Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57.235
Filter
1.
Medicine (Baltimore) ; 103(18): e38028, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701314

ABSTRACT

Liver hepatocellular carcinoma (LIHC) encompasses diverse therapeutic approaches, among which targeted therapy has gained significant prominence in recent years. The identification of numerous targets and the increasing clinical application of targeted drugs have greatly improved LIHC treatment. However, the precise role of CDCA4 (Cell Division Cycle Associated 4), as well as its underlying mechanisms and prognostic implications in LIHC, remains unclear. CDCA4 expression levels in LIHC were analyzed using multiple databases including the cancer genome atlas (TCGA), gene expression profiling interactive analysis (GEPIA), and ULCAN, as well as the datasets E_TABM_36, GSE144269, GSE14520, and GSE54236. The prognostic value of CDCA4 was then evaluated. Subsequently, the association between CDCA4 and immune cells was investigated. Enrichment analysis (GSEA) was utilized to investigate the functional roles and pathways linked to CDCA4. Additionally, the methylation patterns and drug sensitivity of CDCA4 were examined. A predictive model incorporating immune genes related to CDCA4 was developed. The TISCH dataset was used to investigate the single-cell expression patterns of CDCA4. Finally, validation of CDCA4 expression levels was conducted through RT-PCR, Western blotting, and immunohistochemistry. CDCA4 exhibited significant overexpression in LIHC and demonstrated significant correlations with clinical features. High expression of CDCA4 is associated with a poorer prognosis. Analysis of immune infiltration and enrichment revealed its association with the immune microenvironment. Furthermore, its expression is correlated with methylation and mutation patterns. CDCA4 is associated with 19 drugs. Prognostic models utilizing CDCA4 demonstrate favorable effectiveness. T cell subtypes were found to be associated with CDCA4 through single-cell analysis. The conclusive experiment provided evidence of significant upregulation of CDCA4 in LIHC. The high expression of CDCA4 in LIHC is associated with prognostic significance and is highly expressed in T cell subtypes, providing a new therapeutic target and potential therapeutic strategy for LIHC.


Subject(s)
Carcinoma, Hepatocellular , Cell Cycle Proteins , Computational Biology , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Computational Biology/methods , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Prognosis , Gene Expression Regulation, Neoplastic , Gene Expression Profiling , Male , Female , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
2.
BMC Cancer ; 24(1): 558, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702621

ABSTRACT

BACKGROUND: Portal hypertension (PHT) has been proven to be closely related to the development of hepatocellular carcinoma (HCC). Whether PHT before liver transplantation (LT) will affect the recurrence of HCC is not clear. METHODS: 110 patients with depressurization of the portal vein (DPV) operations (Transjugular Intrahepatic Portosystemic Shunt-TIPS, surgical portosystemic shunt or/and splenectomy) before LT from a HCC LT cohort, matched with 330 preoperative non-DPV patients; this constituted a nested case-control study. Subgroup analysis was based on the order of DPV before or after the occurrence of HCC. RESULTS: The incidence of acute kidney injury and intra-abdominal bleeding after LT in the DPV group was significantly higher than that in non-DPV group. The 5-year survival rates in the DPV and non-DPV group were 83.4% and 82.7% respectively (P = 0.930). In subgroup analysis, patients in the DPV prior to HCC subgroup may have a lower recurrence rate (4.7% vs.16.8%, P = 0.045) and a higher tumor free survival rate (88.9% vs.74.4%, P = 0.044) after LT under the up-to-date TNMI-II stage, while in TNM III stage, there was no difference for DPV prior to HCC subgroup compared with the DPV after HCC subgroup or the non-DPV group. CONCLUSION: Compared with DPV after HCC, DPV treatment before HCC can reduce the recurrence rate of HCC after early transplantation (TNM I-II). DPV before LT can reduce the recurrence of early HCC.


Subject(s)
Carcinoma, Hepatocellular , Hypertension, Portal , Liver Neoplasms , Liver Transplantation , Neoplasm Recurrence, Local , Portal Vein , Humans , Liver Transplantation/adverse effects , Carcinoma, Hepatocellular/surgery , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/mortality , Male , Female , Portal Vein/pathology , Portal Vein/surgery , Middle Aged , Liver Neoplasms/surgery , Liver Neoplasms/pathology , Liver Neoplasms/mortality , Case-Control Studies , Neoplasm Recurrence, Local/epidemiology , Neoplasm Recurrence, Local/pathology , Hypertension, Portal/surgery , Hypertension, Portal/complications , Aged , Adult
3.
World J Surg Oncol ; 22(1): 119, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702732

ABSTRACT

BACKGROUND: Coronary artery bypass grafting (CABG) using the right gastroepiploic artery (RGEA) is a well-established, safe procedure. However, problems with RGEA grafts in subsequent abdominal surgeries can lead to fatal complications. This report presents the first case of right hepatectomy for hepatocellular carcinoma after CABG using the RGEA. CASE PRESENTATION: We describe a case in which a right hepatectomy for an 81-year-old male patient with hepatocellular carcinoma was safely performed after CABG using a RGEA graft. Preoperatively, three-dimensional computed tomography (3D- CT) images were constructed to confirm the run of the RGEA graft. The operation was conducted with the standby of a cardiovascular surgeon if there was a problem with the RGEA graft. The RGEA graft had formed adhesions with the hepatic falciform ligament, necessitating meticulous dissection. After the right hepatectomy, the left hepatic lobe descended into the vacated space, exerting traction on the RGEA. However, this traction was mitigated by suturing the hepatic falciform ligament to the abdominal wall, ensuring stability of the RGEA. There were no intraoperative or postoperative complications. CONCLUSION: It is crucial to confirm the functionality and anatomy of the RGEA graft preoperatively, handle it gently intraoperatively, and collaborate with cardiovascular surgeons.


Subject(s)
Carcinoma, Hepatocellular , Coronary Artery Bypass , Gastroepiploic Artery , Hepatectomy , Liver Neoplasms , Humans , Male , Gastroepiploic Artery/surgery , Hepatectomy/methods , Aged, 80 and over , Liver Neoplasms/surgery , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/surgery , Carcinoma, Hepatocellular/pathology , Coronary Artery Bypass/methods , Tomography, X-Ray Computed , Prognosis , Imaging, Three-Dimensional , Postoperative Complications/surgery
4.
Front Immunol ; 15: 1310239, 2024.
Article in English | MEDLINE | ID: mdl-38711515

ABSTRACT

Background: For decades, stratification criteria for first-line clinical studies have been highly uniform. However, there is no principle or consensus for restratification after systemic treatment progression based on immune checkpoint inhibitors (ICIs). The aim of this study was to assess the patterns of disease progression in patients with advanced hepatocellular carcinoma (HCC) who are not eligible for surgical intervention, following the use of immune checkpoint inhibitors. Methods: This is a retrospective study that involved patients with inoperable China liver stage (CNLC) IIIa and/or IIIb. The patients were treated at eight centers across China between January 2017 and October 2022. All patients received at least two cycles of first-line treatment containing immune checkpoint inhibitors. The patterns of disease progression were assessed using RECIST criteria 1.1. Different progression modes have been identified based on the characteristics of imaging progress. The study's main outcome measures were post-progression survival (PPS) and overall survival (OS). Survival curves were plotted using the Kaplan-Meier method to compare the difference among the four groups. Subgroup analysis was conducted to compare the efficacy of different immunotherapy combinations. Variations in the efficacy of immunotherapy have also been noted across patient groups exhibiting alpha-fetoprotein (AFP) levels equal to or exceeding 400ng/mL, in contrast to those with AFP levels below 400ng/mL. Results: The study has identified four distinct patterns of progress, namely p-IIb, p-IIIa, p-IIIb, and p-IIIc. Diverse patterns of progress demonstrate notable variations in both PPS and OS. The group p-IIb had the longest PPS of 12.7m (95% 9.3-16.1) and OS 19.6m (95% 15.6-23.5), the remaining groups exhibited p-IIIb at PPS 10.5 months (95%CI: 7.9-13.1) and OS 19.2 months (95%CI 15.1-23.3). Similarly, p-IIIc at PPS 5.7 months (95%CI: 4.2-7.2) and OS 11.0 months (95%CI 9.0-12.9), while p-IIIa at PPS 3.4 months (95%CI: 2.7-4.1) and OS 8.2 months (95%CI 6.8-9.5) were also seen. Additional stratified analysis was conducted and showed there were no differences of immunotherapy alone or in combination in OS (HR= 0.92, 95%CI: 0.59-1.43, P=0.68) and PPS (HR= 0.88, 95%CI: 0.57-1.36, P=0.54); there was no significant difference in PPS (HR=0.79, 95% CI: 0.55-1.12, P=0.15) and OS (HR=0.86, 95% CI: 0.61-1.24, P=0.39) for patients with AFP levels at or over 400ng/mL. However, it was observed that patients with AFP levels above 400ng/mL experienced a shorter median progression of PPS (8.0 months vs. 5.0 months) after undergoing immunotherapy. Conclusion: In this investigation of advanced hepatocellular carcinoma among Chinese patients treated with immune checkpoint inhibitors, we identified four distinct progression patterns (p-IIb, p-IIIa, p-IIIb and p-IIIc) that showed significant differences in PPS and OS. These findings demonstrate the heterogeneity of disease progression and prognosis after immunotherapy failure. Further validation in large cohorts is necessary to develop prognostic models that integrate distinct progression patterns to guide subsequent treatment decisions. Additionally, post-immunotherapy progression in patients with AFP levels ≥400ng/mL indicates a shortened median PPS. These findings provide valuable insights for future personalized treatment decisions.


Subject(s)
Carcinoma, Hepatocellular , Disease Progression , Immune Checkpoint Inhibitors , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/immunology , Liver Neoplasms/therapy , Liver Neoplasms/mortality , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Immune Checkpoint Inhibitors/therapeutic use , Male , Middle Aged , Female , Retrospective Studies , China , Aged , Adult , Neoplasm Staging , alpha-Fetoproteins/metabolism , alpha-Fetoproteins/analysis , Treatment Outcome , East Asian People
5.
Anal Cell Pathol (Amst) ; 2024: 8645534, 2024.
Article in English | MEDLINE | ID: mdl-38715919

ABSTRACT

Materials and Methods: Hsa_circ_0051908 expression was determined using RT-qPCR. HCC cell proliferation, apoptosis, invasion, and migration were assessed using CCK-8 assay, EdU staining, TUNEL staining, flow cytometry, and transwell assay. The molecular mechanism was analyzed using western blotting. In addition, the role of hsa_circ_0051908 in tumor growth was evaluated in vivo. Results: Hsa_circ_0051908 expression was increased in both HCC tissues and cell lines. The proliferation, migration, and invasion of HCC cells were significantly decreased after hsa_circ_0051908 knockdown, while cell apoptosis was notably increased. Furthermore, we found that hsa_circ_0051908 silencing downregulated vimentin and Snail and upregulated E-cadherin. In vivo, hsa_circ_0051908 silencing significantly inhibited the growth of the tumor. Conclusions: Our data provide evidence that hsa_circ_0051908 promotes HCC progression partially by mediating the epithelial-mesenchymal transition process, and it may be used for HCC treatment.


Subject(s)
Apoptosis , Carcinoma, Hepatocellular , Cell Movement , Cell Proliferation , Disease Progression , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Liver Neoplasms , RNA, Circular , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Epithelial-Mesenchymal Transition/genetics , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , Apoptosis/genetics , Cell Movement/genetics , Animals , Neoplasm Invasiveness , Mice, Nude , Vimentin/metabolism , Vimentin/genetics , Male , Mice, Inbred BALB C , Cadherins/metabolism , Cadherins/genetics
6.
Sci Rep ; 14(1): 10529, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719893

ABSTRACT

Liver metastases from pancreatic ductal adenocarcinoma (PDAC) are highly fatal. A rat-based patient-derived tumor xenograft (PDX) model is available for transcatheter therapy. This study aimed to create an immunodeficient rat model with liver xenografts of patient-derived primary PDAC and evaluate efficacy of hepatic arterial infusion chemotherapy with cisplatin in this model. Three patient-derived PDACs were transplanted into the livers of 21 rats each (totally, 63 rats), randomly assigned into hepatic arterial infusion, systemic venous infusion, and control groups (n = 7 each) four weeks post-implantation. Computed tomography evaluated tumor volumes before and four weeks after treatment. Post-euthanasia, resected tumor specimens underwent histopathological examination. A liver-implanted PDAC PDX rat model was established in all 63 rats, with first CT identifying all tumors. Four weeks post-treatment, arterial infusion groups exhibited significantly smaller tumor volumes than controls for all three tumors on second CT. Xenograft tumors histologically maintained adenocarcinoma features compared to original patient tumors. Ki67 expression was significantly lower in arterial infusion groups than in the other two for the three tumors, indicating reduced tumor growth in PDX rats. A liver-implanted PDAC PDX rat model was established as a rat-based preclinical platform. Arterial cisplatin infusion chemotherapy represents a potential therapy for PDAC liver metastasis.


Subject(s)
Carcinoma, Pancreatic Ductal , Hepatic Artery , Infusions, Intra-Arterial , Liver Neoplasms , Pancreatic Neoplasms , Xenograft Model Antitumor Assays , Animals , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Humans , Rats , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/diagnostic imaging , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/secondary , Liver Neoplasms/diagnostic imaging , Cisplatin/administration & dosage , Cisplatin/pharmacology , Male , Disease Models, Animal , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology
7.
World J Surg Oncol ; 22(1): 125, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720338

ABSTRACT

BACKGROUND: To investigate the correlation between microinvasion and various features of hepatocellular carcinoma (HCC), and to clarify the microinvasion distance from visible HCC lesions to subclinical lesions, so as to provide clinical basis for the expandable boundary of clinical target volume (CTV) from gross tumor volume (GTV) in the radiotherapy of HCC. METHODS: HCC patients underwent hepatectomy of liver cancer in our hospital between July 2019 and November 2021 were enrolled. Data on various features and tumor microinvasion distance were collected. The distribution characteristics of microinvasion distance were analyzed to investigate its potential correlation with various features. Tumor size compared between radiographic and pathologic samples was analyzed to clarify the application of pathologic microinvasion to identify subclinical lesions of radiographic imaging. RESULTS: The average microinvasion distance was 0.6 mm, with 95% patients exhibiting microinvasion distance less than 3.0 mm, and the maximum microinvasion distance was 4.0 mm. A significant correlation was found between microinvasion and liver cirrhosis (P = 0.036), serum albumin level (P = 0.049). Multivariate logistic regression analysis revealed that HCC patients with cirrhosis had a significantly lower risk of microinvasion (OR = 0.09, 95%CI = 0.02 ~ 0.50, P = 0.006). Tumor size was overestimated by 1.6 mm (95%CI=-12.8 ~ 16.0 mm) on radiographic size compared to pathologic size, with a mean %Δsize of 2.96% (95%CI=-0.57%~6.50%). The %Δsize ranged from - 29.03% to 34.78%. CONCLUSIONS: CTV expanding by 5.4 mm from radiographic GTV could include all pathologic microinvasive lesions in the radiotherapy of HCC. Liver cirrhosis was correlated with microinvasion and were independent predictive factor of microinvasion in HCC.


Subject(s)
Carcinoma, Hepatocellular , Hepatectomy , Liver Neoplasms , Neoplasm Invasiveness , Tumor Burden , Humans , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/radiotherapy , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/surgery , Liver Neoplasms/pathology , Liver Neoplasms/radiotherapy , Liver Neoplasms/diagnostic imaging , Male , Female , Middle Aged , Prognosis , Hepatectomy/methods , Aged , Follow-Up Studies , Retrospective Studies , Adult , Radiotherapy Planning, Computer-Assisted/methods , Liver Cirrhosis/pathology
8.
J Cell Mol Med ; 28(9): e18295, 2024 May.
Article in English | MEDLINE | ID: mdl-38722284

ABSTRACT

The RNA-binding protein PNO1 plays an essential role in ribosome biogenesis. Recent studies have shown that it is involved in tumorigenesis; however, its role in hepatocellular carcinoma (HCC) is not well understood. The purpose of this study was to examine whether PNO1 can be used as a biomarker of HCC and also examine the therapeutic potential of PNO1 knockout for the treatment of HCC. PNO1 expression was upregulated in HCC and associated with poor prognosis. PNO1 expression was positively associated with tumour stage, lymph node metastasis and poor survival. PNO1 expression was significantly higher in HCC compared to that in fibrolamellar carcinoma or normal tissues. Furthermore, HCC tissues with mutant Tp53 expressed higher PNO1 than those with wild-type Tp53. PNO1 knockout suppressed cell viability, colony formation and EMT of HCC cells. Since activation of Notch signalling pathway promotes HCC, we measured the effects of PNO1 knockout on the components of Notch pathway and its targets. PNO1 knockout suppressed Notch signalling by modulating the expression of Notch ligands and their receptors, and downstream targets. PNO1 knockout also inhibited genes involved in surface adhesion, cell cycle, inflammation and chemotaxis. PNO1 knockout also inhibited colony and spheroid formation, cell migration and invasion, and markers of stem cells, pluripotency and EMT in CSCs. Overall, our data suggest that PNO1 can be used as a diagnostic and prognostic biomarker of HCC, and knockout of PNO1 by CRISPR/Cas9 can be beneficial for the management of HCC by targeting CSCs.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular , Gene Expression Regulation, Neoplastic , Liver Neoplasms , RNA-Binding Proteins , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Male , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Cell Line, Tumor , Female , Prognosis , Middle Aged , Signal Transduction , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Receptors, Notch/metabolism , Receptors, Notch/genetics , Cell Movement/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Epithelial-Mesenchymal Transition/genetics , Cell Proliferation , Clinical Relevance
9.
J Cancer Res Clin Oncol ; 150(5): 241, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713414

ABSTRACT

BACKGROUND: Currently, the high recurrence rate still forms severe challenges in hepatocellular carcinoma (HCC) treatment. The GALAD score, including age, gender, alpha-fetoprotein (AFP), lens culinaris agglutinin-reactive AFP (AFP-L3), and des-gamma-carboxyprothrombin (DCP) was developed as a diagnostic model. However, evidence is still lacking to confirm the capability of the GALAD score to predict the recurrence of HCC. METHODS: This study included 390 HCC patients after local ablation at Beijing You'an Hospital from January 1, 2018, to December 31, 2022. Firstly, the area under the receiver operating characteristic (ROC) curve (AUC) was calculated to assess the predictive capability of the GALAD score. Then, the Kaplan-Meier (KM) curve and log-rank test were used to compare the prognosis between two groups classified by GALAD score. Finally, a nomogram for high-risk patients was established by Lasso-Cox regression. It was assessed by ROC curves, calibration curves, and decision curve analysis (DCA). RESULTS: The ROC curve (AUC: 0.749) and KM curve showed the GALAD score had good predictive ability and could clearly stratify patients into two groups through the risk of recurrence. Prognostic factors selected by Lasso-Cox regression contained tumor number, tumor size, and globulin. The nomogram for high-risk patients showed reliable discrimination, calibration, and clinical utility. CONCLUSION: This research displayed that the GALAD score is an effective model for predicting the recurrence of HCC. Meanwhile, we found the poor prognosis of the high-risk group and created a nomogram for these patients.


Subject(s)
Biomarkers , Carcinoma, Hepatocellular , Liver Neoplasms , Neoplasm Recurrence, Local , Nomograms , alpha-Fetoproteins , Humans , Carcinoma, Hepatocellular/surgery , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Liver Neoplasms/surgery , Female , Male , Neoplasm Recurrence, Local/pathology , Middle Aged , Prognosis , alpha-Fetoproteins/analysis , alpha-Fetoproteins/metabolism , Prothrombin , Retrospective Studies , Aged , Protein Precursors , Biomarkers, Tumor , Adult , ROC Curve , Plant Lectins
10.
Cancer Med ; 13(9): e7236, 2024 May.
Article in English | MEDLINE | ID: mdl-38716585

ABSTRACT

INTRODUCTION: Regorafenib remains the standard and widely used second-line strategy for advanced hepatocellular carcinoma (HCC). There is still a lack of large-scale multicenter real-world evidence concerning the concurrent use of regorafenib with immune checkpoint inhibitors (ICI). This study aims to evaluate whether combining regorafenib with ICI provides greater clinical benefit than regorafenib monotherapy as second-line therapy for advanced HCC under real-world circumstances. PATIENTS AND METHODS: The study included 208 patients from five medical facilities. One hundred forty-three patients received regorafenib plus ICI combination therapy, while 65 patients received regorafenib monotherapy. Propensity score matching (PSM) analysis was employed. RESULTS: The regorafenib plus ICI group demonstrated significantly higher objective response rate (24.3% vs. 10.3%, after PSM, p = 0.030) and disease control rate (79.4% vs. 50.0%, after PSM, p < 0.001) compared to the regorafenib monotherapy group based on mRECIST criteria. Median progression-free survival (7.9 vs. 3.2 months, after PSM, p < 0.001) and overall survival (25.6 vs. 16.4 months, p = 0.010, after PSM) were also considerably longer in the regorafenib plus ICI group. The incidence of Grades 3-4 treatment-related adverse events (TRAEs) was marginally greater in the regorafenib plus ICI group than in the regorafenib group (23.8% vs. 20.0%, p = 0.546). Notably, there were no instances of treatment-related mortality or emergence of new TRAEs in any treatment group. CONCLUSION: The combination of regorafenib and ICI shows potential as a viable second-line treatment for advanced HCC, exhibiting favorable efficacy while maintaining a tolerable safety profile in contrast to regorafenib monotherapy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Carcinoma, Hepatocellular , Liver Neoplasms , Phenylurea Compounds , Pyridines , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Pyridines/therapeutic use , Phenylurea Compounds/therapeutic use , Phenylurea Compounds/administration & dosage , Phenylurea Compounds/adverse effects , Liver Neoplasms/drug therapy , Liver Neoplasms/mortality , Liver Neoplasms/therapy , Liver Neoplasms/pathology , Female , Male , Middle Aged , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/adverse effects , Retrospective Studies , Adult , Immunotherapy/methods
11.
J Cancer Res Clin Oncol ; 150(5): 235, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710956

ABSTRACT

PURPOSE: Transarterial chemoembolization (TACE) has become the standard of care for the treatment of intermediate-stage hepatocellular carcinoma (HCC). However, current clinical practice guidelines lack consensus on the best selection of a specific TACE technique. This study aims to compare safety, tumor response, and progression-free survival (PFS) of conventional TACE (cTACE), drug-eluting bead TACE (DEB-TACE), and degradable starch microsphere TACE (DSM-TACE). METHODS: This retrospective study included n = 192 patients with HCC who underwent first TACE with unbiased follow-up at 4-6 weeks at our center between 2008 and 2021. Eligibility for TACE was BCLC intermediate stage B, bridging/down-staging (B/D) to liver transplantation (LT), or any other stage when patients were not suitable for resection, LT, local ablation, or systemic therapy. Patients were grouped into three cohorts (n = 45 cTACE, n = 84 DEB-TACE, n = 63 DSM-TACE), and further categorized by TACE indication (B/D or palliative). Liver function and adverse events, response assessed by the modified response evaluation criteria in solid tumors (mRECIST) 4-6 weeks post-TACE and PFS were analyzed. RESULTS: There were no significant differences in age, gender distribution, BCLC stage, or etiology of liver disease among the three TACE groups, even in the B/D or palliative subgroups. DEB-TACE induced slight increases in bilirubin in the palliative subgroup and in lactate dehydrogenase in the entire cohort 4-6 weeks post-TACE, and more adverse events in the palliative subgroup. DEB-TACE and DSM-TACE showed significantly higher disease control rates (complete and partial response, stable disease) compared to cTACE, especially in the B/D setting (p < 0.05). There was no significant difference in PFS between the groups [median PFS (months): cTACE, 10.0 vs. DEB, 7.0 vs. DSM, 10.0; p = 0.436]. CONCLUSION: Our study provides valuable perspectives in the decision-making for a specific TACE technique: DEB-TACE and DSM-TACE showed improved tumor response. DEB-TACE showed a prolonged impact on liver function and more side effects, so patients with impaired liver function should be more strictly selected, especially in the palliative subgroup.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Humans , Chemoembolization, Therapeutic/methods , Chemoembolization, Therapeutic/adverse effects , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/mortality , Male , Liver Neoplasms/therapy , Liver Neoplasms/pathology , Liver Neoplasms/mortality , Female , Retrospective Studies , Middle Aged , Aged , Treatment Outcome , Adult
12.
BMC Med Genomics ; 17(1): 124, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711024

ABSTRACT

BACKGROUND: Glycogen storage disease (GSD) is a disease caused by excessive deposition of glycogen in tissues due to genetic disorders in glycogen metabolism. Glycogen storage disease type I (GSD-I) is also known as VonGeirk disease and glucose-6-phosphatase deficiency. This disease is inherited in an autosomal recessive manner, and both sexes can be affected. The main symptoms include hypoglycaemia, hepatomegaly, acidosis, hyperlipidaemia, hyperuricaemia, hyperlactataemia, coagulopathy and developmental delay. CASE PRESENTATION: Here, we present the case of a 13-year-old female patient with GSD Ia complicated with multiple inflammatory hepatic adenomas. She presented to the hospital with hepatomegaly, hypoglycaemia, and epistaxis. By clinical manifestations and imaging and laboratory examinations, we suspected that the patient suffered from GSD I. Finally, the diagnosis was confirmed by liver pathology and whole-exome sequencing (WES). WES revealed a synonymous mutation, c.648 G > T (p.L216 = , NM_000151.4), in exon 5 and a frameshift mutation, c.262delG (p.Val88Phefs*14, NM_000151.4), in exon 2 of the G6PC gene. According to the pedigree analysis results of first-generation sequencing, heterozygous mutations of c.648 G > T and c.262delG were obtained from the patient's father and mother. Liver pathology revealed that the solid nodules were hepatocellular hyperplastic lesions, and immunohistochemical (IHC) results revealed positive expression of CD34 (incomplete vascularization), liver fatty acid binding protein (L-FABP) and C-reactive protein (CRP) in nodule hepatocytes and negative expression of ß-catenin and glutamine synthetase (GS). These findings suggest multiple inflammatory hepatocellular adenomas. PAS-stained peripheral hepatocytes that were mostly digested by PAS-D were strongly positive. This patient was finally diagnosed with GSD-Ia complicated with multiple inflammatory hepatic adenomas, briefly treated with nutritional therapy after diagnosis and then underwent living-donor liver allotransplantation. After 14 months of follow-up, the patient recovered well, liver function and blood glucose levels remained normal, and no complications occurred. CONCLUSION: The patient was diagnosed with GSD-Ia combined with multiple inflammatory hepatic adenomas and received liver transplant treatment. For childhood patients who present with hepatomegaly, growth retardation, and laboratory test abnormalities, including hypoglycaemia, hyperuricaemia, and hyperlipidaemia, a diagnosis of GSD should be considered. Gene sequencing and liver pathology play important roles in the diagnosis and typing of GSD.


Subject(s)
Glycogen Storage Disease Type I , Liver Neoplasms , Liver Transplantation , Humans , Glycogen Storage Disease Type I/genetics , Glycogen Storage Disease Type I/complications , Glycogen Storage Disease Type I/pathology , Female , Adolescent , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/complications , Adenoma/genetics , Adenoma/complications , Adenoma/pathology , Adenoma, Liver Cell/genetics , Adenoma, Liver Cell/complications , Adenoma, Liver Cell/pathology , Inflammation/genetics , Inflammation/pathology , Inflammation/complications
13.
Curr Cancer Drug Targets ; 24(5): 534-545, 2024.
Article in English | MEDLINE | ID: mdl-38804345

ABSTRACT

BACKGROUND: The energy supply of certain cancer cells depends on aerobic glycolysis rather than oxidative phosphorylation. Our previous studies have shown that withaferin A (WA), a lactone compound derived from Withania somnifera, suppresses skin carcinogenesis at least partially by stabilizing IDH1 and promoting oxidative phosphorylation. Here, we have extended our studies to evaluate the anti-tumor effect of WA in liver cancer. METHODS: Differential expression of glycolysis-related genes between liver cancer tissues and normal tissues and prognosis were verified using an online database. Glycolysis-related protein expression was detected using western blot after overexpression and knockdown of IDH1 and mitochondrial membrane potential assay based on JC-1, and mitochondrial complex I activity was also detected. The inhibitory effect of WA on the biological functions of HepG2 cells was detected along with cell viability using MTT assay, scratch assay, clone formation assay, glucose consumption and lactate production assay. Western blot and qRT-PCR were used to detect the expression of proteins and genes related to IDH1, p53 and HIF1α signaling pathways. RESULTS: We first identified that IDH1 expression was downregulated in human liver cancer cells compared to normal liver cells. Next, we found that treatment of HepG2 cells with WA resulted in significantly increased protein levels of IDH1, accompanied by decreased levels of several glycolytic enzymes. Furthermore, we found that WA stabilized IDH1 proteins by inhibiting the degradation by the proteasome. The tumor suppressor p53 was also upregulated by WA treatment, which played a critical role in the upregulation of IDH1 and downregulation of the glycolysis-related genes. Under hypoxic conditions, glycolysis-related genes were induced, which was suppressed by WA treatment, and IDH1 expression was still maintained at higher levels under hypoxia. CONCLUSION: Taken together, our results indicated that WA suppresses liver cancer tumorigenesis by p53-mediated IDH1 upregulation, which promotes mitochondrial respiration, thereby inhibiting the HIF-1α pathway and blocking aerobic glycolysis.


Subject(s)
Glycolysis , Hypoxia-Inducible Factor 1, alpha Subunit , Isocitrate Dehydrogenase , Liver Neoplasms , Signal Transduction , Tumor Suppressor Protein p53 , Withanolides , Humans , Withanolides/pharmacology , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Glycolysis/drug effects , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Signal Transduction/drug effects , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Cell Proliferation/drug effects , Hep G2 Cells , Gene Expression Regulation, Neoplastic/drug effects , Carcinogenesis/drug effects
14.
Sci Rep ; 14(1): 12163, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806553

ABSTRACT

Hepatocellular carcinoma (HCC) is a significant contributor to morbidity and mortality worldwide. The interaction between receptors and ligands is the primary mode of intercellular signaling and plays a vital role in the progression of HCC. This study aimed to identify the macrophage-related receptor ligand marker genes associated with HCC and further explored the molecular immune mechanisms attributed to altered biomarkers. Single-cell RNA sequencing data containing primary and recurrent samples were downloaded from the China National GeneBank. Cell types were first identified to explore differences between immune cells from different sample sources. CellChat analysis was used to infer and analyze intercellular communication networks quantitatively. Three molecular subtypes were constructed based on the screened twenty macrophage-associated receptor ligand genes. Bulk RNA-Seq data were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases. After the screening, the minor absolute shrinkage and selection operator (LASSO) regression model was employed to identify key markers. After collecting peripheral blood and clinical information from patients, an enzyme-linked immunosorbent assay (ELISA) was used to detect the correlation between key markers and IL-10, one of the macrophage markers. After developing a new HCC risk adjustment model and conducting analysis, it was found that there were significant differences in immune status and gene mutations between the high-risk and low-risk groups of patients based on macrophage-associated receptor and ligand genes. This study identified SPP1, ANGPT2, and NCL as key biological targets for HCC. The drug-gene interaction network analysis identified wortmannin, ribavirin, and tarnafloxin as potential therapeutic drugs for the three key markers. In a clinical cohort study, patients with immune checkpoint inhibitor (ICI) resistance had significantly higher expression levels of OPN, ANGPT2, NCL, and IL-10 than patients with ICI-responsiveness. These three key markers were positively correlated with the expression level of IL-10. The signature based on macrophage-associated receptor and ligand genes can accurately predict the prognosis of patients with HCC and the sensitivity to immunotherapy. These results may help guide the development of targeted prevention and personalized treatment of HCC.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Ligands , Male , Female , Middle Aged , Gene Expression Regulation, Neoplastic , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Interleukin-10/genetics , Interleukin-10/metabolism , Macrophages/metabolism , Macrophages/immunology , Multiomics
15.
J Egypt Natl Canc Inst ; 36(1): 18, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38797810

ABSTRACT

BACKGROUND: This systematic review aims to compare the prognosis of treatment transarterial chemoembolization (TACE) combined with sorafenib and TACE-alone in patients with hepatocellular carcinoma (HCC) with Barcelona clinic liver cancer-stage C (BCLC-C). MATERIALS AND METHODS: A systematic search was conducted on five electronic databases: PubMed, ScienceDirect, Cochrane, Embase, and Scopus. Studies were included if they compared overall survival (OS) of TACE-Sorafenib to TACE-alone in patients with HCC BCLC-C within the 2019-2023 timeframe. We excluded studies consisting of conference abstracts, letters, editorials, guidelines, case reports, animal studies, trial registries, and unpublished work. The selected articles were evaluated from August 2023 to September 2023. The journal's quality was assessed with NOS for a non-randomized controlled trial. RESULTS: This systematic review included four studies following the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA). All four studies compared the OS of 401 patients with TACE-sorafenib to TACE-alone. Two studies compared time-to-progression (TTP), one study compared progression-free survival (PFS), and two studies compared disease control rate (DCR). There were various population criteria, TACE techniques used, risk factors, follow-up time, and adverse events. The collected evidence generally suggested that the combination of TACE-sorafenib is superior compared to TACE-alone. Due to a lack of essential data for the included study, a meta-analysis couldn't be performed. CONCLUSION: The results of this systematic review suggested that TACE-sorafenib combination therapy in patients with HCC BCLC-C improves OS superior compared to TACE-alone, without a notable increase in adverse events.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Sorafenib , Humans , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/mortality , Liver Neoplasms/therapy , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Chemoembolization, Therapeutic/methods , Sorafenib/therapeutic use , Sorafenib/administration & dosage , Prognosis , Neoplasm Staging , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Treatment Outcome , Combined Modality Therapy
16.
J Biochem Mol Toxicol ; 38(6): e23737, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38798245

ABSTRACT

Recently, olsalazine a DNA hypomethylating agent was found to inhibit the growth of breast cancer cells. The present study was carried out to evaluate the effects of olsalazine pretreatment in the potentiation of chemosensitivity of gemcitabine for the treatment of hepatocellular carcinoma (HCC). In silico molecular docking was performed to analyze the interaction of olsalazine and gemcitabine with DNMT1 and DNA, respectively, using the AutoDock tools 1.5.6. Cytotoxicity of olsalazine, gemcitabine, and combination were measured on human HePG2 cells using MTT assay. Antiproliferative effects were assessed using animal model of N-nitrosodiethylamine and carbon tetrachloride-induced HCC. Treatment was initiated from 8th week of induction to 11th week and change in body weight, liver weight, and survival rate were measured. Following treatment, blood samples were collected for estimation serum biochemistry. Blood serum was used for the estimation of inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), C-reactive protein [CRP], lactate dehydrogenase (LDH), and P53 levels. Oxidative stress markers were measured in liver tissue homogenates. Histopathology and immunohistochemistry (IHC) were performed on liver sections to detect the morphological changes and P53 expression. Docking analysis revealed the interactions between olsalazine and DNMT1 with a binding energy score of -5.34 and gemcitabine and DNA with a binding energy score of -5.93. Olsalazine pretreatment potentiated the antiproliferative effect of gemcitabine in cell line study. In the group receiving olsalazine pretreatment showed significant reductions in relative liver weight and improved survival rate of gemcitabine treatment group. Serum biochemical markers: serum glutamate pyruvate transaminase, serum glutamic oxaloacetic transaminase, alkaline phosphatase, and bilirubin revealed improved liver functions. Olsalazine pretreatment also reduced the levels of inflammatory markers like CRP, LDH, TNF-α, and IL-6 and oxidative stress markers dose dependently. Histopathology and IHC showed improved liver morphology with potentiated the induction of P53 upon olsalazine pretreatment in combination with gemcitabine. In conclusion, sequential combination of olsalazine and gemcitabine improved the treatment outcomes during the progression of HCC.


Subject(s)
Carcinoma, Hepatocellular , Deoxycytidine , Gemcitabine , Liver Neoplasms , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Animals , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Hep G2 Cells , Molecular Docking Simulation , Male , Drug Synergism , Rats , DNA (Cytosine-5-)-Methyltransferase 1/metabolism
17.
Discov Med ; 36(184): 1041-1053, 2024 May.
Article in English | MEDLINE | ID: mdl-38798263

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) stands out as one of the most prevalent malignant tumors globally. The combination of all-trans-retinoic acid (ATRA) with FOLFOX chemotherapy has shown promise in enhancing the prognosis of HCC patients. ATRA, serving as a chemosensitizing agent, presents novel possibilities for therapeutic applications. Nevertheless, the responsiveness of HCC cells to ATRA varies. The epigenetic modifier-GSK-126 is currently under investigation as a potential antitumor drug. Our aim is to explore the molecular mechanisms underlying the diverse sensitivity of HCC patients to ATRA, and to propose a new combination regimen. This research aims to lay the groundwork for personalized medication approaches for individuals with HCC. METHODS: A cell model with low expression of retinoic acid receptor Alfa (RARA), retinoic acid receptor belta (RARB), and retinoic acid receptor gamma (RARG) was established through siRNA interference. The impact of reduced expression of RARA, RARB, and RARG on the half maximal inhibitory concentration (IC50) of ATRA in Hep3B cells was assessed using the 3-(4,5-Dimethyl-2-Thiazolyl)-2,5-Diphenyl Tetrazolium Bromide (MTT) cytotoxicity assay. Flow cytometry revealed that RARG emerged as the key receptor influencing the combination's sensitivity. Conducting ChIP-qPCR analysis on genomic DNA from HCC cells through relevant websites demonstrated enrichment of the trimethylation modification of lysine 27 on histone H3 (H3K27me3) upstream of the RARG promoter. ChIP-PCR assay confirmed that GSK-126 could diminish H3K27me3 levels on the RARG promoter, subsequently elevating RARG expression. The synergistic efficacy of GSK-126 and ATRA was validated through MTT assay, flow cytometry apoptosis assay, cell cycle assay, and cell scratch assay. RESULTS: Our study unveiled that the insensitivity of HCC cells to ATRA could be linked to the low expression of RARG. ChIP-qPCR analysis illuminated that GSK-126 activated RARG expression by diminishing H3K27me3 enrichment in the RARG promoter region. Consequently, the concurrent administration of ATRA and GSK-126 to hepatoma cells exhibited a synergistic effect, inhibiting cell proliferation, inducing cell apoptosis, and reducing the proportion of cells in the S-phase. CONCLUSION: Our findings emphasize that the synergistic action of GSK-126 and ATRA enhances the sensitivity of HCC cells by upregulating the expression of RARG. This presents a potential foundation for personalized HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Receptors, Retinoic Acid , Tretinoin , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Tretinoin/pharmacology , Tretinoin/therapeutic use , Receptors, Retinoic Acid/metabolism , Receptors, Retinoic Acid/genetics , Cell Line, Tumor , Retinoic Acid Receptor gamma , Gene Expression Regulation, Neoplastic/drug effects , Up-Regulation/drug effects , Cell Proliferation/drug effects , Apoptosis/drug effects , Apoptosis/genetics , Drug Synergism
18.
Korean J Radiol ; 25(6): 550-558, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38807336

ABSTRACT

Hepatocellular carcinoma (HCC) is a biologically heterogeneous tumor characterized by varying degrees of aggressiveness. The current treatment strategy for HCC is predominantly determined by the overall tumor burden, and does not address the diverse prognoses of patients with HCC owing to its heterogeneity. Therefore, the prognostication of HCC using imaging data is crucial for optimizing patient management. Although some radiologic features have been demonstrated to be indicative of the biologic behavior of HCC, traditional radiologic methods for HCC prognostication are based on visually-assessed prognostic findings, and are limited by subjectivity and inter-observer variability. Consequently, artificial intelligence has emerged as a promising method for image-based prognostication of HCC. Unlike traditional radiologic image analysis, artificial intelligence based on radiomics or deep learning utilizes numerous image-derived quantitative features, potentially offering an objective, detailed, and comprehensive analysis of the tumor phenotypes. Artificial intelligence, particularly radiomics has displayed potential in a variety of applications, including the prediction of microvascular invasion, recurrence risk after locoregional treatment, and response to systemic therapy. This review highlights the potential value of artificial intelligence in the prognostication of HCC as well as its limitations and future prospects.


Subject(s)
Artificial Intelligence , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/therapy , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Prognosis , Image Interpretation, Computer-Assisted/methods
19.
J Transl Med ; 22(1): 512, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807223

ABSTRACT

In cancer treatment, therapeutic strategies that integrate tumor-specific characteristics (i.e., precision oncology) are widely implemented to provide clinical benefits for cancer patients. Here, through in-depth integration of tumor transcriptome and patients' prognoses across cancers, we investigated dysregulated and prognosis-associated genes and catalogued such important genes in a cancer type-dependent manner. Utilizing the expression matrices of these genes, we built models to quantitatively evaluate the malignant levels of tumors across cancers, which could add value to the clinical staging system for improved prediction of patients' survival. Furthermore, we performed a transcriptome-based molecular subtyping on hepatocellular carcinoma, which revealed three subtypes with significantly diversified clinical outcomes, mutation landscapes, immune microenvironment, and dysregulated pathways. As tumor transcriptome was commonly profiled in clinical practice with low experimental complexity and cost, this work proposed easy-to-perform approaches for practical clinical promotion towards better healthcare and precision oncology of cancer patients.


Subject(s)
Gene Expression Regulation, Neoplastic , Neoplasms , Precision Medicine , Transcriptome , Humans , Transcriptome/genetics , Neoplasms/genetics , Neoplasms/classification , Neoplasms/pathology , Prognosis , Gene Expression Profiling , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/classification , Carcinoma, Hepatocellular/pathology , Mutation/genetics , Tumor Microenvironment/genetics , Liver Neoplasms/genetics , Liver Neoplasms/classification , Liver Neoplasms/pathology , Medical Oncology/methods
20.
Cells ; 13(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38786033

ABSTRACT

Research on retinoid-based cancer prevention, spurred by the effects of vitamin A deficiency on gastric cancer and subsequent clinical studies on digestive tract cancer, unveils novel avenues for chemoprevention. Acyclic retinoids like 4,5-didehydrogeranylgeranoic acid (4,5-didehydroGGA) have emerged as potent agents against hepatocellular carcinoma (HCC), distinct from natural retinoids such as all-trans retinoic acid (ATRA). Mechanistic studies reveal GGA's unique induction of pyroptosis, a rapid cell death pathway, in HCC cells. GGA triggers mitochondrial superoxide hyperproduction and ER stress responses through Toll-like receptor 4 (TLR4) signaling and modulates autophagy, ultimately activating pyroptotic cell death in HCC cells. Unlike ATRA-induced apoptosis, GGA and palmitic acid (PA) induce pyroptosis, underscoring their distinct mechanisms. While all three fatty acids evoke mitochondrial dysfunction and ER stress responses, GGA and PA inhibit autophagy, leading to incomplete autophagic responses and pyroptosis, whereas ATRA promotes autophagic flux. In vivo experiments demonstrate GGA's potential as an anti-oncometabolite, inducing cell death selectively in tumor cells and thus suppressing liver cancer development. This review provides a comprehensive overview of the molecular mechanisms underlying GGA's anti-HCC effects and underscores its promising role in cancer prevention, highlighting its importance in HCC prevention.


Subject(s)
Carcinoma, Hepatocellular , Diterpenes , Liver Neoplasms , Palmitic Acid , Pyroptosis , Tretinoin , Humans , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/drug therapy , Diterpenes/pharmacology , Palmitic Acid/pharmacology , Pyroptosis/drug effects , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/drug therapy , Tretinoin/pharmacology , Animals , Autophagy/drug effects , Cell Line, Tumor , Endoplasmic Reticulum Stress/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...