-6 through inhibition of the NF-κB pathway and activated the Nrf2 signaling pathway to increase the expression levels of SOD and GSH-Px. In vitro, UEP inhibited the LPS-induced phosphorylation of NF-κB P65 and promoted nuclear translocation of Nrf2 in RAW264.7 cells. These results revealed that UEP ameliorated UC and SLI through NF-κB and Nrf2-mediated inflammation and oxidative stress. The study first investigated the anticolitis effect of UEP, suggesting its potential for the treatment of colitis and colitis-associated liver disease.


Subject(s)
Colitis , Dextran Sulfate , NF-E2-Related Factor 2 , NF-kappa B , Polysaccharides , Animals , Mice , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/administration & dosage , Dextran Sulfate/adverse effects , Male , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Humans , Colitis/drug therapy , Colitis/chemically induced , Colitis/metabolism , RAW 264.7 Cells , NF-kappa B/metabolism , NF-kappa B/genetics , Mice, Inbred C57BL , Protective Agents/pharmacology , Protective Agents/administration & dosage , Protective Agents/chemistry , Liver/drug effects , Liver/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/immunology , Oxidative Stress/drug effects , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/immunology , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-6/immunology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/chemically induced , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Mucin-2/genetics , Mucin-2/metabolism
9.
Bioconjug Chem ; 35(5): 703-714, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38708860

ABSTRACT

Manganese(II)-based contrast agents (MBCAs) are potential candidates for gadolinium-free enhanced magnetic resonance imaging (MRI). In this work, a rigid binuclear MBCA (Mn2-PhDTA2) with a zero-length linker was developed via facile synthetic routes, while the other dimer (Mn2-TPA-PhDTA2) with a longer rigid linker was also synthesized via more complex steps. Although the molecular weight of Mn2-PhDTA2 is lower than that of Mn2-TPA-PhDTA2, their T1 relaxivities are similar, being increased by over 71% compared to the mononuclear Mn-PhDTA. In the presence of serum albumin, the relaxivity of Mn2-PhDTA2 was slightly lower than that of Mn2-TPA-PhDTA2, possibly due to the lower affinity constant. The transmetalation reaction with copper(II) ions confirmed that Mn2-PhDTA2 has an ideal kinetic inertness with a dissociation half-life of approximately 10.4 h under physiological conditions. In the variable-temperature 17O NMR study, both Mn-PhDTA and Mn2-PhDTA2 demonstrated a similar estimated q close to 1, indicating the formation of monohydrated complexes with each manganese(II) ion. In addition, Mn2-PhDTA2 demonstrated a superior contrast enhancement to Mn-PhDTA in in vivo vascular and hepatic MRI and can be rapidly cleared through a dual hepatic and renal excretion pattern. The hepatic uptake mechanism of Mn2-PhDTA2 mediated by SLC39A14 was validated in cellular uptake studies.


Subject(s)
Contrast Media , Liver , Magnetic Resonance Imaging , Manganese , Manganese/chemistry , Liver/diagnostic imaging , Liver/metabolism , Magnetic Resonance Imaging/methods , Animals , Contrast Media/chemistry , Contrast Media/chemical synthesis , Humans , Cation Transport Proteins/metabolism , Cation Transport Proteins/chemistry , Mice , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis
10.
Nat Commun ; 15(1): 3962, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730247

ABSTRACT

Lanifibranor, a pan-PPAR agonist, improves liver histology in patients with metabolic dysfunction-associated steatohepatitis (MASH), who have poor cardiometabolic health (CMH) and cardiovascular events as major mortality cause. NATIVE trial secondary and exploratory outcomes (ClinicalTrials.gov NCT03008070) were analyzed for the effect of lanifibranor on IR, lipid and glucose metabolism, systemic inflammation, blood pressure (BP), hepatic steatosis (imaging and histological grading) for all patients of the original analysis. With lanifibranor, triglycerides, HDL-C, apolipoproteins, insulin, HOMA-IR, HbA1c, fasting glucose (FG), hs-CRP, ferritin, diastolic BP and steatosis improved significantly, independent of diabetes status: most patients with prediabetes returned to normal FG levels. Significant adiponectin increases correlated with hepatic and CMH marker improvement; patients had an average weight gain of 2.5 kg, with 49% gaining ≥2.5% weight. Therapeutic benefits were similar regardless of weight change. Here, we show that effects of lanifibranor on liver histology in MASH are accompanied with CMH improvement, indicative of potential cardiovascular clinical benefits.


Subject(s)
Chalcones , Adult , Aged , Female , Humans , Male , Middle Aged , Adiponectin/metabolism , Adiponectin/blood , Blood Glucose/metabolism , Blood Glucose/drug effects , Blood Pressure/drug effects , Cardiovascular Diseases/drug therapy , Chalcones/therapeutic use , Chalcones/pharmacology , Fatty Liver/drug therapy , Fatty Liver/metabolism , Insulin Resistance , Lipid Metabolism/drug effects , Liver/drug effects , Liver/pathology , Liver/metabolism , Peroxisome Proliferator-Activated Receptors/agonists , Peroxisome Proliferator-Activated Receptors/metabolism , Propionates , Triglycerides/blood , Triglycerides/metabolism
11.
Biol Res ; 57(1): 26, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735981

ABSTRACT

BACKGROUND: Vitamin C (ascorbate) is a water-soluble antioxidant and an important cofactor for various biosynthetic and regulatory enzymes. Mice can synthesize vitamin C thanks to the key enzyme gulonolactone oxidase (Gulo) unlike humans. In the current investigation, we used Gulo-/- mice, which cannot synthesize their own ascorbate to determine the impact of this vitamin on both the transcriptomics and proteomics profiles in the whole liver. The study included Gulo-/- mouse groups treated with either sub-optimal or optimal ascorbate concentrations in drinking water. Liver tissues of females and males were collected at the age of four months and divided for transcriptomics and proteomics analysis. Immunoblotting, quantitative RT-PCR, and polysome profiling experiments were also conducted to complement our combined omics studies. RESULTS: Principal component analyses revealed distinctive differences in the mRNA and protein profiles as a function of sex between all the mouse cohorts. Despite such sexual dimorphism, Spearman analyses of transcriptomics data from females and males revealed correlations of hepatic ascorbate levels with transcripts encoding a wide array of biological processes involved in glucose and lipid metabolisms as well as in the acute-phase immune response. Moreover, integration of the proteomics data showed that ascorbate modulates the abundance of various enzymes involved in lipid, xenobiotic, organic acid, acetyl-CoA, and steroid metabolism mainly at the transcriptional level, especially in females. However, several proteins of the mitochondrial complex III significantly correlated with ascorbate concentrations in both males and females unlike their corresponding transcripts. Finally, poly(ribo)some profiling did not reveal significant enrichment difference for these mitochondrial complex III mRNAs between Gulo-/- mice treated with sub-optimal and optimal ascorbate levels. CONCLUSIONS: Thus, the abundance of several subunits of the mitochondrial complex III are regulated by ascorbate at the post-transcriptional levels. Our extensive omics analyses provide a novel resource of altered gene expression patterns at the transcriptional and post-transcriptional levels under ascorbate deficiency.


Subject(s)
Ascorbic Acid , Liver , Proteomics , Animals , Ascorbic Acid/metabolism , Liver/metabolism , Liver/drug effects , Female , Male , Mice , L-Gulonolactone Oxidase/genetics , L-Gulonolactone Oxidase/metabolism , Gene Expression Profiling , Transcriptome , Principal Component Analysis , Antioxidants/metabolism
12.
Sci Rep ; 14(1): 10846, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38736008

ABSTRACT

Human liver organoids are in vitro three dimensionally (3D) cultured cells that have a bipotent stem cell phenotype. Translational research of human liver organoids for drug discovery has been limited by the challenge of their low hepatic function compared to primary human hepatocytes (PHHs). Various attempts have been made to develop functional hepatocyte-like cells from human liver organoids. However, none have achieved the same level of hepatic functions as PHHs. We here attempted to culture human liver organoids established from cryopreserved PHHs (PHH-derived organoids), using HYDROX, a chemically defined 3D nanofiber. While the proliferative capacity of PHH-derived organoids was lost by HYDROX-culture, the gene expression levels of drug-metabolizing enzymes were significantly improved. Enzymatic activities of cytochrome P450 3A4 (CYP3A4), CYP2C19, and CYP1A2 in HYDROX-cultured PHH-derived organoids (Org-HYDROX) were comparable to those in PHHs. When treated with hepatotoxic drugs such as troglitazone, amiodarone and acetaminophen, Org-HYDROX showed similar cell viability to PHHs, suggesting that Org-HYDROX could be applied to drug-induced hepatotoxicity tests. Furthermore, Org-HYDROX maintained its functions for up to 35 days and could be applied to chronic drug-induced hepatotoxicity tests using fialuridine. Our findings demonstrated that HYDROX could possibly be a novel biomaterial for differentiating human liver organoids towards hepatocytes applicable to pharmaceutical research.


Subject(s)
Cell Differentiation , Hepatocytes , Nanofibers , Organoids , Humans , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/cytology , Organoids/drug effects , Organoids/metabolism , Organoids/cytology , Cell Differentiation/drug effects , Nanofibers/chemistry , Cells, Cultured , Liver/cytology , Liver/drug effects , Liver/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/metabolism , Cell Survival/drug effects , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A/genetics
13.
J Gene Med ; 26(5): e3692, 2024 May.
Article in English | MEDLINE | ID: mdl-38745073

ABSTRACT

BACKGROUND: Sevoflurane (Sevo) preconditioning and postconditioning play a protective role against injury induced by hepatic ischemia/reperfusion (I/R). At the same time, the involvement of macrophage infiltration in this process and the precise mechanisms are unclear. Here, we designed this research to elucidate the protective effects of Sevo against hepatic I/R injury and the molecules involved. METHODS: The alleviating effect of Sevo on the liver injury was analyzed by liver function analysis, hematoxylin and eosin staining, Masson trichrome staining, terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end labeling, western blot analysis and an enzyme-linked immunosorbent assay. An in vitro cell model was developed using alpha mouse liver 12 (AML12) cells, and the cell model was treated with oxygen-glucose deprivation and reoxygenation and Sevo. Multiple bioinformatics databases were used to screen transcriptional regulators related to hepatic I/R injury and the targets of Krueppel-like factor 5 (KLF5). KLF5 expression was artificially upregulated alone or with integrin beta-2 (ITGB2) knockdown to substantiate their involvement in Sevo-mediated hepatoprotection. RESULTS: Sevo protected the liver against I/R injury by reducing cell apoptosis and inflammatory response. KLF5 was upregulated in liver tissues following I/R injury, whereas KLF5 overexpression aggravated macrophage infiltration and liver injury induced by I/R injury. KLF5 bound to the promoter of ITGB2 to enhance ITGB2 transcription. Knockdown of ITGB2 reversed the aggravation of injury caused by KLF5 overexpression in mice and AML12 cells. CONCLUSIONS: Sevo blocked KLF5-mediated transcriptional activation of ITGB2, thereby inhibiting macrophage infiltration in hepatic I/R injury.


Subject(s)
Kruppel-Like Transcription Factors , Liver , Macrophages , Reperfusion Injury , Sevoflurane , Animals , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Mice , Macrophages/metabolism , Sevoflurane/pharmacology , Liver/metabolism , Liver/pathology , Transcriptional Activation , Male , Disease Models, Animal , Apoptosis , CD18 Antigens/metabolism , CD18 Antigens/genetics , Cell Line , Mice, Inbred C57BL , Gene Expression Regulation
14.
Pak J Pharm Sci ; 37(1(Special)): 199-203, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38747270

ABSTRACT

This study investigates the combined effect of vitamin C and chromium on BMI, lipid profile, LFTs and HbA1c of Diabetes Mellitus type 2 patients. This is randomized controlled trial study. For this study a total of 60 patients (n=28 female, n=32 male) Diabetes Mellitus type 2 patients were selected. They were divided into treatment group (vitamin C (500mg) Chromium (200µg) and control group (placebo) comprising thirty patients per group. Mean age in control group and treatment group is 33± 5.729 and 33±7.017 respectively. Statistical analysis showed significant results of lipid profile; total cholesterol (mg/dl) 198±66.1 P=0.008, High-Density Lipoprotein 38±7.5, P<0.001, Low Density Lipoprotein (LDL) (mg/dl) 105.1±22.4, P=0.002 and Triglycerides 191±64.3, P=0.02 are respectively. Levels of serum ALT (u/l) (34.7±9.1, P<0.001) and AST (u/l) (31.6 ±8.6, P<0.001) were significantly lower as compared to control group. HbA1c percentages were also normalized (5.45±0.2, P<.001) as compared to group 2. BMI values were also improved (P=0.01) after treatment. Combined supplementation of vitamin C and chromium reduce the plasma lipid percentage, blood glucose levels and also improve the ALT and AST functions.


Subject(s)
Ascorbic Acid , Body Mass Index , Chromium , Diabetes Mellitus, Type 2 , Glycated Hemoglobin , Humans , Female , Male , Ascorbic Acid/therapeutic use , Chromium/therapeutic use , Adult , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Glycated Hemoglobin/metabolism , Hyperglycemia/drug therapy , Hyperglycemia/blood , Hyperlipidemias/drug therapy , Hyperlipidemias/blood , Lipids/blood , Liver/drug effects , Liver/enzymology , Liver/metabolism , Blood Glucose/drug effects , Blood Glucose/metabolism , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Middle Aged
15.
Hepatol Commun ; 8(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38696369

ABSTRACT

BACKGROUND: Human genetic studies have identified several mitochondrial amidoxime-reducing component 1 (MTARC1) variants as protective against metabolic dysfunction-associated steatotic liver disease. The MTARC1 variants are associated with decreased plasma lipids and liver enzymes and reduced liver-related mortality. However, the role of mARC1 in fatty liver disease is still unclear. METHODS: Given that mARC1 is mainly expressed in hepatocytes, we developed an N-acetylgalactosamine-conjugated mouse Mtarc1 siRNA, applying it in multiple in vivo models to investigate the role of mARC1 using multiomic techniques. RESULTS: In ob/ob mice, knockdown of Mtarc1 in mouse hepatocytes resulted in decreased serum liver enzymes, LDL-cholesterol, and liver triglycerides. Reduction of mARC1 also reduced liver weight, improved lipid profiles, and attenuated liver pathological changes in 2 diet-induced metabolic dysfunction-associated steatohepatitis mouse models. A comprehensive analysis of mARC1-deficient liver from a metabolic dysfunction-associated steatohepatitis mouse model by metabolomics, proteomics, and lipidomics showed that Mtarc1 knockdown partially restored metabolites and lipids altered by diet. CONCLUSIONS: Taken together, reducing mARC1 expression in hepatocytes protects against metabolic dysfunction-associated steatohepatitis in multiple murine models, suggesting a potential therapeutic approach for this chronic liver disease.


Subject(s)
Disease Models, Animal , Gene Knockdown Techniques , Hepatocytes , Animals , Mice , Hepatocytes/metabolism , Liver/metabolism , Male , RNA, Small Interfering/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/prevention & control , Mice, Inbred C57BL
16.
ACS Appl Mater Interfaces ; 16(19): 24206-24220, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38700017

ABSTRACT

Atherosclerosis is the main risk factor for cardiovascular disease, which accounts for the majority of mortality worldwide. A significantly increased plasma level of low-density lipoprotein cholesterol (LDL-C), surrounded by a monolayer of phospholipids, free cholesterol, and one apolipoprotein B-100 (ApoB-100) in the blood, plays the most significant role in driving the development of atherosclerosis. Commercially available cholesterol-lowering drugs are not sufficient for preventing recurrent cardiovascular events. Developing alternative strategies to decrease the plasma cholesterol levels is desirable. Herein, we develop an approach for reducing LDL-C levels using gas-filled microbubbles (MBs) that were coated with anti-ApoB100 antibodies. These targeted MBApoB100 could selectively capture LDL particles in the bloodstream through forming LDL-MBApoB100 complexes and transport them to the liver for degradation. Further immunofluorescence staining and lipidomic analyses showed that these LDL-MBApoB100 complexes may be taken up by Kupffer cells and delivered to liver cells and bile acids, greatly inhibiting atherosclerotic plaque growth. More importantly, ultrasound irradiation of these LDL-MBApoB100 complexes that accumulated in the liver may induce acoustic cavitation effects, significantly enhancing the delivery of LDL into liver cells and accelerating their degradation. Our study provides a strategy for decreasing LDL-C levels and inhibiting the progression of atherosclerosis.


Subject(s)
Apolipoprotein B-100 , Lipoproteins, LDL , Liver , Microbubbles , Plaque, Atherosclerotic , Animals , Liver/metabolism , Liver/drug effects , Liver/pathology , Plaque, Atherosclerotic/drug therapy , Plaque, Atherosclerotic/pathology , Mice , Lipoproteins, LDL/blood , Humans , Male , Mice, Inbred C57BL , Atherosclerosis/drug therapy , Atherosclerosis/pathology
17.
Gut Microbes ; 16(1): 2351620, 2024.
Article in English | MEDLINE | ID: mdl-38738766

ABSTRACT

Gut microbiota plays an essential role in nonalcoholic fatty liver disease (NAFLD). However, the contribution of individual bacterial strains and their metabolites to childhood NAFLD pathogenesis remains poorly understood. Herein, the critical bacteria in children with obesity accompanied by NAFLD were identified by microbiome analysis. Bacteria abundant in the NAFLD group were systematically assessed for their lipogenic effects. The underlying mechanisms and microbial-derived metabolites in NAFLD pathogenesis were investigated using multi-omics and LC-MS/MS analysis. The roles of the crucial metabolite in NAFLD were validated in vitro and in vivo as well as in an additional cohort. The results showed that Enterococcus spp. was enriched in children with obesity and NAFLD. The patient-derived Enterococcus faecium B6 (E. faecium B6) significantly contributed to NAFLD symptoms in mice. E. faecium B6 produced a crucial bioactive metabolite, tyramine, which probably activated PPAR-γ, leading to lipid accumulation, inflammation, and fibrosis in the liver. Moreover, these findings were successfully validated in an additional cohort. This pioneering study elucidated the important functions of cultivated E. faecium B6 and its bioactive metabolite (tyramine) in exacerbating NAFLD. These findings advance the comprehensive understanding of NAFLD pathogenesis and provide new insights for the development of microbe/metabolite-based therapeutic strategies.


Subject(s)
Enterococcus faecium , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Tyramine , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Humans , Enterococcus faecium/metabolism , Mice , Child , Tyramine/metabolism , Male , Female , Mice, Inbred C57BL , Liver/metabolism , Liver/microbiology , Pediatric Obesity/microbiology , Pediatric Obesity/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification
18.
BMC Gastroenterol ; 24(1): 161, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741060

ABSTRACT

BACKGROUND AND AIMS: Portal vein thrombosis (PVT) is a common complication of liver cirrhosis that can aggravate portal hypertension. However, there are features of both PVT and cirrhosis that are not recapitulated in most current animal models. In this study, we aimed to establish a stable animal model of PVT and cirrhosis, intervene with anticoagulant, and explore the related mechanism. METHODS: First, 49 male SD rats received partial portal vein ligation (PPVL), and 44 survival rats were divided into 6 groups: PPVL control group; 4-week, 6 -week, 8-week, and 10-week model group; and the rivaroxaban (RIVA)-treated group. The rats were intoxicated with or without carbon tetrachloride (CCl4) for 4-10 weeks. Seven normal rats were used as the normal controls. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and parameters for blood coagulation were all assayed with kits. Liver inflammation, collagen deposition and hydroxyproline (Hyp) levels were also measured. The extrahepatic macro-PVT was observed via portal vein HE staining, etc. The intrahepatic microthrombi was stained via fibrin immunohistochemistry. The portal blood flow velocity (PBFV) and diameter were detected via color Doppler ultrasound. Vascular endothelial injury was evaluated by von Willebrand Factor (vWF) immunofluorescence. Fibrinolytic activity was estimated by western blot analysis of fibrin and plasminogen activator inhibitor-1 (PAI-1). RESULTS: After PPVL surgery and 10 weeks of CCl4 intoxication, a rat model that exhibited characteristics of both cirrhosis and extra and intrahepatic thrombi was established. In cirrhotic rats with PVT, the PBFV decreased, both factors of pro- and anti-coagulation decreased, but with relative hypercoagulable state, vascular endothelial injured, and fibrinolytic activity decreased. RIVA-treated rats had improved coagulation function, increased PBFV and attenuated thrombi. This effect was related to the improvements in endothelial injury and fibrinolytic activity. CONCLUSIONS: A new rat model of PVT with cirrhosis was established through partial portal vein ligation plus CCl4 intoxication, with the characteristics of macrothrombi at portal veins and microthrombi in hepatic sinusoids, as well as liver cirrhosis. Rivaroxaban could attenuate PVT in cirrhosis in the model rats. The underlying mechanisms of PVT formation in the rat model and pharmacological action of rivaroxaban are related to the regulation of portal blood flow, coagulant factors, and vascular endothelial cell function.


Subject(s)
Carbon Tetrachloride , Disease Models, Animal , Factor Xa Inhibitors , Portal Vein , Rats, Sprague-Dawley , Rivaroxaban , Venous Thrombosis , Animals , Rivaroxaban/pharmacology , Male , Ligation , Venous Thrombosis/etiology , Venous Thrombosis/drug therapy , Rats , Factor Xa Inhibitors/pharmacology , Liver Cirrhosis/complications , Liver Cirrhosis, Experimental/complications , Liver/metabolism , Liver/blood supply , Alanine Transaminase/blood , Aspartate Aminotransferases/blood
19.
J Nat Med ; 78(3): 633-643, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704807

ABSTRACT

Hepatocellular carcinoma (HCC) is a malignant tumor with extremely high mortality. The tumor microenvironment is the "soil" of its occurrence and development, and the inflammatory microenvironment is an important part of the "soil". Bile acid is closely related to the occurrence of HCC. Bile acid metabolism disorder is not only directly involved in the occurrence and development of HCC but also affects the inflammatory microenvironment of HCC. Yinchenhao decoction, a traditional Chinese medicine formula, can regulate bile acid metabolism and may affect the inflammatory microenvironment of HCC. To determine the effect of Yinchenhao decoction on bile acid metabolism in mice with HCC and to explore the possible mechanism by which Yinchenhao decoction improves the inflammatory microenvironment of HCC by regulating bile acid metabolism, we established mice model of orthotopic transplantation of hepatocellular carcinoma. These mice were treated with three doses of Yinchenhao decoction, then liver samples were collected and tested. Yinchenhao decoction can regulate the disorder of bile acid metabolism in liver cancer mice. Besides, it can improve inflammatory reactions, reduce hepatocyte degeneration and necrosis, and even reduce liver weight and the liver index. Taurochenodeoxycholic acid, hyodeoxycholic acid, and taurohyodeoxycholic acid are important molecules in the regulation of the liver inflammatory microenvironment, laying a foundation for the regulation of the liver tumor inflammatory microenvironment based on bile acids. Yinchenhao decoction may improve the inflammatory microenvironment of mice with HCC by ameliorating hepatic bile acid metabolism.


Subject(s)
Bile Acids and Salts , Carcinoma, Hepatocellular , Drugs, Chinese Herbal , Liver Neoplasms , Tumor Microenvironment , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Mice , Bile Acids and Salts/metabolism , Tumor Microenvironment/drug effects , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Male , Liver/drug effects , Liver/metabolism , Liver/pathology , Inflammation/drug therapy , Inflammation/metabolism
20.
Bull Exp Biol Med ; 176(5): 595-598, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38724816

ABSTRACT

A large-scale search for the genetic variants with a bias in the representation of alleles in transcriptome data (AE SNPs) and the binding sites in microRNA 3'-UTRs was performed and their functional significance was assessed using massively parallel reporter assay (MPRA). Of the 629,559 associated "SNP-gene" pairs (eQTLs) discovered in the human liver tissue according to the GTEx Analysis V8 data, 4394 polymorphic positions in the 3'-UTRs of the genes, which represent the eQTLs for these genes were selected. The TargetScanHuman 7.0 algorithm and PolymiRTS database were searched for the potential microRNA-binding sites. Of the predicted microRNA sites affected by eQTL-SNPs, we selected 51 sites with the best evidence of functionality according to Ago2-CLIP-seq, CLEAR-CLIP, and eCLIP-seq for RNA-binding proteins. For MPRA, a library of the plasmids carrying the main and alternative alleles for each AE SNP (in total, 102 constructs) was created. Allele-specific expression for 6 SNPs was detected by transfection of the HepG2 cell line with the constructed plasmid library and sequencing of target DNA and RNA sequences using the Illumina (MiSeq) platform.


Subject(s)
3' Untranslated Regions , Alleles , MicroRNAs , Polymorphism, Single Nucleotide , Humans , Polymorphism, Single Nucleotide/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Hep G2 Cells , Binding Sites/genetics , 3' Untranslated Regions/genetics , High-Throughput Nucleotide Sequencing/methods , Genes, Reporter/genetics , Liver/metabolism , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...