Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.030
Filter
1.
Cells ; 13(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38786029

ABSTRACT

O-linked-ß-D-N-acetylglucosamine (O-GlcNAc) glycosylation (O-GlcNAcylation), which is dynamically regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), is a post-translational modification involved in multiple cellular processes. O-GlcNAcylation of proteins can regulate their biological functions via crosstalk with other post-translational modifications, such as phosphorylation, ubiquitination, acetylation, and methylation. Liver diseases are a major cause of death worldwide; yet, key pathological features of the disease, such as inflammation, fibrosis, steatosis, and tumorigenesis, are not fully understood. The dysregulation of O-GlcNAcylation has been shown to be involved in some severe hepatic cellular stress, viral hepatitis, liver fibrosis, nonalcoholic fatty acid liver disease (NAFLD), malignant progression, and drug resistance of hepatocellular carcinoma (HCC) through multiple molecular signaling pathways. Here, we summarize the emerging link between O-GlcNAcylation and hepatic pathological processes and provide information about the development of therapeutic strategies for liver diseases.


Subject(s)
Acetylglucosamine , Liver Diseases , N-Acetylglucosaminyltransferases , Humans , Liver Diseases/metabolism , Liver Diseases/pathology , Glycosylation , Animals , N-Acetylglucosaminyltransferases/metabolism , Acetylglucosamine/metabolism , Liver/metabolism , Liver/pathology , Stress, Physiological , Protein Processing, Post-Translational , Signal Transduction
2.
Int J Mol Med ; 54(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38785162

ABSTRACT

Lactate is a byproduct of glycolysis, and before the Warburg effect was revealed (in which glucose can be fermented in the presence of oxygen to produce lactate) it was considered a metabolic waste product. At present, lactate is not only recognized as a metabolic substrate that provides energy, but also as a signaling molecule that regulates cellular functions under pathophysiological conditions. Lactylation, a post­translational modification, is involved in the development of various diseases, including inflammation and tumors. Liver disease is a major health challenge worldwide. In normal liver, there is a net lactate uptake caused by gluconeogenesis, exhibiting a higher net lactate clearance rate compared with any other organ. Therefore, abnormalities of lactate and lactate metabolism lead to the development of liver disease, and lactate and lactate metabolism­related genes can be used for predicting the prognosis of liver disease. Targeting lactate production, regulating lactate transport and modulating lactylation may be potential treatment approaches for liver disease. However, currently there is not a systematic review that summarizes the role of lactate and lactate metabolism in liver diseases. In the present review, the role of lactate and lactate metabolism in liver diseases including liver fibrosis, non­alcoholic fatty liver disease, acute liver failure and hepatocellular carcinoma was summarized with the aim to provide insights for future research.


Subject(s)
Lactic Acid , Liver Diseases , Humans , Lactic Acid/metabolism , Liver Diseases/metabolism , Animals , Liver/metabolism , Liver/pathology
3.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 327-332, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38710517

ABSTRACT

Objective To investigate the liver injury induced by chronic intermittent hypoxia (CIH) activation of NOD-like receptor pyrin domain containing protein 1 (NLRP1) inflammasome. Methods C57BL/6 male mice were randomly divided into control group and CIH group. Mice in CIH group were put into CIH chamber for molding (8 hours a day for 4 weeks). After 4 weeks of molding, liver tissue cells was observed by HE staining, and the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum of mice were detected by kit. The levels of reactive oxygen species (ROS) in liver tissue were detected by dihydroethidine (DHE). The expression and localization of NLRP1, apoptosis speck-like protein containing a caspase activation and recruiting domain (ASC) and caspase-1 were detected by immunohistochemical staining. The protein expressions of NLRP1, ASC, caspase-1, interleukin 1ß (IL-1ß) and tumor necrosis factor α (TNF-α) were detected by Western blot analysis. The serum levels of IL-1ß and TNF-α were detected by ELISA. Results Compared with the control group, the CIH group exhibited significant pathological changes in hepatocytes. Hepatocytes showed signs of rupture and necrosis, accompanied by inflammatory cell aggregation. Furthermore, the levels of ALT, AST, ROS, IL-1ß and TNF-α were elevated, along with increased protein expressions of NLRP1, ASC, caspase-1, IL-1ß and TNF-α. Conclusion CIH causes liver injury by activating NLRP1 inflammasome.


Subject(s)
Caspase 1 , Hypoxia , Inflammasomes , Interleukin-1beta , Liver , Mice, Inbred C57BL , Reactive Oxygen Species , Animals , Male , Inflammasomes/metabolism , Hypoxia/metabolism , Hypoxia/complications , Reactive Oxygen Species/metabolism , Liver/metabolism , Liver/pathology , Caspase 1/metabolism , Interleukin-1beta/metabolism , Mice , Adaptor Proteins, Signal Transducing/metabolism , Tumor Necrosis Factor-alpha/metabolism , Apoptosis Regulatory Proteins/metabolism , Alanine Transaminase/blood , CARD Signaling Adaptor Proteins/metabolism , Aspartate Aminotransferases/blood , Liver Diseases/etiology , Liver Diseases/metabolism , Liver Diseases/pathology
4.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731968

ABSTRACT

Cluster of differentiation 44 (CD44), a multi-functional cell surface receptor, has several variants and is ubiquitously expressed in various cells and tissues. CD44 is well known for its function in cell adhesion and is also involved in diverse cellular responses, such as proliferation, migration, differentiation, and activation. To date, CD44 has been extensively studied in the field of cancer biology and has been proposed as a marker for cancer stem cells. Recently, growing evidence suggests that CD44 is also relevant in non-cancer diseases. In liver disease, it has been shown that CD44 expression is significantly elevated and associated with pathogenesis by impacting cellular responses, such as metabolism, proliferation, differentiation, and activation, in different cells. However, the mechanisms underlying CD44's function in liver diseases other than liver cancer are still poorly understood. Hence, to help to expand our knowledge of the role of CD44 in liver disease and highlight the need for further research, this review provides evidence of CD44's effects on liver physiology and its involvement in the pathogenesis of liver disease, excluding cancer. In addition, we discuss the potential role of CD44 as a key regulator of cell physiology.


Subject(s)
Hyaluronan Receptors , Liver Diseases , Liver , Humans , Hyaluronan Receptors/metabolism , Liver/metabolism , Liver/pathology , Liver Diseases/metabolism , Liver Diseases/pathology , Animals , Cell Differentiation
5.
Clin Transl Sci ; 17(5): e13810, 2024 May.
Article in English | MEDLINE | ID: mdl-38716900

ABSTRACT

One of the key pharmacokinetic properties of most small molecule drugs is their ability to bind to serum proteins. Unbound or free drug is responsible for pharmacological activity while the balance between free and bound drug can impact drug distribution, elimination, and other safety parameters. In the hepatic impairment (HI) and renal impairment (RI) clinical studies, unbound drug concentration is often assessed; however, the relevance and impact of the protein binding (PB) results is largely limited. We analyzed published clinical safety and pharmacokinetic studies in subjects with HI or RI with PB assessment up to October 2022 and summarized the contribution of PB results on their label dose recommendations. Among drugs with HI publication, 32% (17/53) associated product labels include PB results in HI section. Of these, the majority (9/17, 53%) recommend dose adjustments consistent with observed PB change. Among drugs with RI publication, 27% (12/44) of associated product labels include PB results in RI section with the majority (7/12, 58%) recommending no dose adjustment, consistent with the reported absence of PB change. PB results were found to be consistent with a tailored dose recommendation in 53% and 58% of the approved labels for HI and RI section, respectively. We further discussed the interpretation challenges of PB results, explored treatment decision factors including total drug concentration, exposure-response relationships, and safety considerations in these case examples. Collectively, comprehending the alterations in free drug levels in HI and RI informs treatment decision through a risk-based approach.


Subject(s)
Drug Labeling , Protein Binding , Humans , Renal Insufficiency/metabolism , Dose-Response Relationship, Drug , Pharmaceutical Preparations/metabolism , Pharmaceutical Preparations/administration & dosage , Liver Diseases/metabolism , Liver Diseases/drug therapy , Blood Proteins/metabolism , Drug Dosage Calculations
6.
Cell ; 187(11): 2687-2689, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38788691

ABSTRACT

In this issue of Cell, Nie and co-authors report that the microbe-derived bile acid (BA) 3-succinylated cholic acid protects against the progression of metabolic dysfunction-associated liver disease. Intriguingly, its protective mechanism does not involve traditional BA signaling pathways but is instead linked to the proliferation of the commensal microbe Akkermansia muciniphila.


Subject(s)
Akkermansia , Bile Acids and Salts , Bile Acids and Salts/metabolism , Animals , Humans , Akkermansia/metabolism , Liver/metabolism , Verrucomicrobia/metabolism , Gastrointestinal Microbiome , Liver Diseases/metabolism , Liver Diseases/microbiology , Mice , Cholic Acid/metabolism
7.
PLoS One ; 19(5): e0303189, 2024.
Article in English | MEDLINE | ID: mdl-38768165

ABSTRACT

OBJECTIVES: To establish a rat model that accurately replicates the clinical characteristics of male infertility (MI) with Liver Depression and Kidney Deficiency (LD & KD) and investigate the pathogenesis. METHODS: After subjecting the rats to chronic restraint stress (CRS) and adenine treatment, a series of tests were conducted, including ethological assessments, evaluations of reproductive characteristics, measurements of biochemical parameters, histopathological examinations, and analyses of urinary metabolites. Additionally, bioinformatics predictions were performed for comprehensive analysis. RESULTS: Compared to the control, the model exhibited significant manifestations of MI with LD & KD, including reduced responsiveness, diminished frequency of capturing estrous female rats, and absence of mounting behavior. Additionally, the kidney coefficient increased markedly, while the coefficients of the testis and epididymis decreased significantly. Sperm counts and viabilities decreased notably, accompanied by an increase in sperm abnormalities. Dysregulation of reproductive hormone levels in the serum was observed, accompanied by an upregulation of proinflammatory cytokines expressions in the liver and kidney, as well as exacerbated oxidative stress in the penile corpus cavernosum and testis. The seminiferous tubules in the testis exhibited a loose arrangement, loss of germ cells, and infiltration of inflammatory cells. Furthermore, utilizing urinary metabolomics and bioinformatics analysis, 5 key biomarkers and 2 crucial targets most closely linked to MI were revealed. CONCLUSION: The study successfully established a clinically relevant animal model of MI with LD & KD. It elucidates the pathogenesis of the condition, identifies key biomarkers and targets, and provides a robust scientific foundation for the prediction, diagnosis, and treatment of MI with LD & KD.


Subject(s)
Biomarkers , Disease Models, Animal , Infertility, Male , Animals , Male , Rats , Biomarkers/metabolism , Infertility, Male/metabolism , Infertility, Male/etiology , Testis/metabolism , Testis/pathology , Kidney/metabolism , Kidney/pathology , Rats, Sprague-Dawley , Liver/metabolism , Liver/pathology , Oxidative Stress , Liver Diseases/metabolism , Liver Diseases/pathology , Renal Insufficiency/metabolism , Renal Insufficiency/pathology , Renal Insufficiency/etiology
8.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791491

ABSTRACT

The human genome encodes at least 500 protein kinases, and among them, there are at least 90 tyrosine kinases [...].


Subject(s)
Liver Diseases , Humans , Liver Diseases/pathology , Liver Diseases/therapy , Liver Diseases/metabolism , Animals , Translational Research, Biomedical
9.
J Mater Chem B ; 12(20): 4759-4784, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38682294

ABSTRACT

The liver, a complex and vital organ in the human body, is susceptible to various diseases, including metabolic disorders, acute hepatitis, cirrhosis, and hepatocellular carcinoma. In recent decades, these diseases have significantly contributed to global morbidity and mortality. Currently, liver transplantation remains the most effective treatment for hepatic disorders. Nucleic acid therapeutics offer a selective approach to disease treatment through diverse mechanisms, enabling the regulation of relevant genes and providing a novel therapeutic avenue for hepatic disorders. It is expected that nucleic acid drugs will emerge as the third generation of pharmaceuticals, succeeding small molecule drugs and antibody drugs. Lipid nanoparticles (LNPs) represent a crucial technology in the field of drug delivery and constitute a significant advancement in gene therapies. Nucleic acids encapsulated in LNPs are shielded from the degradation of enzymes and effectively delivered to cells, where they are released and regulate specific genes. This paper provides a comprehensive review of the structure, composition, and applications of LNPs in the treatment of hepatic disorders and offers insights into prospects and challenges in the future development of LNPs.


Subject(s)
Drug Carriers , Lipids , Liver Diseases , Nanoparticles , Humans , Nanoparticles/chemistry , Drug Carriers/chemistry , Liver Diseases/drug therapy , Liver Diseases/metabolism , Liver Diseases/therapy , Lipids/chemistry , Animals , Drug Delivery Systems
10.
J Ethnopharmacol ; 330: 118244, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38663781

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Bupleuri Radix (BR) has been recognized as an essential herbal medicine for relieving liver depression for thousands of years. Contemporary research has provided compelling evidence of its pharmacological effects, including anti-inflammatory, immunomodulatory, metabolic regulation, and anticancer properties, positioning it as a promising treatment option for various liver diseases. Hepatitis, steatohepatitis, cirrhosis, and liver cancer are among the prevalent and impactful liver diseases worldwide. However, there remains a lack of comprehensive systematic reviews that explore the prescription, bio-active components, and underlying mechanisms of BR in treating liver diseases. AIM OF THE REVIEW: To summarize the BR classical Chinese medical prescription and ingredients in treating liver diseases and their mechanisms to inform reference for further development and research. MATERIALS AND METHODS: Literature in the last three decades of BR and its classical Chinese medical prescription and ingredients were collated and summarized by searching PubMed, Wiley, Springer, Google Scholar, Web of Science, CNKI, etc. RESULTS: BR and its classical prescriptions, such as Xiao Chai Hu decoction, Da Chai Hu decoction, Si Ni San, and Chai Hu Shu Gan San, have been utilized for centuries as effective therapies for liver diseases, including hepatitis, steatohepatitis, cirrhosis, and liver cancer. BR is a rich source of active ingredients, such as saikosaponins, polysaccharides, flavonoids, sterols, organic acids, and so on. These bioactive compounds exhibit a wide range of beneficial effects, including anti-inflammatory, antioxidant, immunomodulatory, and lipid metabolism regulation. However, it is important to acknowledge that BR and its constituents can also possess hepatotoxicity, which is associated with cytochrome P450 (CYP450) enzymes and oxidative stress. Therefore, caution should be exercised when using BR in therapeutic applications to ensure the safe and appropriate utilization of its potential benefits while minimizing any potential risks. CONCLUSIONS: To sum up, BR, its compounds, and its based traditional Chinese medicine are effective in liver diseases through multiple targets, multiple pathways, and multiple effects. Advances in pharmacological and toxicological investigations of BR and its bio-active components in the future will provide further contributions to the discovery of novel therapeutics for liver diseases.


Subject(s)
Bupleurum , Drugs, Chinese Herbal , Liver Diseases , Animals , Humans , Bupleurum/chemistry , Chronic Disease , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Liver Diseases/drug therapy , Liver Diseases/metabolism , Medicine, Chinese Traditional/methods , Phytochemicals/therapeutic use , Phytochemicals/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/chemistry
11.
J Agric Food Chem ; 72(17): 9880-9892, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38646869

ABSTRACT

Limosilactobacillus reuteri (L. reuteri) is an efficacious probiotic that could reduce inflammation and prevent metabolic disorders. Here, we innovatively found that Polygonatum kingianum polysaccharides (PKP) promoted proliferation and increased stability of L. reuteri WX-94 (a probiotic strain showing anti-inflammation potentials) in simulated digestive fluids in vitro. PKP was composed of galactose, glucose, mannose, and arabinose. The cell-free supernatant extracted from L. reuteri cultured with PKP increased ABTS•+, DPPH•, and FRAP scavenging capacities compared with the supernatant of the medium without PKP and increased metabolites with health-promoting activities, e.g., 3-phenyllactic acid, indole-3-lactic acid, indole-3-carbinol, and propionic acid. Moreover, PKP enhanced alleviating effects of heat-inactivated L. reuteri on high-fat-high-sucrose-induced liver injury in rats via reducing inflammation and regulating expressions of protein and genes involved in fatty acid metabolism (such as HIF1-α, FAßO, CPT1, and AMPK) and fatty acid profiles in liver. Such benefits correlated with its prominent effects on enriching Lactobacillus and short-chain fatty acids while reducing Dubosiella, Fusicatenilacter, Helicobacter, and Oscillospira. Our work provides novel insights into the probiotic property of PKP and emphasizes the great potential of the inactivated L. reuteri cultured with PKP in contracting unhealthy diet-induced liver dysfunctions and gut dysbacteriosis.


Subject(s)
Dysbiosis , Gastrointestinal Microbiome , Limosilactobacillus reuteri , Polysaccharides , Probiotics , Animals , Limosilactobacillus reuteri/metabolism , Probiotics/administration & dosage , Rats , Male , Gastrointestinal Microbiome/drug effects , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/administration & dosage , Polysaccharides/metabolism , Humans , Dysbiosis/microbiology , Dysbiosis/prevention & control , Rats, Sprague-Dawley , Liver/metabolism , Diet, High-Fat/adverse effects , Hot Temperature , Liver Diseases/prevention & control , Liver Diseases/etiology , Liver Diseases/metabolism , Liver Diseases/microbiology
12.
J Cell Mol Med ; 28(9): e18320, 2024 May.
Article in English | MEDLINE | ID: mdl-38685684

ABSTRACT

Liver diseases include all types of viral hepatitis, alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), cirrhosis, liver failure (LF) and hepatocellular carcinoma (HCC). Liver disease is now one of the leading causes of disease and death worldwide, which compels us to better understand the mechanisms involved in the development of liver diseases. Anoctamin 1 (ANO1), a calcium-activated chloride channel (CaCC), plays an important role in epithelial cell secretion, proliferation and migration. ANO1 plays a key role in transcriptional regulation as well as in many signalling pathways. It is involved in the genesis, development, progression and/or metastasis of several tumours and other diseases including liver diseases. This paper reviews the role and molecular mechanisms of ANO1 in the development of various liver diseases, aiming to provide a reference for further research on the role of ANO1 in liver diseases and to contribute to the improvement of therapeutic strategies for liver diseases by regulating ANO1.


Subject(s)
Anoctamin-1 , Liver Diseases , Humans , Anoctamin-1/metabolism , Anoctamin-1/genetics , Liver Diseases/metabolism , Liver Diseases/pathology , Liver Diseases/genetics , Animals , Signal Transduction , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Gene Expression Regulation
13.
Int J Mol Sci ; 25(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38674122

ABSTRACT

NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) is an intracellular complex that upon external stimuli or contact with specific ligands, recruits other components, forming the NLRP3 inflammasome. The NLRP3 inflammasome mainly mediates pyroptosis, a highly inflammatory mode of regulated cell death, as well as IL-18 and IL-1ß production. Acute and chronic liver diseases are characterized by a massive influx of pro-inflammatory stimuli enriched in reactive oxygen species (ROS) and damage-associated molecular patterns (DAMPs) that promote the assemblage and activation of the NLRP3 inflammasome. As the major cause of inflammatory cytokine storm, the NLRP3 inflammasome exacerbates liver diseases, even though it might exert protective effects in regards to hepatitis C and B virus infection (HCV and HBV). Here, we summarize the current knowledge concerning NLRP3 inflammasome function in both acute and chronic liver disease and in the post liver transplant setting, focusing on the molecular mechanisms involved in NLRP3 activity.


Subject(s)
Inflammasomes , Liver Diseases , Animals , Humans , Acute Disease , Chronic Disease , Inflammasomes/metabolism , Liver Diseases/metabolism , Liver Diseases/immunology , Liver Diseases/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism
14.
Sci Transl Med ; 16(744): eadk6213, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38657025

ABSTRACT

The Fontan operation is the current standard of care for single-ventricle congenital heart disease. Individuals with a Fontan circulation (FC) exhibit central venous hypertension and face life-threatening complications of hepatic fibrosis, known as Fontan-associated liver disease (FALD). The fundamental biology and mechanisms of FALD are little understood. Here, we generated a transcriptomic and epigenomic atlas of human FALD at single-cell resolution using multiomic snRNA-ATAC-seq. We found profound cell type-specific transcriptomic and epigenomic changes in FC livers. Central hepatocytes (cHep) exhibited the most substantial changes, featuring profound metabolic reprogramming. These cHep changes preceded substantial activation of hepatic stellate cells and liver fibrosis, suggesting cHep as a potential first "responder" in the pathogenesis of FALD. We also identified a network of ligand-receptor pairs that transmit signals from cHep to hepatic stellate cells, which may promote their activation and liver fibrosis. We further experimentally demonstrated that activins A and B promote fibrotic activation in vitro and identified mechanisms of activin A's transcriptional activation in FALD. Together, our single-cell transcriptomic and epigenomic atlas revealed mechanistic insights into the pathogenesis of FALD and may aid identification of potential therapeutic targets.


Subject(s)
Fontan Procedure , Hepatic Stellate Cells , Hepatocytes , Liver Diseases , Single-Cell Analysis , Transcriptome , Humans , Fontan Procedure/adverse effects , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Transcriptome/genetics , Liver Diseases/pathology , Liver Diseases/metabolism , Hepatocytes/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/genetics , Epigenomics , Liver/pathology , Liver/metabolism , Multiomics
15.
J Mol Med (Berl) ; 102(6): 719-731, 2024 06.
Article in English | MEDLINE | ID: mdl-38565749

ABSTRACT

SUMOylation is an important protein post-translational modification (PTM) process, in which the small ubiquitin-like modifier (SUMO) protein covalently binds to the target protein and regulates stability, subcellular localization, and protein-protein interaction of the target protein. Protein SUMOylation exerts crucial regulatory function in the liver, and its abnormalities are associated with various liver-related disease processes. This review focuses on the biological functions of protein SUMOylation in liver-related diseases in recent years, summarizes the molecular mechanisms of SUMOylation in the replication of hepatitis viruses and the occurrence of hepatocellular carcinoma, and discusses the significance of SUMOylation in liver-related disorders, which is essential for understanding liver biological processes and formulating therapeutic strategies.


Subject(s)
Liver Diseases , Sumoylation , Humans , Liver Diseases/metabolism , Animals , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Protein Processing, Post-Translational , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Molecular Targeted Therapy , Small Ubiquitin-Related Modifier Proteins/metabolism
16.
Auton Neurosci ; 253: 103174, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579493

ABSTRACT

The liver is a large organ with crucial functions in metabolism and immune defense, as well as blood homeostasis and detoxification, and it is clearly in bidirectional communication with the brain and rest of the body via both neural and humoral pathways. A host of neural sensory mechanisms have been proposed, but in contrast to the gut-brain axis, details for both the exact site and molecular signaling steps of their peripheral transduction mechanisms are generally lacking. Similarly, knowledge about function-specific sensory and motor components of both vagal and spinal access pathways to the hepatic parenchyma is missing. Lack of progress largely owes to controversies regarding selectivity of vagal access pathways and extent of hepatocyte innervation. In contrast, there is considerable evidence for glucose sensors in the wall of the hepatic portal vein and their importance for glucose handling by the liver and the brain and the systemic response to hypoglycemia. As liver diseases are on the rise globally, and there are intriguing associations between liver diseases and mental illnesses, it will be important to further dissect and identify both neural and humoral pathways that mediate hepatocyte-specific signals to relevant brain areas. The question of whether and how sensations from the liver contribute to interoceptive self-awareness has not yet been explored.


Subject(s)
Interoception , Liver Diseases , Liver , Humans , Interoception/physiology , Animals , Liver Diseases/physiopathology , Liver Diseases/metabolism , Liver/metabolism , Brain/metabolism , Brain/physiology
17.
Sheng Li Xue Bao ; 76(2): 329-340, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38658381

ABSTRACT

Chronic liver disease (CLD) is a major global health burden in terms of growing morbidity and mortality. Although many conditions can cause CLD, leading to cirrhosis and hepatocellular carcinoma (HCC), viral hepatitis, drug-induced liver injury (DILI), alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are the most common culprits. Prostaglandin E2 (PGE2), produced in the liver, is an important lipid mediator derived from the ω-6 polyunsaturated fatty acid, arachidonic acid, and plays a critical role in hepatic homeostasis. The physiological effects of PGE2 are mediated through four classes of E-type prostaglandin (EP) receptors, namely EP1, EP2, EP3 and EP4. In recent years, an increasing number of studies has been done to clarify the effects of PGE2 and EP receptors in regulating liver function and the pathogenesis of CLD to create a new potential clinical impact. In this review, we overview the biosynthesis and regulation of PGE2 and discuss the role of its synthesizing enzymes and receptors in the maintenance of normal liver function and the development and progress of CLD. We also discuss the potential of the PGE2-EP receptors system in treating CLD with various etiologies.


Subject(s)
Dinoprostone , Liver Diseases , Receptors, Prostaglandin E , Humans , Dinoprostone/metabolism , Receptors, Prostaglandin E/metabolism , Receptors, Prostaglandin E/physiology , Liver Diseases/metabolism , Chronic Disease , Animals , Liver/metabolism , Liver Diseases, Alcoholic/metabolism , Non-alcoholic Fatty Liver Disease/metabolism
18.
Hum Exp Toxicol ; 43: 9603271241241807, 2024.
Article in English | MEDLINE | ID: mdl-38531387

ABSTRACT

Thioacetamide (TAA), a widely employed hepatotoxic substance, has gained significant traction in the induction of liver failure disease models. Upon administration of TAA to experimental animals, the production of potent oxidative derivatives ensues, culminating in the activation of oxidative stress and subsequent infliction of severe damage upon multiple organs via dissemination through the bloodstream. This review summarized the various organ damages and corresponding mechanistic explanations observed in previous studies using TAA in toxicological animal experiments. The principal pathological consequences arising from TAA exposure encompass oxidative stress, inflammation, lipid peroxidation, fibrosis, apoptosis induction, DNA damage, and osteoclast formation. Recent in vivo and in vitro studies on TAA bone toxicity have confirmed that long-term high-dose use of TAA not only induces liver damage in experimental animals but also accompanies bone damage, which was neglected for a long time. By using TAA to model diseases in experimental animals and controlling TAA dosage, duration of use, and animal exposure environment, we can induce various organ injury models. It should be noted that TAA-induced injuries have a time-dependent effect. Finally, in our daily lives, especially for researchers, we should take precautions to minimize TAA exposure and reduce the probability of related organ injuries.


Subject(s)
Liver Diseases , Thioacetamide , Animals , Thioacetamide/toxicity , Liver Diseases/metabolism , Oxidative Stress , Fibrosis , Oxidation-Reduction , Liver
19.
Antimicrob Agents Chemother ; 68(4): e0134423, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38456707

ABSTRACT

Lenacapavir is a novel, first-in-class, multistage inhibitor of HIV-1 capsid function approved for the treatment of multidrug-resistant HIV-1 infection in combination with other antiretrovirals for heavily treatment-experienced people with HIV. Two Phase 1, open-label, parallel-group, single-dose studies assessed the pharmacokinetics (PK) of lenacapavir in participants with moderate hepatic impairment [Child-Pugh-Turcotte (CPT) Class B: score 7-9] or severe renal impairment [15 ≤ creatinine clearance (CLcr) ≤29 mL/min] to inform lenacapavir dosing in HIV-1-infected individuals with organ impairment. In both studies, a single oral dose of 300 mg lenacapavir was administered to participants with normal (n = 10) or impaired (n = 10) hepatic/renal function who were matched for age (±10 years), sex, and body mass index (±20%). Lenacapavir exposures [area under the plasma concentration-time curve from time 0 to infinity (AUCinf) and maximum concentration (Cmax)] were approximately 1.47- and 2.61-fold higher, respectively, in participants with moderate hepatic impairment compared to those with normal hepatic function, whereas lenacapavir AUCinf and Cmax were approximately 1.84- and 2.62-fold higher, respectively, in participants with severe renal impairment compared to those with normal renal function. Increased lenacapavir exposures with moderate hepatic or severe renal impairment were not considered clinically meaningful. Lenacapavir was considered generally safe and well tolerated in both studies. These results support the use of approved lenacapavir dosing regimen in patients with mild (CPT Class A: score 5-6) or moderate hepatic impairment as well as in patients with mild (60 ≤ CLcr ≤ 89 mL/min), moderate (30 ≤ CLcr ≤ 59 mL/min), and severe renal impairment.


Subject(s)
Liver Diseases , Renal Insufficiency , Humans , Area Under Curve , Renal Insufficiency/metabolism , Kidney/metabolism , Liver Diseases/drug therapy , Liver Diseases/metabolism
20.
Int J Biochem Cell Biol ; 170: 106567, 2024 May.
Article in English | MEDLINE | ID: mdl-38522506

ABSTRACT

The diagnosis and treatment of biliary atresia pose challenges due to the absence of reliable biomarkers and limited understanding of its etiology. The plasma and liver of patients with biliary atresia exhibit elevated levels of neurotensin. To investigate the specific role of neurotensin in the progression of biliary atresia, the patient's liver pathological section was employed. Biliary organoids, cultured biliary cells, and a mouse model were employed to elucidate both the potential diagnostic significance of neurotensin and its underlying mechanistic pathway. In patients' blood, the levels of neurotensin were positively correlated with matrix metalloprotease-7, interleukin-8, and liver function enzymes. Neurotensin and neurotensin receptors were mainly expressed in the intrahepatic biliary cells and were stimulated by bile acids. Neurotensin suppressed the growth and increased expression of matrix metalloprotease-7 in biliary organoids. Neurotensin inhibited mitochondrial respiration, oxidative phosphorylation, and attenuated the activation of calmodulin-dependent kinase kinase 2-adenosine monophosphate-activated protein kinase (CaMKK2-AMPK) signaling in cultured biliary cells. The stimulation of neurotensin in mice and cultured cholangiocytes resulted in the upregulation of matrix metalloprotease-7 expression through binding to its receptors, namely neurotensin receptors 1/3, thereby attenuating the activation of the CaMKK2-AMPK pathway. In conclusion, these findings revealed the changes of neurotensin in patients with cholestatic liver disease and its mechanism in the progression of the disease, providing a new understanding of the complex mechanism of hepatobiliary injury in children with biliary atresia.


Subject(s)
Biliary Atresia , Liver Diseases , Animals , Child , Humans , Mice , AMP-Activated Protein Kinases/metabolism , Biliary Atresia/metabolism , Biliary Atresia/pathology , Liver/metabolism , Liver Diseases/metabolism , Metalloproteases/metabolism , Neurotensin/metabolism , Receptors, Neurotensin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...