Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 690
Filter
1.
Sci Rep ; 14(1): 12168, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806510

ABSTRACT

The bioartificial liver (BAL) system can potentially rescue acute liver failure (ALF) patients by providing partial liver function until a suitable donor liver can be found or the native liver has self-regenerated. In this study, we established a suitable cryopreservation process for the development of an off-the-shelf BAL system. The viability of hepatocyte spheroids cryopreserved in liquid nitrogen was comparable to that of fresh primary hepatocyte spheroids. When hepatocyte spheroids were subjected to cryopreservation in a deep freezer, no statistically significant differences were observed in ammonia removal rate or urea secretion rate based on the cryopreservation period. However, the functional activity of the liver post-cryopreservation in a deep freezer was significantly lower than that observed following liquid nitrogen cryopreservation. Moreover, cryopreserving spheroid hydrogel beads in a deep freezer resulted in a significant decrease (approximately 30%) in both ammonia removal and urea secretion rates compared to the group cryopreserved in liquid nitrogen. The viabilities of spheroid hydrogel beads filled into the bioreactor of a BAL system were similar across all four groups. However, upon operating the BAL system for 24 h, the liver function activity was significantly higher in the group comprising hydrogel beads generated after thawing hepatocyte spheroids cryopreserved in liquid nitrogen. Consequently, the manufacturing of beads after the cryopreservation of hepatocyte spheroids is deemed the most suitable method, considering efficiency, economic feasibility, and liver function activity, for producing a BAL system.


Subject(s)
Cryopreservation , Hepatocytes , Liver, Artificial , Spheroids, Cellular , Hepatocytes/metabolism , Hepatocytes/cytology , Cryopreservation/methods , Spheroids, Cellular/metabolism , Spheroids, Cellular/cytology , Animals , Cell Survival , Male , Temperature , Rats , Urea/metabolism , Humans , Ammonia/metabolism , Liver Failure, Acute/therapy , Liver Failure, Acute/metabolism , Liver/metabolism , Liver/cytology
2.
Aging (Albany NY) ; 16(8): 7217-7248, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38656880

ABSTRACT

AIM: In 2019, to examine the functions of METTL3 in liver and underlying mechanisms, we generated mice with hepatocyte-specific METTL3 homozygous knockout (METTL3Δhep) by simultaneously crossing METTL3fl/fl mice with Alb-iCre mice (GPT) or Alb-Cre mice (JAX), respectively. In this study, we explored the potential reasons why hepatocyte-specific METTL3 homozygous disruption by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), resulted in acute liver failure (ALF) and then postnatal lethality. MAIN METHODS: Mice with hepatocyte-specific METTL3 knockout were generated by simultaneously crossing METTL3fl/fl mice with Alb-iCre mice (GPT; Strain No. T003814) purchased from the GemPharmatech Co., Ltd., (Nanjing, China) or with Alb-Cre mice (JAX; Strain No. 003574) obtained from The Jackson Laboratory, followed by combined-phenotype analysis. The publicly available RNA-sequencing data deposited in the NCBI Gene Expression Omnibus (GEO) database under the accession No.: GSE198512 (postnatal lethality), GSE197800 (postnatal survival) and GSE176113 (postnatal survival) were mined to explore the potential reasons why hepatocyte-specific METTL3 homozygous deletion by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), leads to ALF and then postnatal lethality. KEY FINDINGS: Firstly, we observed that hepatocyte-specific METTL3 homozygous deficiency by Alb-iCre mice (GPT) or by Alb-Cre mice (JAX) caused liver injury, abnormal lipid accumulation and apoptosis. Secondly, we are surprised to find that hepatocyte-specific METTL3 homozygous deletion by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), led to ALF and then postnatal lethality. Our findings clearly demonstrated that METTL3Δhep mice (GPT), which are about to die, exhibited the severe destruction of liver histological structure, suggesting that METTL3Δhep mice (GPT) nearly lose normal liver function, which subsequently contributes to ALF, followed by postnatal lethality. Finally, we unexpectedly found that as the compensatory growth responses of hepatocytes to liver injury induced by METTL3Δhep (GPT), the proliferation of METTL3Δhep hepatocytes (GPT), unlike METTL3Δhep hepatocytes (JAX), was not evidenced by the significant increase of Ki67-positive hepatocytes, not accompanied by upregulation of cell-cycle-related genes. Moreover, GO analysis revealed that upregulated genes in METTL3Δhep livers (GPT), unlike METTL3Δhep livers (JAX), are not functionally enriched in terms associated with cell cycle, cell division, mitosis, microtubule cytoskeleton organization, spindle organization, chromatin segregation and organization, and nuclear division, consistent with the loss of compensatory proliferation of METTL3Δhep hepatocytes (GPT) observed in vivo. Thus, obviously, the loss of the compensatory growth capacity of METTL3Δhep hepatocytes (GPT) in response to liver injury might contribute to, at least partially, ALF and subsequently postnatal lethality of METTL3Δhep mice (GPT). SIGNIFICANCE: These findings from this study and other labs provide strong evidence that these phenotypes (i.e., ALF and postnatal lethality) of METTL3Δhep mice (GPT) might be not the real functions of METTL3, and closely related with Alb-iCre mice (GPT), suggesting that we should remind researchers to use Alb-iCre mice (GPT) with caution to knockout gene in hepatocytes in vivo.


Subject(s)
Hepatocytes , Liver Failure, Acute , Methyltransferases , Animals , Mice , Hepatocytes/metabolism , Hepatocytes/pathology , Liver/pathology , Liver/metabolism , Liver Failure, Acute/genetics , Liver Failure, Acute/pathology , Liver Failure, Acute/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Mice, Knockout
3.
Int Immunopharmacol ; 132: 111994, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38581992

ABSTRACT

Acute liver failure (ALF) is a potentially fatal disorder characterized by extensive hepatocyte necrosis and rapid decline in liver function. Numerous factors, including oxidative stress, cell death, and inflammatory responses, are associated with its pathogenesis. Endotoxin tolerance (ET) refers to the phenomenon in which the body or cells exhibit low or no response to high-dose lipopolysaccharide (LPS) stimulation after pre-stimulation with low-dose LPS. However, the specific mechanism through which ET regulates LPS/D-galactosamine (D-GalN)-induced ALF remains unclear. An ALF mouse model was established by intraperitoneal injection of D-GalN (400 mg/kg) and LPS (10 mg/kg). A low dose of LPS (0.1 mg/kg/d) was continuously administered to mice for 5 d before modeling to assess the protective effect of ET. The data from this study showed that ET alleviated the inflammatory response in mice with LPS/D-GalN-induced ALF. ET inhibited LPS-induced oxidative damage and pyroptosis in macrophages in vitro. RNA sequencing analysis showed that the NF-κB/NLRP3 pathway was linked to the anti-inflammatory and antioxidative effects of ET. Furthermore, using western blot, RT-qPCR, and immunofluorescence, we verified that ET inhibited the NF-κB/NLRP3 pathway and triggered the Nrf2/HO-1 signaling pathway to attenuate oxidative stress and cell pyroptosis. Sirt1 knockdown reversed this protective effect. In summary, our research elucidates that ET prevents ALF advancement by upregulating Sirt1 levels, triggering the Nrf2/HO-1 signaling axis, and suppressing the NF-κB/NLRP3 signaling cascade to inhibit oxidative stress and cell pyroptosis. Our results provide a mechanistic explanation for the protective effect of ET against ALF.


Subject(s)
Galactosamine , Lipopolysaccharides , Liver Failure, Acute , Signal Transduction , Animals , Male , Mice , Disease Models, Animal , Endotoxins/toxicity , Heme Oxygenase (Decyclizing)/metabolism , Heme Oxygenase (Decyclizing)/genetics , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Immune Tolerance/drug effects , Liver/drug effects , Liver/pathology , Liver/metabolism , Liver/immunology , Liver Failure, Acute/chemically induced , Liver Failure, Acute/immunology , Liver Failure, Acute/metabolism , Liver Failure, Acute/drug therapy , Macrophages/drug effects , Macrophages/immunology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxidative Stress/drug effects , Pyroptosis/drug effects , Signal Transduction/drug effects , Sirtuin 1/metabolism , Sirtuin 1/genetics
4.
Cell Death Dis ; 15(4): 283, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649362

ABSTRACT

Acute liver failure (ALF) is a deadly illness due to insufficient detoxification in liver induced by drugs, toxins, and other etiologies, and the effective treatment for ALF is very limited. Among the drug-induced ALF, acetaminophen (APAP) overdose is the most common cause. However, the molecular mechanisms underlying APAP hepatoxicity remain incompletely understood. Sirtuin 6 (Sirt6) is a stress responsive protein deacetylase and plays an important role in regulation of DNA repair, genomic stability, oxidative stress, and inflammation. Here, we report that genetic and pharmacological activation of Sirt6 protects against ALF in mice. We first observed that Sirt6 expression was significantly reduced in the liver tissues of human patients with ALF and mice treated with an overdose of APAP. Then we developed an inducible Sirt6 transgenic mice for Cre-mediated overexpression of the human Sirt6 gene in systemic (Sirt6-Tg) and hepatic-specific (Sirt6-HepTg) manners. Both Sirt6-Tg mice and Sirt6-HepTg mice exhibited the significant protection against APAP hepatoxicity. In contrast, hepatic-specific Sirt6 knockout mice exaggerated APAP-induced liver damages. Mechanistically, Sirt6 attenuated APAP-induced hepatocyte necrosis and apoptosis through downregulation of oxidative stress, inflammation, the stress-activated kinase JNK activation, and apoptotic caspase activation. Moreover, Sirt6 negatively modulated the level and activity of poly (ADP-ribose) polymerase 1 (PARP1) in APAP-treated mouse liver tissues. Importantly, the specific Sirt6 activator MDL-800 exhibited better therapeutic potential for APAP hepatoxicity than the current drug acetylcysteine. Furthermore, in the model of bile duct ligation induced ALF, hepatic Sirt6-KO exacerbated, but Sirt6-HepTg mitigated liver damage. Collectively, our results demonstrate that Sirt6 protects against ALF and suggest that targeting Sirt6 activation could be a new therapeutic strategy to alleviate ALF.


Subject(s)
Acetaminophen , Hepatocytes , Liver Failure, Acute , Sirtuins , Animals , Humans , Male , Mice , Acetaminophen/adverse effects , Apoptosis/drug effects , Hepatocytes/metabolism , Hepatocytes/drug effects , Liver/metabolism , Liver/pathology , Liver/drug effects , Liver Failure, Acute/metabolism , Liver Failure, Acute/chemically induced , Liver Failure, Acute/pathology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Oxidative Stress/drug effects , Sirtuins/metabolism , Sirtuins/genetics
5.
Mol Med Rep ; 29(5)2024 05.
Article in English | MEDLINE | ID: mdl-38516774

ABSTRACT

Acute liver failure (ALF) is a complex syndrome characterized by overactivation of innate immunity, and the recruitment and differentiation of immune cells at inflammatory sites. The present study aimed to explore the role of microRNA (miRNA/miR)­21 and its potential mechanisms underlying inflammatory responses in ALF. Baseline serum miR­21 was analyzed in patients with ALF and healthy controls. In addition, miR­21 antagomir was injected via the tail vein into C57BL/6 mice, and lipopolysaccharide/D­galactosamine (LPS/GalN) was injected into mice after 48 h. The expression levels of miR­21, Krüppel­like­factor­6 (KLF6), autophagy­related proteins and interleukin (IL)­23, and hepatic pathology were then assessed in the liver tissue. Furthermore, THP­1­derived macrophages were transfected with a miRNA negative control, miR­21 inhibitor, miR­21 mimics or KLF6 overexpression plasmid, followed by treatment with or without rapamycin, and the expression levels of miR­21, KLF6, autophagy­related proteins and IL­23 were evaluated. The results revealed that baseline serum miR­21 levels were significantly upregulated in patients with ALF. In addition, LPS/GalN­induced ALF was attenuated in the antagomir­21 mouse group. KLF6 was identified as a target of miR­21­5p with one putative seed match site identified by TargetScan. A subsequent luciferase activity assay demonstrated a direct interaction between miR­21­5p and the 3'­UTR of KLF6 mRNA. Further experiments suggested that miR­21 promoted the expression of IL­23 via inhibiting KLF6, which regulated autophagy. In conclusion, in the present study, baseline serum miR­21 levels were highly upregulated in patients with ALF, antagomir­21 attenuated LPS/GalN­induced ALF in a mouse model, and miR­21 could promote the expression of IL­23 via inhibiting KLF6.


Subject(s)
Liver Failure, Acute , MicroRNAs , Animals , Humans , Mice , Antagomirs , Autophagy/genetics , Autophagy-Related Proteins , Interleukin-23/genetics , Interleukin-23/metabolism , Kruppel-Like Factor 6/genetics , Kruppel-Like Factor 6/metabolism , Lipopolysaccharides/toxicity , Liver Failure, Acute/chemically induced , Liver Failure, Acute/genetics , Liver Failure, Acute/metabolism , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction
6.
Tissue Cell ; 87: 102326, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38442547

ABSTRACT

BACKGROUND: Transplantation of mesenchymal stem cells (MSCs) is a newly developed strategy for treating acute liver failure (ALF). Nonetheless, the low survival rate of MSCs after transplantation and their poor homing to damaged tissues limit the clinical application of MSCs. The research assessed whether hypoxic preconditioning (HPC) can improve the biological activity of human amniotic mesenchymal stem cells (hA-MSCs), promote their homing ability to the liver of mice with ALF, and influence liver tissue repair. METHODS: Flow cytometry, CCK8, Transwell, and Western blotting assays were conducted to assess the effects of hypoxic preconditioning on the phenotype, proliferation, and migration of hA-MSCs and the changes in the c-Met and CXCR4 gene expression levels were studied. To evaluate the effects of the transplantation of hypoxic preconditioning of hA-MSCs on the homing and repair of D-galactosamine (D-GalN)/LPS-induced ALF, the mechanism was elucidated by adding c-Met, CXCR4-specific blockers (SU11274 and AMD3100). RESULTS: After hypoxia pretreatment (1% oxygen volume fraction), hA-MSCs maintained the morphological characteristics of adherence and vortex colony growth and showed high CD44, CD90, and CD105 and low CD31, CD34, and CD45 expression levels. Hypoxic preconditioning of hA-MSCs significantly increased their proliferation and migration and highly expressed the c-Met and CXCR4 genes. In vivo and in vitro, this migration-promoting effect was suppressed by the c-Met specific blocker SU11274. In the acute liver failure mouse model, the HGF expression level was considerably elevated in the liver than that in the serum, lungs and kidneys. The transplantation of hypoxic preconditioned hA-MSCs introduced a remarkable improvement in the liver function and survival rate of mice with ALF and enhanced the anti-apoptosis ability of liver cells. The anti-apoptotic enhancing effect of hypoxic preconditioning was suppressed by the c-Met specific blocker SU11274. Hypoxic hA-MSCs administration was observed to have considerably increased the fluorescent cells in the liver than that recorded after administering normal oxygen-hA-MSCs. The number of hepatic fluorescent cells decreased remarkably after adding the c-Met inhibitor SU11274, compared to that recorded after hypoxic pretreatment, whereas the effect of c-Met inhibitor SU11274 on normal oxygen-hA-MSCs was not significant. CONCLUSIONS: Hypoxic preconditioning depicted no impact on the morphology and phenotype features of the human amniotic mesenchymal stem cells, but it can promote their proliferation, migration, anti-apoptotic effect, and homing rate and improve the repair of acute liver failure, which might be mediated by the HGF/c-Met signaling axis.


Subject(s)
Indoles , Liver Failure, Acute , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Piperazines , Sulfonamides , Humans , Mice , Animals , Liver Failure, Acute/therapy , Liver Failure, Acute/metabolism , Hypoxia/metabolism , Oxygen/metabolism , Cell Proliferation , Hepatocyte Growth Factor/metabolism , Hepatocyte Growth Factor/pharmacology
7.
Int Immunopharmacol ; 130: 111732, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38402834

ABSTRACT

Fulminant hepatic failure (FHF) is the terminal phase of acute liver injury, which is characterized by massive hepatocyte necrosis and rapid hepatic dysfunction in patients without preexisting liver disease. There are currently no therapeutic options for such a life-threatening hepatic failure except liver transplantation; therefore, the terminal phase of the underlying acute liver injury should be avoided. Tomatidine (TOM), asteroidal alkaloid, may have different biological activities, including antioxidant and anti-inflammatory effects. Herein, the lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced FHF mouse model was established to explore the protective potential of TOM and the underlying mechanisms of action. TOM pretreatment significantly inhibited hepatocyte necrosis and decreased serum aminotransferase activities in LPS/D-GalN-stimulated mice. TOM further increased the level of different antioxidant enzymes while reducing lipid peroxidation biomarkers in the liver. These beneficial effects of TOM were shown to be associated with targeting of NF-κB signaling pathways, where TOM repressed NF-κB activation and decreased LPS/D-GalN-induced TNF-α, IL-6, IL-1ß, and iNOS production. Moreover, TOM prevented LPS/D-GalN-induced upregulation of Keap1 expression and downregulation of Nrf2 and HO-1 expression, leading to increased Nrf2-binding activity and HO-1 levels. Besides, TOM pretreatment repressed LPS/D-GalN-induced upregulation of proliferating cell nuclear antigen (PCNA) expression, which spared the hepatocytes from damage and subsequent repair following the LPS/D-GalN challenge. Collectively, our findings revealed that TOM has a protective effect on LPS/D-GalN-induced FHF in mice, showing powerful antioxidant and anti-inflammatory effects, primarily mediated via modulating Keap1/Nrf2/HO-1 and NF-κB/TNF-α/IL-6/IL-1ß/iNOS signaling pathways.


Subject(s)
Liver Failure, Acute , NF-kappa B , Tomatine/analogs & derivatives , Humans , Mice , Animals , NF-kappa B/metabolism , Antioxidants/pharmacology , Liver Failure, Acute/chemically induced , Liver Failure, Acute/drug therapy , Liver Failure, Acute/metabolism , NF-E2-Related Factor 2/metabolism , Lipopolysaccharides/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Signal Transduction , Liver , Oxidative Stress , Inflammation/drug therapy , Inflammation/metabolism , Anti-Inflammatory Agents/pharmacology , Necrosis/metabolism , Galactosamine/pharmacology
8.
Redox Biol ; 70: 103052, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38290384

ABSTRACT

Acute liver failure caused by alcoholic hepatitis (AH) is only effectively treated with liver transplantation. Livers of patients with AH show a unique molecular signature characterized by defective hepatocellular redox metabolism, concurrent to hepatic infiltration of neutrophils that express myeloperoxidase (MPO) and form neutrophil extracellular traps (NETs). Exacerbated NET formation and MPO activity contribute to liver damage in mice with AH and predicts poor prognosis in AH patients. The identification of pathways that maladaptively exacerbate neutrophilic activity in liver could inform of novel therapeutic approaches to treat AH. Whether the redox defects of hepatocytes in AH directly exacerbate neutrophilic inflammation and NET formation is unclear. Here we identify that the protein content of the mitochondrial biliverdin exporter ABCB10, which increases hepatocyte-autonomous synthesis of the ROS-scavenger bilirubin, is decreased in livers from humans and mice with AH. Increasing ABCB10 expression selectively in hepatocytes of mice with AH is sufficient to decrease MPO gene expression and histone H3 citrullination, a specific marker of NET formation. These anti-inflammatory effects can be explained by ABCB10 function reducing ROS-mediated actions in liver. Accordingly, ABCB10 gain-of-function selectively increased the mitochondrial GSH/GSSG ratio and decreased hepatic 4-HNE protein adducts, without elevating mitochondrial fat expenditure capacity, nor mitigating steatosis and hepatocyte death. Thus, our study supports that ABCB10 function regulating ROS-mediated actions within surviving hepatocytes mitigates the maladaptive activation of infiltrated neutrophils in AH. Consequently, ABCB10 gain-of-function in human hepatocytes could potentially decrease acute liver failure by decreasing the inflammatory flare caused by excessive neutrophil activity.


Subject(s)
Hepatitis, Alcoholic , Liver Failure, Acute , Humans , Animals , Mice , Hepatitis, Alcoholic/genetics , Hepatitis, Alcoholic/metabolism , Biliverdine/metabolism , Reactive Oxygen Species/metabolism , Hepatocytes/metabolism , Liver/metabolism , Inflammation/genetics , Inflammation/metabolism , Histones/metabolism , Liver Failure, Acute/metabolism , ATP-Binding Cassette Transporters/metabolism
9.
Cell Mol Biol Lett ; 29(1): 8, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172700

ABSTRACT

BACKGROUND: Acute liver failure (ALF) is a life-threatening disease, but its pathogenesis is not fully understood. NETosis is a novel mode of cell death. Although the formation of neutrophil extracellular traps (NETs) has been found in various liver diseases, the specific mechanism by which NETosis regulates the development of ALF is unclear. In this article, we explore the role and mechanism of NETosis in the pathogenesis of ALF. METHODS: Clinically, we evaluated NETs-related markers in the liver and peripheral neutrophils of patients with ALF. In in vitro experiments, HL-60 cells were first induced to differentiate into neutrophil-like cells (dHL-60 cells) with dimethyl sulfoxide (DMSO). NETs were formed by inducing dHL-60 cells with PMA. In in vivo experiments, the ALF model in mice was established with LPS/D-gal, and the release of NETs was detected by immunofluorescence staining and western blotting. Finally, the acetylation levels of IDH1 and MDH1 were detected in dHL-60 cells and liver samples by immunoprecipitation. RESULTS: Clinically, increased release of NETs in liver tissue was observed in patients with ALF, and NETs formation was detected in neutrophils from patients with liver failure. In dHL-60 cells, mutations at IDH1-K93 and MDH1-K118 deacetylate IDH1 and MDH1, which promotes the formation of NETs. In a mouse model of ALF, deacetylation of IDH1 and MDH1 resulted in NETosis and promoted the progression of acute liver failure. CONCLUSIONS: Deacetylation of IDH1 and MDH1 reduces their activity and promotes the formation of NETs. This change aggravates the progression of acute liver failure.


Subject(s)
Extracellular Traps , Liver Failure, Acute , Humans , Animals , Mice , Neutrophils/metabolism , Extracellular Traps/metabolism , Protein Processing, Post-Translational , Disease Models, Animal , Liver Failure, Acute/metabolism , Isocitrate Dehydrogenase/metabolism
10.
Cell Host Microbe ; 32(1): 48-62.e9, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38056458

ABSTRACT

Acetaminophen overuse is a common cause of acute liver failure (ALF). During ALF, toxins are metabolized by enzymes such as CYP2E1 and transformed into reactive species, leading to oxidative damage and liver failure. Here, we found that oral magnesium (Mg) alleviated acetaminophen-induced ALF through metabolic changes in gut microbiota that inhibit CYP2E1. The gut microbiota from Mg-supplemented humans prevented acetaminophen-induced ALF in mice. Mg exposure modulated Bifidobacterium metabolism and enriched indole-3-carboxylic acid (I3C) levels. Formate C-acetyltransferase (pflB) was identified as a key Bifidobacterium enzyme involved in I3C generation. Accordingly, a Bifidobacterium pflB knockout showed diminished I3C generation and reduced the beneficial effects of Mg. Conversely, treatment with I3C or an engineered bacteria overexpressing Bifidobacterium pflB protected against ALF. Mechanistically, I3C bound and inactivated CYP2E1, thus suppressing formation of harmful reactive intermediates and diminishing hepatocyte oxidative damage. These findings highlight how interactions between Mg and gut microbiota may help combat ALF.


Subject(s)
Acetaminophen , Liver Failure, Acute , Humans , Mice , Animals , Acetaminophen/adverse effects , Acetaminophen/metabolism , Magnesium/metabolism , Cytochrome P-450 CYP2E1/metabolism , Cytochrome P-450 CYP2E1/pharmacology , Liver/metabolism , Liver Failure, Acute/chemically induced , Liver Failure, Acute/metabolism
11.
J Biochem Mol Toxicol ; 38(1): e23577, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37934488

ABSTRACT

In this paper, we generated a short hairpin RNA growth differentiation factor-11 (sh-GDF11) and evaluated the effects of sh-GDF11 on the pathogenesis of acute liver failure (ALF) in vitro and in vivo. Through bioinformatics study, the key gene related to ALF was assayed. Lipopolysaccharide (LPS) and D-galactoamine (D-GalN) were applied to establish the mouse model of LPS/D-GalN-induced liver injury, and TNF-α and D-Gal were used to construct an in vitro cell model, followed by treatment of sh-GDF11 for analysis of liver cell proliferation. Bioinformatics analysis showed that the protective effect of sh-GDF11 on ALF may be mediated by phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway. The results of in vitro study found that sh-GDF11 could promote cell proliferation and inhibit death by blocking the PI3K/Akt/mTOR signaling pathway. In vivo animal experiments further confirmed that sh-GDF11 could suppress hepatocyte apoptosis by inhibiting the PI3K/Akt/mTOR signaling pathway. sh-GDF11 relieved LPS/D-GalN-induced ALF by blocking the PI3K/Akt/mTOR signaling pathway, emphasizing its critical role in LPS/D-GalN-induced ALF treatment.


Subject(s)
Lipopolysaccharides , Liver Failure, Acute , Animals , Mice , Apoptosis , Hepatocytes , Lipopolysaccharides/toxicity , Liver/metabolism , Liver Failure, Acute/chemically induced , Liver Failure, Acute/metabolism , Liver Failure, Acute/pathology , Mammals/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism
12.
Cell Mol Gastroenterol Hepatol ; 17(2): 199-217, 2024.
Article in English | MEDLINE | ID: mdl-37926366

ABSTRACT

BACKGROUND & AIMS: The function of cholinergic anti-inflammatory pathway (CAP) in acute liver failure (ALF) with inflammatory storm remains indefinite. The liver-gut axis has been proved to be crucial for liver homeostasis. Investigation about CAP regulation on liver-gut axis would enrich our understanding over cholinergic anti-inflammatory mechanism. METHODS: Co-injection of lipopolysaccharide and D-galactosamine was used to establish the model of ALF. PNU-282987 was used to activate the CAP. Histological staining, real-time polymerase chain reaction, Western blotting, RNA sequencing, and flow cytometry were conducted. Liver biopsy specimens and patients' serum from patients with liver failure were also analyzed. RESULTS: We confirmed that activating the CAP alleviated hepatocyte destruction, accompanied by a significant decrease in hepatocyte apoptosis, pro-inflammatory cytokines, and NLRP3 inflammasome activation. Moreover, hepatic MAdCAM1 and serum MAdCAM1 levels were induced in ALF, and MAdCAM1 levels were positively correlated with the extent of liver damage and the expression of pro-inflammatory markers. Furthermore, activating the CAP mainly downregulated ectopic expression of MAdCAM1 on endothelial cells, and inhibition of NF-κB p65 nuclear translocation was partly attributed to the decreased MAdCAM1. Notably, in ALF, the aberrant hepatic expression of MAdCAM1 subsequently recruited gut-derived α4ß7+ CD4+T cells to the liver, which exhibited an augmented IFN-γ-secreting and IL-17-producing phenotype. Finally, we revealed that the levels of serum and hepatic MAdCAM1 were elevated in patients with liver failure and closely correlated with clinical course. Increasing hepatic infiltration of ß7+ cells were also confirmed in patients. CONCLUSIONS: Activating the CAP attenuated liver injury by inhibiting MAdCAM1/α4ß7 -mediated gut-derived proinflammatory lymphocytes infiltration, which provides a potential therapeutic target for ALF.


Subject(s)
Liver Failure, Acute , Neuroimmunomodulation , Humans , Endothelial Cells/pathology , Liver Failure, Acute/metabolism , Lymphocytes/metabolism
13.
Inflammation ; 47(2): 733-752, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38129360

ABSTRACT

There is an increasing evidence indicating the involvement of the sympathetic nervous system (SNS) in liver disease development. To achieve an extensive comprehension of the obscure process by which the SNS alleviates inflammatory damage in non-parenchymal liver cells (NPCs) during acute liver failure (ALF), we employ isoproterenol (ISO), a beta-adrenoceptor agonist, to mimic SNS signaling. ISO was administered to C57BL/6J mice to establish an acute liver failure (ALF) model using LPS/D-GalN, which was defined as ISO + ALF. Non-parenchymal cells (NPCs) were isolated from liver tissues and digested for tandem mass tag (TMT) labeled proteomics to identify differentially expressed proteins (DEPs). The administration of ISO resulted in a decreased serum levels of pro-inflammatory cytokines, e.g., TNF-α, IL-1ß, and IL-6 in ALF mice, which alleviated liver damage. By using TMT analysis, it was possible to identify 1587 differentially expressed proteins (DEPs) in isolated NPCs. Notably, over 60% of the DEPs in the ISO + ALF vs. ALF comparison were shared in the Con vs. ALF comparison. According to enrichment analysis, the DEPs influenced by ISO in ALF mice were linked to biological functions of heme and fatty acid metabolism, interferon gamma response, TNFA signaling pathway, and mitochondrial oxidation function. Protein-protein interaction network analysis indicated Mapk14 and Caspase3 may serve as potentially valuable indicators of ISO intervention. In addition, the markers on activated macrophages, such as Mapk14, Casp1, Casp8, and Mrc1, were identified downregulated after ISO initiation. ISO treatment increased the abundance of anti-inflammatory markers in mouse macrophages, as evidenced by the immunohistochemistry (IHC) slides showing an increase in Arg + staining and a reduction in iNOS + staining. Furthermore, pretreatment with ISO also resulted in a reduction of LPS-stimulated inflammation signaling markers, Mapk14 and NF-κB, in human THP-1 cells. Prior treatment with ISO may have the potential to modify the biological functions of NPCs and could serve as an innovative pharmacotherapy for delaying the pathogenesis and progression of ALF.


Subject(s)
Chemical and Drug Induced Liver Injury , Isoproterenol , Animals , Mice , Adrenergic beta-Agonists/pharmacology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Cytokines/metabolism , Galactosamine , Isoproterenol/pharmacology , Lipopolysaccharides/toxicity , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver Failure, Acute/drug therapy , Liver Failure, Acute/chemically induced , Liver Failure, Acute/metabolism , Mice, Inbred C57BL
14.
Fluids Barriers CNS ; 20(1): 92, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38066639

ABSTRACT

BACKGROUND: Hepatic encephalopathy (HE) symptoms associated with liver insufficiency are linked to the neurotoxic effects of ammonia and other toxic metabolites reaching the brain via the blood-brain barrier (BBB), further aggravated by the inflammatory response. Cumulative evidence documents that the non-coding single-stranded RNAs, micro RNAs (miRs) control the BBB functioning. However, miRs' involvement in BBB breakdown in HE is still underexplored. Here, we hypothesized that in rats with acute liver failure (ALF) or rats subjected to hyperammonemia, altered circulating miRs affect BBB composing proteins. METHODS: Transmission electron microscopy was employed to delineate structural alterations of the BBB in rats with ALF (thioacetamide (TAA) intraperitoneal (ip.) administration) or hyperammonemia (ammonium acetate (OA) ip. administration). The BBB permeability was determined with Evans blue dye and sodium fluorescein assay. Plasma MiRs were profiled by Next Generation Sequencing (NGS), followed by in silico analysis. Selected miRs, verified by qRT-PCR, were examined in cultured rat brain endothelial cells. Targeted protein alterations were elucidated with immunofluorescence, western blotting, and, after selected miR mimics transfection, through an in vitro resistance measurement. RESULTS: Changes in BBB structure and increased permeability were observed in the prefrontal cortex of TAA rats but not in the brains of OA rats. The NGS results revealed divergently changed miRNA-ome in the plasma of both rat models. The in silico analysis led to the selection of miR-122-5p and miR-183-5p with their target genes occludin and integrin ß1, respectively, as potential contributors to BBB alterations. Both proteins were reduced in isolated brain vessels and cortical homogenates in TAA rats. We documented in cultured primary brain endothelial cells that ammonia alone and, in combination with TNFα increases the relative expression of NGS-selected miRs with a less pronounced effect of TNFα when added alone. The in vitro study also confirmed miR-122-5p-dependent decrease in occludin and miR-183-5p-related reduction in integrin ß1 expression. CONCLUSION: This work identified, to our knowledge for the first time, potential functional links between alterations in miRs residing in brain endothelium and BBB dysfunction in ALF.


Subject(s)
Hyperammonemia , Liver Failure, Acute , MicroRNAs , Rats , Animals , Blood-Brain Barrier/metabolism , MicroRNAs/metabolism , MicroRNAs/pharmacology , Tumor Necrosis Factor-alpha/pharmacology , Endothelial Cells/metabolism , Ammonia/metabolism , Ammonia/pharmacology , Hyperammonemia/metabolism , Occludin/metabolism , Integrin beta1/metabolism , Integrin beta1/pharmacology , Liver Failure, Acute/chemically induced , Liver Failure, Acute/metabolism
15.
Cell Death Dis ; 14(12): 855, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38129372

ABSTRACT

The E3 ubiquitin ligase RING finger protein 115 (RNF115), also known as breast cancer-associated gene 2 (BCA2), has been linked with the growth of some cancers and immune regulation, which is negatively correlated with prognosis. Here, it is demonstrated that the RNF115 deletion can protect mice from acute liver injury (ALI) induced by the treatment of lipopolysaccharide (LPS)/D-galactosamine (D-GalN), as evidenced by decreased levels of alanine aminotransaminase, aspartate transaminase, inflammatory cytokines (e.g., tumor necrosis factor α and interleukin-6), chemokines (e.g., MCP1/CCL2) and inflammatory cell (e.g., monocytes and neutrophils) infiltration. Moreover, it was found that the autophagy activity in Rnf115-/- livers was increased, which resulted in the removal of damaged mitochondria and hepatocyte apoptosis. However, the administration of adeno-associated virus Rnf115 or autophagy inhibitor 3-MA impaired autophagy and aggravated liver injury in Rnf115-/- mice with ALI. Further experiments proved that RNF115 interacts with LC3B, downregulates LC3B protein levels and cell autophagy. Additionally, Rnf115 deletion inhibited M1 type macrophage activation via NF-κB and Jnk signaling pathways. Elimination of macrophages narrowed the difference in liver damage between Rnf115+/+ and Rnf115-/- mice, indicating that macrophages were linked in the ALI induced by LPS/D-GalN. Collectively, for the first time, we have proved that Rnf115 inactivation ameliorated LPS/D-GalN-induced ALI in mice by promoting autophagy and attenuating inflammatory responses. This study provides new evidence for the involvement of autophagy mechanisms in the protection against acute liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury , Liver Failure, Acute , Animals , Mice , Autophagy , Chemical and Drug Induced Liver Injury/pathology , Galactosamine/metabolism , Lipopolysaccharides/pharmacology , Liver/metabolism , Liver Failure, Acute/metabolism , NF-kappa B/metabolism
16.
Cell Mol Biol (Noisy-le-grand) ; 69(9): 130-135, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37807324

ABSTRACT

MicroRNAs (miRNAs) control liver diseases, but the role of microRNA-181a-5p in acute liver failure (ALF) is unclear. In this study, the ALF model was generated by injection of D-galactosamine (D-GalN) and lipopolysaccharide (LPS). The levels of miRNAs were assessed by microarray and qRT-PCR. The expression of caspase 3 was detected as the marker of cell apoptosis in ALF by immunohistochemistry and western blot. The targeting of microRNA-181a-5p on the high mobility group box 1 (HMGB1) was verified by dual luciferase assay. The impact of microRNA-181a-5p and HMGB1 was explored by flow cytometry. Results showed that microRNA-181a-5p was significantly down-regulated by D-GalN/LPS in vivo and in vitro, while the level of HMGB1 was up-regulated after the challenge. Furthermore, microRNA-181a-5p overexpression attenuated cell apoptosis in D-GalN/TNF-treated BNLCL2 cells. MicroRNA-181a-5p could directly target HMGB1 mRNA and repress its expressions, in further HMGB1 is involved in microRNA-181a-5p effect on cell apoptosis of ALF. In conclusion, these findings demonstrate that microRNA-181a-5p regulates hepatocyte apoptosis via HMGB1 in the development of ALF, which may provide potential therapeutic targets for ALF. However, the precise underlying mechanism that connects microRNA-181a-5p and HMGB1 remains to be explored.


Subject(s)
HMGB1 Protein , Liver Failure, Acute , MicroRNAs , Animals , Mice , Apoptosis/genetics , Galactosamine , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Lipopolysaccharides , Liver Failure, Acute/genetics , Liver Failure, Acute/metabolism , Microarray Analysis , MicroRNAs/genetics , MicroRNAs/metabolism
17.
Int J Med Sci ; 20(12): 1616-1630, 2023.
Article in English | MEDLINE | ID: mdl-37859699

ABSTRACT

Purpose: Acute liver failure (ALF) is a clinically fatal disease that leads to the rapid loss of normal liver function. Acetaminophen (APAP) is a leading cause of drug-induced ALF. Ferroptosis, defined as iron-dependent cell death associated with lipid peroxide accumulation, has been shown to be strongly associated with APAP-induced liver injury. Growth arrest-specific 1 (GAS1) is a growth arrest-specific gene, which is closely related to the inhibition of cell growth and promotion of apoptosis. However, the functional role and underlying mechanism of GAS1 in APAP-induced ferroptosis remain unknown. Methods: We established liver-specific overexpression of GAS1 (GAS1AAV8-OE) mice and the control (GAS1AAV8-vector) mice by tail vein injection of male mice with adeno-associated virus. APAP at 500 mg/kg was intraperitoneally injected into these two groups of mice to induce acute liver failure. The shRNA packaged by the lentivirus inhibits GAS1 gene expression in human hepatoma cell line HepaRG (HepaRG-shNC and HepaRG-shGAS1-2) and primary hepatocytes of mice with liver-specific overexpression of GAS1 were isolated and induced by APAP in vitro to further investigate the regulatory role of GAS1 in APAP-induced acute liver failure. Results: APAP-induced upregulation of ferroptosis, levels of lipid peroxides and reactive oxygen species, and depletion of glutathione were effectively alleviated by the ferroptosis inhibitor, ferrostatin-1, and downregulation of GAS1 expression. GAS1 overexpression promoted ferroptosis-induced lipid peroxide accumulation via p53, inhibiting its downstream target, solute carrier family 7 member 11. Conclusion: Collectively, our findings suggest that GAS1 overexpression plays a key role in aggravating APAP-induced acute liver injury by promoting ferroptosis-induced accumulation of lipid peroxides.


Subject(s)
Ferroptosis , Liver Failure, Acute , Animals , Humans , Male , Mice , Acetaminophen/toxicity , Cell Cycle Proteins/metabolism , Ferroptosis/genetics , GPI-Linked Proteins/metabolism , Hepatocytes/metabolism , Lipid Peroxides/metabolism , Liver , Liver Failure, Acute/chemically induced , Liver Failure, Acute/genetics , Liver Failure, Acute/metabolism , Mice, Inbred C57BL
18.
Biomater Adv ; 153: 213576, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37566937

ABSTRACT

Cell-based liver therapies based on retrieving and steadying failed metabolic function(s) for acute and chronic diseases could be a valuable substitute for liver transplants, even though they are limited by the low engraftment capability and reduced functional quality of primary human hepatocytes (PHH). In this paper we propose the use of gelatin-hyaluronic acid (Gel-HA) scaffolds seeded with PHH for the treatment of liver failure. We first optimized the composition using Gel-HA hydrogels, looking for the mechanical properties closer to the human liver and determining HepG2 cells functionality. Gel-HA scaffolds with interconnected porosity (pore size 102 µm) were prepared and used for PHH culture and evaluation of key hepatic functions. PHH cultured in Gel-HA scaffolds exhibited increased albumin and urea secretion and metabolic capacity (CYP and UGT activity levels) compared to standard monolayer cultures. The transplant of the scaffold containing PHH led to an improvement in liver function (transaminase levels, necrosis) and ameliorated damage in a mouse model of acetaminophen (APAP)-induced liver failure. The study provided a mechanistic understanding of APAP-induced liver injury and the impact of transplantation by analyzing cytokine production and oxidative stress induction to find suitable biomarkers of cell therapy effectiveness.


Subject(s)
Acetaminophen , Liver Failure, Acute , Mice , Animals , Humans , Acetaminophen/toxicity , Acetaminophen/metabolism , Hepatocytes/metabolism , Liver Failure, Acute/chemically induced , Liver Failure, Acute/therapy , Liver Failure, Acute/metabolism , Hep G2 Cells , Hyaluronic Acid/metabolism
19.
Immun Inflamm Dis ; 11(7): e935, 2023 07.
Article in English | MEDLINE | ID: mdl-37506138

ABSTRACT

BACKGROUND: Acute liver failure (ALF) is a serious liver disease that is difficult to treat owing to its unclear pathogenesis. This study aimed to investigate the roles and molecular mechanisms of calycosin (CA) in ALF. METHODS: In this study, the roles and mechanism of CA in ALF were explored using an in vitro lipopolysaccharide (LPS)-induced ALF cell model. Additionally, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide assay was used to assess the effect of CA on the activity of LPS-induced L02 human liver epithelial cells, and flow cytometry was used to detect apoptosis in L02 cells. Expression levels of apoptosis-related genes, Bax and Bcl-2, were measured using reverse transcription-quantitative polymerase chain reaction and Western blot analysis. Expression levels of inflammatory factors in LPS-induced L02 cells were measured using an enzyme-linked immunosorbent assay. Additionally, the effect of CA on ALF was inhibited via transfection of a toll-like receptor 4 (TLR4)-plasmid to elucidate the relationship between CA and TLR4/nuclear factor (NF)-κB signaling pathway in ALF. RESULTS: CA had no toxic effects on L02 cells, but enhanced the activity of LPS-induced L02 cells in a dose-dependent manner. Apoptosis and inflammatory factor release was increased in ALF, activating the TLR4/NF-κB signaling pathway. However, CA treatment inhibited the apoptosis and release of inflammatory factors. Further mechanistic studies revealed that the upregulation of TLR4 expression reversed the alleviating effects of CA on inflammation and apoptosis in LPS-induced L02 cells. CONCLUSION: CA alleviates inflammatory damage in LPS-induced L02 cells by inhibiting the TLR4/NF-κB pathway and may be a promising therapeutic agent for ALF treatment.


Subject(s)
Liver Failure, Acute , NF-kappa B , Humans , NF-kappa B/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Lipopolysaccharides/toxicity , Liver Failure, Acute/drug therapy , Liver Failure, Acute/metabolism , Liver Failure, Acute/pathology , Hepatocytes/metabolism , Hepatocytes/pathology , Apoptosis
20.
Int J Mol Sci ; 24(11)2023 May 24.
Article in English | MEDLINE | ID: mdl-37298155

ABSTRACT

Abuse with hepatotoxic agents is a major cause of acute liver failure. The search for new criteria indicating the acute or chronic pathological processes is still a challenging issue that requires the selection of effective tools and research models. Multiphoton microscopy with second harmonic generation (SHG) and fluorescence lifetime imaging microscopy (FLIM) are modern label-free methods of optical biomedical imaging for assessing the metabolic state of hepatocytes, therefore reflecting the functional state of the liver tissue. The aim of this work was to identify characteristic changes in the metabolic state of hepatocytes in precision-cut liver slices (PCLSs) under toxic damage by some of the most common toxins: ethanol, carbon tetrachloride (CCl4) and acetaminophen (APAP), commonly known as paracetamol. We have determined characteristic optical criteria for toxic liver damage, and these turn out to be specific for each toxic agent, reflecting the underlying pathological mechanisms of toxicity. The results obtained are consistent with standard methods of molecular and morphological analysis. Thus, our approach, based on optical biomedical imaging, is effective for intravital monitoring of the state of liver tissue in the case of toxic damage or even in cases of acute liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury , Liver Failure, Acute , Humans , Acetaminophen/toxicity , Chemical and Drug Induced Liver Injury/diagnostic imaging , Chemical and Drug Induced Liver Injury/metabolism , Hepatocytes/metabolism , Liver/metabolism , Liver Failure, Acute/diagnostic imaging , Liver Failure, Acute/metabolism , Ethanol/toxicity , Carbon Tetrachloride/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...