Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 491
Filter
1.
J Hazard Mater ; 470: 134228, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38626683

ABSTRACT

Cadmium (Cd) and arsenic (As) are two highly toxic heavy metals and metalloids that coexist in many situations posing severe threats to plants. Our investigation was conducted to explore the different regulatory mechanisms of ryegrass (Lolium perenne L.) responding to individual and combined Cd and As stresses in hydroponics. Results showed that the ryegrass well-growth phenotype was not affected by Cd stress of 10 mg·L-1. However, As of 10 mg·L-1 caused rapid water loss, proline surge, and chlorosis in shoots, suggesting that ryegrass was highly sensitive to As. Transcriptomic analysis revealed that the transcription factor LpIRO2 mediated the upregulation of ZIP1 and YSL6 that played an important role in Cd tolerance. We found that the presence of As caused the overexpression of LpSWT12, a process potentially regulated by bHLH14, to mitigate hyperosmolarity. Indoleacetic acid (IAA) and abscisic acid (ABA) contents and expression of their signaling-related genes were significantly affected by As stress rather than Cd. We predict a regulatory network to illustrate the interaction between transporters, transcription factors, and signaling transduction, and explain the antagonism of Cd and As toxicity. This present work provides a research basis for plant protection from Cd and As pollution.


Subject(s)
Arsenic , Cadmium , Gene Expression Regulation, Plant , Lolium , Plant Growth Regulators , Stress, Physiological , Cadmium/toxicity , Lolium/drug effects , Lolium/metabolism , Lolium/genetics , Arsenic/toxicity , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Gene Expression Regulation, Plant/drug effects , Stress, Physiological/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Indoleacetic Acids/metabolism , Abscisic Acid/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics
2.
Environ Res ; 251(Pt 1): 118389, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38460661

ABSTRACT

Phytoremediation has emerged as a common technique for remediating Cd pollution in farmland soil. Moreover, phosphorus, an essential element for plants, can alter the pectin content of plant cell walls and facilitate the accumulation of Cd in plant tissues, thereby enhancing phytoremediation efficiency. Therefore, pot experiments were conducted in order to investigate the effect of phosphorus levels on Cd extraction, phosphorus transformation and phosphorus-related genes during phytoremediation. The results revealed that an optimal application of suitable phosphate fertilizers elevated the soil's pH and electrical conductivity (EC), facilitated the conversion of soil from insoluble phosphorus into available forms, augmented the release of pertinent enzyme activity, and induced the expression of phosphorus cycling-related genes. These enhancements in soil conditions significantly promoted the growth of ryegrass. When applying phosphorus at a rate of 600 mg/kg, ryegrass exhibited plant height, dry weight, and chlorophyll relative content that were 1.27, 1.26, and 1.18 times higher than those in the control group (P0), while the Cd content was 1.12 times greater than that of P0. The potentially toxic elements decline ratio and bioconcentration factor were 42.86% and 1.17 times higher than those of P0, respectively. Consequently, ryegrass demonstrated the highest Cd removal efficiency under these conditions. Results from redundancy analysis (RDA) revealed a significant correlation among pH, total phosphorus, heavy metal content, phosphorus forms, soil enzyme activity, and phosphorus-related genes. In conclusion, this study suggests applying an optimal amount of suitable phosphate fertilizers can enhance restoration efficiency, leading to a reduction in soil Cd content and ultimately improving the safety of crop production in farmlands.


Subject(s)
Biodegradation, Environmental , Cadmium , Lolium , Phosphorus , Soil Pollutants , Soil Pollutants/metabolism , Soil Pollutants/analysis , Cadmium/metabolism , Phosphorus/metabolism , Phosphorus/analysis , Lolium/metabolism , Lolium/genetics , Lolium/growth & development , Fertilizers/analysis , Soil/chemistry
3.
Sci Rep ; 14(1): 5767, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38459164

ABSTRACT

Genotype by environment interactions (G × E) are frequently observed in herbage production. Understanding the underlying biological mechanisms is important for achieving stable and predictive outputs across production environments. The microbiome is gaining increasing attention as a significant contributing factor to G × E. Here, we focused on the soil microbiome of perennial ryegrass (Lolium perenne L.) grown under field conditions and investigated the soil microbiome variation across different ryegrass varieties to assess whether environmental factors, such as seasonality and nitrogen levels, affect the microbial community. We identified bacteria, archaea, and fungi operational taxonomic units (OTUs) and showed that seasonality and ryegrass variety were the two factors explaining the largest fraction of the soil microbiome diversity. The strong and significant variety-by-treatment-by-seasonal cut interaction for ryegrass dry matter was associated with the number of unique OTUs within each sample. We identified seven OTUs associated with ryegrass dry matter variation. An OTU belonging to the Solirubrobacterales (Thermoleophilales) order was associated with increased plant biomass, supporting the possibility of developing engineered microbiomes for increased plant yield. Our results indicate the importance of incorporating different layers of biological data, such as genomic and soil microbiome data to improve the prediction accuracy of plant phenotypes grown across heterogeneous environments.


Subject(s)
Lolium , Soil , Lolium/genetics , Seasons , Nitrogen , Genotype
4.
Plant J ; 118(5): 1516-1527, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38412295

ABSTRACT

Bacterial wilt, caused by Xanthomonas translucens pv. graminis (Xtg), is a serious disease of economically important forage grasses, including Italian ryegrass (Lolium multiflorum Lam.). A major QTL for resistance to Xtg was previously identified, but the precise location as well as the genetic factors underlying the resistance are yet to be determined. To this end, we applied a bulked segregant analysis (BSA) approach, using whole-genome deep sequencing of pools of the most resistant and most susceptible individuals of a large (n = 7484) biparental F2 population segregating for resistance to Xtg. Using chromosome-level genome assemblies as references, we were able to define a ~300 kb region highly associated with resistance on pseudo-chromosome 4. Further investigation of this region revealed multiple genes with a known role in disease resistance, including genes encoding for Pik2-like disease resistance proteins, cysteine-rich kinases, and RGA4- and RGA5-like disease resistance proteins. Investigation of allele frequencies in the pools and comparative genome analysis in the grandparents of the F2 population revealed that some of these genes contain variants with allele frequencies that correspond to the expected heterozygosity in the resistant grandparent. This study emphasizes the efficacy of combining BSA studies in very large populations with whole genome deep sequencing and high-quality genome assemblies to pinpoint regions associated with a binary trait of interest and accurately define a small set of candidate genes. Furthermore, markers identified in this region hold significant potential for marker-assisted breeding strategies to breed resistance to Xtg in Italian ryegrass cultivars more efficiently.


Subject(s)
Disease Resistance , Lolium , Plant Diseases , Xanthomonas , Lolium/genetics , Lolium/microbiology , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Xanthomonas/physiology , Quantitative Trait Loci/genetics , Genes, Plant/genetics , Chromosome Mapping
5.
Plant J ; 118(4): 1102-1118, 2024 May.
Article in English | MEDLINE | ID: mdl-38323852

ABSTRACT

Restoring cytonuclear stoichiometry is necessary after whole-genome duplication (WGD) and interspecific/intergeneric hybridization in plants. We investigated this phenomenon in auto- and allopolyploids of the Festuca-Lolium complex providing insights into the mechanisms governing cytonuclear interactions in early polyploid and hybrid generations. Our study examined the main processes potentially involved in restoring the cytonuclear balance after WGD comparing diploids and new and well-established autopolyploids. We uncovered that both the number of chloroplasts and the number of chloroplast genome copies were significantly higher in the newly established autopolyploids and grew further in more established autopolyploids. The increase in the copy number of the chloroplast genome exceeded the rise in the number of chloroplasts and fully compensated for the doubling of the nuclear genome. In addition, changes in nuclear and organelle gene expression were insignificant. Allopolyploid Festuca × Lolium hybrids displayed potential structural conflicts in parental protein variants within the cytonuclear complexes. While biased maternal allele expression has been observed in numerous hybrids, our results suggest that its role in cytonuclear stabilization in the Festuca × Lolium hybrids is limited. This study provides insights into the restoration of the cytonuclear stoichiometry, yet it emphasizes the need for future research to explore post-transcriptional regulation and its impact on cytonuclear gene expression stoichiometry. Our findings may enhance the understanding of polyploid plant evolution, with broader implications for the study of cytonuclear interactions in diverse biological contexts.


Subject(s)
Cell Nucleus , Festuca , Lolium , Polyploidy , Festuca/genetics , Lolium/genetics , Cell Nucleus/genetics , Cell Nucleus/metabolism , Genome, Plant/genetics , Genome, Chloroplast , Chloroplasts/genetics , Chloroplasts/metabolism , Hybridization, Genetic , Gene Expression Regulation, Plant
6.
Physiol Plant ; 176(1): e14210, 2024.
Article in English | MEDLINE | ID: mdl-38380683

ABSTRACT

Perennial ryegrass (Lolium perenne L.) is an outstanding turfgrass and forage cultivated in temperate regions worldwide. However, poor tolerance to extreme cold, heat, or drought limits wide extension and cultivation. DEHYDRATION-RESPONSIVE ELEMENT BINDING FACTOR1s (DREB1s) play a vital role in enhancing plant tolerance to abiotic stress, specifically for low-temperature stress. In this study, a total of 24 LpDREB1 family members were identified from the released genome of perennial ryegrass. Phylogenetic analysis showed that the LpDREB1 genes are divided into 7 groups that have close relationships with rice homologues. Conserved motif analysis revealed that members within the same group have similar conserved motif compositions. All LpDREB1s lack introns, and the promoter sequences of LpDREB1 genes contain multiple cis-acting elements associated with stress response, phytohormone signal transduction and plant growth and development. The majority of LpDREB1 genes were upregulated by drought, submergence, heat and cold stress treatments, including LpDREB1H2. Further investigation showed that LpDREB1H2 is localized in the nucleus. Overexpression of LpDREB1H2 in Arabidopsis induced the expression of cold-responsive (COR) genes, increased the levels of osmotic adjusting substances, and enhanced antioxidant enzyme activities, thus improving the cold tolerance of Arabidopsis. This study lays a foundation for further understanding the function of LpDREB1 genes in perennial ryegrass and provides insights for plant stress tolerance breeding.


Subject(s)
Arabidopsis , Lolium , Transcription Factors/metabolism , Cold-Shock Response/genetics , Lolium/genetics , Lolium/metabolism , Arabidopsis/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Plants/metabolism , Antioxidants/metabolism , Gene Expression Regulation, Plant/genetics
7.
Pestic Biochem Physiol ; 198: 105737, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38225083

ABSTRACT

Italian ryegrass (Lolium multiflorum L.) is an invasive species widely spread in croplands worldwide. The intensive use of glyphosate has resulted in the selection of resistance to this herbicide in Italian ryegrass. This work characterized the response to glyphosate of Italian ryegrass populations from the South and Southwest regions of Paraná, Brazil. A total of 44 Italian ryegrass populations were collected in farming areas, and were classified for glyphosate resistance with 75% of populations resistant to gloyphosate. Of these, 3 resistant (VT05AR, MR20AR and RN01AR) and three susceptible (VT07AS, MR05AS and RN01AS) of these populations were selected to determine the resistance level and the involvement of the target site mechanisms for glyphosate resistance. Susceptible populations GR50 ranged from 165.66 to 218.17 g.e.a. ha-1 and resistant populations from 569.37 to 925.94, providing RI ranging from 2.88 and 4.70. No mutation in EPSPS was observed in the populations, however, in two (MR20AR and RN02AR) of the three resistant populations, an increase in the number of copies of the EPSPs gene (11 to 57×) was detected. The number of copies showed a positive correlation with the gene expression (R2 = 0.86) and with the GR50 of the populations (R2 = 0.81). The increase in EPSPS gene copies contributes to glyphosate resistance in Italian ryegrass populations from Brazil.


Subject(s)
Herbicides , Lolium , Glyphosate , Lolium/genetics , Lolium/metabolism , Glycine/pharmacology , Glycine/metabolism , Brazil , Herbicide Resistance/genetics , Herbicides/pharmacology , Herbicides/metabolism , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics
8.
BMC Plant Biol ; 23(1): 636, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38072924

ABSTRACT

BACKGROUND: Commercial cultivars of perennial ryegrass infected with selected Epichloë fungal endophytes are highly desirable in certain pastures as the resulting mutualistic association has the capacity to confer agronomic benefits (such as invertebrate pest deterrence) largely due to fungal produced secondary metabolites (e.g., alkaloids). In this study, we investigated T2 segregating populations derived from two independent transformation events expressing diacylglycerol acyltransferase (DGAT) and cysteine oleosin (CO) genes designed to increase foliar lipid and biomass accumulation. These populations were either infected with Epichloë festucae var. lolii strain AR1 or Epichloë sp. LpTG-3 strain AR37 to examine relationships between the introduced trait and the endophytic association. Here we report on experiments designed to investigate if expression of the DGAT + CO trait in foliar tissues of perennial ryegrass could negatively impact the grass-endophyte association and vice versa. Both endophyte and plant characters were measured under controlled environment and field conditions. RESULTS: Expected relative increases in total fatty acids of 17-58% accrued as a result of DGAT + CO expression with no significant difference between the endophyte-infected and non-infected progeny. Hyphal growth in association with DGAT + CO expression appeared normal when compared to control plants in a growth chamber. There was no significant difference in mycelial biomass for both strains AR1 and AR37, however, Epichloë-derived alkaloid concentrations were significantly lower on some occasions in the DGAT + CO plants compared to the corresponding null-segregant progenies, although these remained within the reported range for bioactivity. CONCLUSIONS: These results suggest that the mutualistic association formed between perennial ryegrass and selected Epichloë strains does not influence expression of the host DGAT + CO technology, but that endophyte performance may be reduced under some circumstances. Further investigation will now be required to determine the preferred genetic backgrounds for introgression of the DGAT + CO trait in combination with selected endophyte strains, as grass host genetics is a major determinant to the success of the grass-endophyte association in this species.


Subject(s)
Alkaloids , Epichloe , Lolium , Endophytes/metabolism , Lolium/genetics , Epichloe/genetics , Epichloe/metabolism , Symbiosis , Poaceae/metabolism , Alkaloids/metabolism , Lipids
9.
PLoS One ; 18(12): e0287278, 2023.
Article in English | MEDLINE | ID: mdl-38051715

ABSTRACT

Ryegrass mottle virus (RGMoV; genus: Sobemovirus) is a single-stranded positive RNA virus with a 30 nm viral particle size. It exhibits T = 3 symmetry with 180 coat protein (CP) subunits forming a viral structure. The RGMoV genome comprises five open reading frames that encode P1, Px, a membrane-anchored 3C-like serine protease, a viral genome-linked protein, P16, an RNA-dependent RNA polymerase, and CP. The RGMoV genome size varies, ranging from 4175 nt (MW411579.1) to 4253 nt (MW411579.1) in the deposited sequences. An earlier deposited RGMoV complete genome sequence of 4212 nt length (EF091714.1) was used to develop an infectious complementary DNA (icDNA) construct for in vitro gRNA transcription from the T7 promoter. However, viral infection was not induced when the transcribed gRNA was introduced into oat plants, indicating the potential absence of certain sequences in either the 5' or 3' untranslated regions (UTR) or both. The complete sequence of the 3' UTR was determined through 3' end RACE, while the 5' UTR was identified using high-throughput sequencing (HTS)-RNA-Seq to resolve the potential absences. Only the icDNA vector containing the newly identified UTR sequences proved infectious, resulting in typical viral infection symptoms and subsequent propagation of progeny viruses, exhibiting the ability to cause repeated infections in oat plants after at least one passage. The successful generation of icDNA highlighted the synergistic potential of utilizing both methods when a single approach failed. Furthermore, this study demonstrated the reliability of HTS as a method for determining the complete genome sequence of viral genomes.


Subject(s)
Lolium , RNA Viruses , Viruses , DNA, Complementary/genetics , Lolium/genetics , RNA-Seq , Reproducibility of Results , RNA, Guide, CRISPR-Cas Systems , RNA Viruses/genetics , Genome, Viral , Viruses/genetics , RNA, Viral/genetics , Open Reading Frames/genetics
10.
BMC Genomics ; 24(1): 586, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37789301

ABSTRACT

BACKGROUND: Tall fescue (Festuca arundinacea Schreb.) is an important cool-season perennial grass species. Hexaploid tall fescue has three distinct morphotypes used either as forage or turf purposes. Its chloroplast genome is conserved due to it being maternally inherited to the next generation progenies. To identify morphotype-specific DNA markers and the genetic variations, plastid genomes of all three tall fescue morphotypes, i.e., Continental cv. Texoma MaxQ II, Rhizomatous cv. Torpedo, and Mediterranean cv. Resolute, have been sequenced using Illumina MiSeq sequencing platform. RESULTS: The plastid genomes of Continental-, Rhizomatous-, and Mediterranean tall fescue were assembled into circular master molecules of 135,283 bp, 135,336 bp, and 135,324 bp, respectively. The tall fescue plastid genome of all morphotypes contained 77 protein-coding, 20 tRNAs, four rRNAs, two pseudo protein-coding, and three hypothetical protein-coding genes. We identified 630 SNPs and 124 InDels between Continental and Mediterranean, 62 SNPs and 20 InDels between Continental and Rhizomatous, and 635 SNPs and 123 InDels between Rhizomatous and Mediterranean tall fescue. Only four InDels in four genes (ccsA, rps18, accD, and ndhH-p) were identified, which discriminated Continental and Rhizomatous plastid genomes from the Mediterranean plastid genome. Here, we identified and reported eight InDel markers (NRITCHL18, NRITCHL35, NRITCHL43, NRITCHL65, NRITCHL72, NRITCHL101, NRITCHL104, and NRITCHL110) from the intergenic regions that can successfully discriminate tall fescue morphotypes. Divergence time estimation revealed that Mediterranean tall fescue evolved approximately 7.09 Mya, whereas the divergence between Continental- and Rhizomatous tall fescue occurred about 0.6 Mya. CONCLUSIONS: To our knowledge, this is the first report of the assembled plastid genomes of Rhizomatous and Mediterranean tall fescue. Our results will help to identify tall fescue morphotypes at the time of pre-breeding and will contribute to the development of lawn and forage types of commercial varieties.


Subject(s)
Festuca , Genome, Plastid , Lolium , Festuca/genetics , Plant Breeding , Poaceae/genetics , Lolium/genetics , DNA, Plant/genetics
11.
Int J Mol Sci ; 24(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37894960

ABSTRACT

Lolium multiflorum is one of the world-famous forage grasses with rich biomass, fast growth rate and good nutritional quality. However, its growth and forage yield are often affected by drought, which is a major natural disaster all over the world. MYB transcription factors have some specific roles in response to drought stress, such as regulation of stomatal development and density, control of cell wall and root development. However, the biological function of MYB in L. multiflorum remains unclear. Previously, we elucidated the role of LmMYB1 in enhancing osmotic stress resistance in Saccharomyces cerevisiae. Here, this study elucidates the biological function of LmMYB1 in enhancing plant drought tolerance through an ABA-dependent pathway involving the regulation of cell wall development and stomatal density. After drought stress and ABA stress, the expression of LmMYB1 in L. multiflorum was significantly increased. Overexpression of LmMYB1 increased the survival rate of Arabidopsis thaliana under drought stress. Under drought conditions, expression levels of drought-responsive genes such as AtRD22, AtRAB and AtAREB were up-regulated in OE compared with those in WT. Further observation showed that the stomatal density of OE was reduced, which was associated with the up-regulated expression of cell wall-related pathway genes in the RNA-Seq results. In conclusion, this study confirmed the biological function of LmMYB1 in improving drought tolerance by mediating cell wall development through the ABA-dependent pathway and thereby affecting stomatal density.


Subject(s)
Arabidopsis , Lolium , Arabidopsis/metabolism , Lolium/genetics , Drought Resistance , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics , Droughts , Gene Expression Regulation, Plant , Abscisic Acid/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
12.
Huan Jing Ke Xue ; 44(10): 5746-5756, 2023 Oct 08.
Article in Chinese | MEDLINE | ID: mdl-37827790

ABSTRACT

The application of exogenous growth-regulating substances is an effective technique to enhance plant stress tolerance. Here, a hydroponic experiment was conducted to investigate the effects of exogenous basal application of 0.1 mmol·L-1 spermidine (Spd) on both the physiology and molecular biology of ryegrass root systems under varying degrees (0, 5, and 10 mg·L-1) of cadmium (Cd) stress using ryegrass as the test plants. The results of physiological studies revealed that Cd stress significantly reduced the physiological functions of the ryegrass root system, whereas the addition of Spd effectively alleviated the negative effects caused by Cd. The most significant effect was on the root soluble protein content, which increased by 90.91% and 158.35% compared with 5 mg·L-1and 10 mg·L-1 Cd alone. Spd also inhibited the accumulation of oxidative stress products malondialdehyde (MDA) and hydrogen peroxide (H2O2) by increasing the ascorbic acid (ASA) and glutathione (GSH) content and peroxidase (POD) activity, whereas the effects on root activity and superoxide dismutase (SOD) activity were not significant. The results of molecular biology studies demonstrated that 10 mg·L-1 Cd stress caused differential expression of a large number of genes in ryegrass roots, and the number of differentially expressed genes, differential significance, and differential multiplicity were significantly reduced after the application of exogenous Spd. The most significant part of the GO enrichment analysis shifted from responding to organic cyclic compounds and aldehyde/ketone group transferase activity to responding to trivalent iron ions and 2'-deoxymugineic-acid 2'-dioxygenase activity. Single gene expression heat map analysis revealed that exogenous Spd upregulated the expression of genes encoding zinc-iron transporter protein and 2'-deoxymugineic-acid 2'-dioxygenase, which improved the uptake and utilization of iron by the root system. In conclusion, the application of certain concentrations of Spd could effectively regulate the response of ryegrass roots to Cd stress, enhance its tolerance physiology, and mitigate the toxic effects of Cd.


Subject(s)
Dioxygenases , Lolium , Spermidine/pharmacology , Spermidine/metabolism , Cadmium/toxicity , Cadmium/metabolism , Lolium/genetics , Lolium/metabolism , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Antioxidants/metabolism , Oxidative Stress , Gene Expression Profiling , Dioxygenases/metabolism , Dioxygenases/pharmacology , Iron
13.
BMC Plant Biol ; 23(1): 451, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37749497

ABSTRACT

BACKGROUND: Drought resistance is a complex characteristic closely related to the severity and duration of stress. Perennial ryegrass (Lolium perenne L.) has no distinct drought tolerance but often encounters drought stress seasonally. Although the response of perennial ryegrass to either extreme or moderate drought stress has been investigated, a comprehensive understanding of perennial ryegrass response to both conditions of drought stress is currently lacking. RESULTS: In this study, we investigated the genetic variation in drought resistance in 18 perennial ryegrass varieties under both extreme and moderate drought conditions. The performance of these varieties exhibited obvious diversity, and the survival of perennial ryegrass under severe stress was not equal to good growth under moderate drought stress. 'Sopin', with superior performance under both stress conditions, was the best-performing variety. Transcriptome, physiological, and molecular analyses revealed that 'Sopin' adapted to drought stress through multiple sophisticated mechanisms. Under stress conditions, starch and sugar metabolic enzymes were highly expressed, while CslA was expressed at low levels in 'Sopin', promoting starch degradation and soluble sugar accumulation. The expression and activity of superoxide dismutase were significantly higher in 'Sopin', while the activity of peroxidase was lower, allowing for 'Sopin' to maintain a better balance between maintaining ROS signal transduction and alleviating oxidative damage. Furthermore, drought stress-related transcriptional and posttranscriptional regulatory mechanisms, including the upregulation of transcription factors, kinases, and E3 ubiquitin ligases, facilitate abscisic acid and stress signal transduction. CONCLUSION: Our study provides insights into the resistance of perennial ryegrass to both extreme and moderate droughts and the underlying mechanisms by which perennial ryegrass adapts to drought conditions.


Subject(s)
Drought Resistance , Lolium , Lolium/genetics , Droughts , Sugars , Genetic Variation
14.
Microb Ecol ; 86(4): 2618-2626, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37470815

ABSTRACT

Tall fescue (Lolium arundinaceum (Schreb.) Darbysh.) is a cool-season perennial grass widely grown for forage and turf. Tall fescue lives in association with a fungal endophyte that helps the grass overcome abiotic and biotic stressors. The endophyte is asexual and transmits vertically from the tall fescue plant to the next generation through the seed. Producers of endophyte-infected tall fescue must have endophyte infection in at least 70% of their seed. Therefore, endophyte seed transmission is vital in breeding and seed production. Transfer of endophytes from their native host to different backgrounds of elite tall fescue cultivars can lead to a low seed transmission of the endophyte to the seed. This study screened 23 previously uncharacterized endophyte strains for transmissibility when artificially inoculated into continental and Mediterranean-type host tall fescue. We found no correlation between the rate of successful inoculation and the seed transmission rate of the endophyte in the new host. Nor did the seed transmission rate of the endophyte strains in their native host correlate with the seed transmission rate of the endophyte in the new host. Five strains exhibited seed transmission above 70% in both Mediterranean and Continental host backgrounds and will be characterized further for potential use in cultivar development.


Subject(s)
Epichloe , Festuca , Lolium , Endophytes/genetics , Lolium/genetics , Lolium/microbiology , Epichloe/genetics , Poaceae , Seeds/microbiology , Festuca/microbiology
15.
Sci Rep ; 13(1): 5285, 2023 03 31.
Article in English | MEDLINE | ID: mdl-37002231

ABSTRACT

In semi-arid and arid regions, the selection of suitable grass species with high-yield production, tolerance to drought stress, and potential for recovery from drought is of special importance. Despite extensive research in cool-season grasses, inter-species differences in post-drought recovery, persistence, survival, and summer dormancy and their relationship with drought tolerance need more investigation. In the present study, 28 diverse genotypes belonged to seven cool-season grass species, including Festuca arundinacea (tall fescue), Festuca pratensis (meadow fescue), Festuca ovina (sheep fescue), Festuca rubra (red fescue), Lolium perenne (perennial ryegrass), Lolium multiflorum (Italian ryegrass) and Lolium × hybridum were evaluated during 2016-2019 under three irrigation regimes (normal, mild, and intense drought stress). Then in the fourth year (on August 2019), irrigation was withheld at all previous irrigation regimes for two months during summer, and then species were re-irrigated to study the effect of prolonged drought conditions. A wide range of genetic diversity was detected in all the measured traits among and within species in response to different irrigation levels. Recurrent drought stress decreased forage productivity, post-drought recovery, and survival in all grass species. Among the studied species, tall fescue had higher forage production, drought tolerance, survival, recovery rate, and persistence. Sheep fescue had low forage production and recovery after drought. Drought tolerance (based on stress tolerance score, STS) was highly associated with forage yield and post-drought recovery and partially with summer dormancy under both mild and intense drought stress conditions. This indicated that selection based on higher STS would lead to choosing genotypes with better recovery after prolonged drought. Superior species and preferable genotypes for forage use from species Festuca arundinacea and for turf application from species Festuca arundinacea, Lolium perenne and Lolium × hybridum were identified across different water environments for future programs.


Subject(s)
Festuca , Lolium , Animals , Sheep , Poaceae/genetics , Droughts , Seasons , Lolium/genetics , Plants , Festuca/genetics
16.
Theor Appl Genet ; 136(3): 44, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36897387

ABSTRACT

KEY MESSAGE: Breeding target traits can be broadened to include nutritive value and plant breeder's rights traits in perennial ryegrass by using in-field regression-based spectroscopy phenotyping and genomic selection. Perennial ryegrass breeding has focused on biomass yield, but expansion into a broader set of traits is needed to benefit livestock industries whilst also providing support for intellectual property protection of cultivars. Numerous breeding objectives can be targeted simultaneously with the development of sensor-based phenomics and genomic selection (GS). Of particular interest are nutritive value (NV), which has been difficult and expensive to measure using traditional phenotyping methods, resulting in limited genetic improvement to date, and traits required to obtain varietal protection, known as plant breeder's rights (PBR) traits. In order to assess phenotyping requirements for NV improvement and potential for genetic improvement, in-field reflectance-based spectroscopy was assessed and GS evaluated in a single population for three key NV traits, captured across four timepoints. Using three prediction approaches, the possibility of targeting PBR traits using GS was evaluated for five traits recorded across three years of a breeding program. Prediction accuracy was generally low to moderate for NV traits and moderate to high for PBR traits, with heritability highly correlated with GS accuracy. NV did not show significant or consistent correlation between timepoints highlighting the need to incorporate seasonal NV into selection indexes and the value of being able to regularly monitor NV across seasons. This study has demonstrated the ability to implement GS for both NV and PBR traits in perennial ryegrass, facilitating the expansion of ryegrass breeding targets to agronomically relevant traits while ensuring necessary varietal protection is achieved.


Subject(s)
Lolium , Lolium/genetics , Biomass , Plant Breeding , Phenotype , Genomics , Selection, Genetic
17.
New Phytol ; 238(2): 624-636, 2023 04.
Article in English | MEDLINE | ID: mdl-36658468

ABSTRACT

Some interspecific plant hybrids show unequal transmission of chromosomes from parental genomes to the successive generations. It has been suggested that this is due to a differential behavior of parental chromosomes during meiosis. However, underlying mechanism is unknown. We analyzed chromosome composition of the F2 generation of Festuca × Lolium hybrids and reciprocal backcrosses to elucidate effects of male and female meiosis on the shift in parental genome composition. We studied male meiosis, including the attachment of chromosomes to the karyokinetic spindle and gene expression profiling of the kinetochore genes. We found that Lolium and Festuca homoeologues were transmitted differently to the F2 generation. Female meiosis led to the replacement of Festuca chromosomes by their Lolium counterparts. In male meiosis, Festuca univalents were attached less frequently to microtubules than Lolium univalents, lagged in divisions and formed micronuclei, which were subsequently eliminated. Genome sequence analysis revealed a number of non-synonymous mutations between copies of the kinetochore genes from Festuca and Lolium genomes. Furthermore, we found that outer kinetochore proteins NDC80 and NNF1 were exclusively expressed from the Lolium allele. We hypothesize that silencing of Festuca alleles results in improper attachment of Festuca chromosomes to karyokinetic spindle and subsequently their gradual elimination.


Subject(s)
Festuca , Lolium , Lolium/genetics , Festuca/genetics , Hybridization, Genetic , Genome, Plant , Chromosomes, Plant/genetics , Meiosis/genetics
18.
J Exp Bot ; 74(1): 396-414, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36214776

ABSTRACT

A process of plant recovery after drought cessation is a complex trait which has not been fully recognized. The most important organ associated with this phenomenon in monocots, including forage grasses, is the crown tissue located between shoots and roots. The crown tissue is a meristematic crossroads for metabolites and other compounds between these two plant organs. Here, for the first time, we present a metabolomic and lipidomic study focused on the crown tissue under drought and recovery in forage grasses, important for agriculture in European temperate regions. The plant materials involve high (HDT) and low drought-tolerant (LDT) genotypes of Festuca arundinacea, and Lolium multiflorum/F. arundinacea introgression forms. The obtained results clearly demonstrated that remodeling patterns of the primary metabolome and lipidome in the crown under drought and recovery were different between HDT and LDT plants. Furthermore, HDT plants accumulated higher contents of primary metabolites under drought in the crown tissue, especially carbohydrates which could function as osmoprotectants and storage materials. On the other hand, LDT plants characterized by higher membranes damage under drought, simultaneously accumulated membrane phospholipids in the crown and possessed the capacity to recover their metabolic functions after stress cessation to the levels observed in HDT plants.


Subject(s)
Drought Resistance , Festuca , Lolium , Drought Resistance/genetics , Droughts , Festuca/genetics , Festuca/metabolism , Lolium/genetics , Lolium/metabolism , Genotype
19.
Mol Biol Evol ; 40(1)2023 01 04.
Article in English | MEDLINE | ID: mdl-36477354

ABSTRACT

Self-incompatibility (SI) is a genetic mechanism of hermaphroditic plants to prevent inbreeding after self-pollination. Allogamous Poaceae species exhibit a unique gametophytic SI system controlled by two multi-allelic and independent loci, S and Z. Despite intense research efforts in the last decades, the genes that determine the initial recognition mechanism are yet to be identified. Here, we report the fine-mapping of the Z-locus in perennial ryegrass (Lolium perenne L.) and provide evidence that the pollen and stigma components are determined by two genes encoding DUF247 domain proteins (ZDUF247-I and ZDUF247-II) and the gene sZ, respectively. The pollen and stigma determinants are located side-by-side and were genetically linked in 10,245 individuals of two independent mapping populations segregating for Z. Moreover, they exhibited high allelic diversity as well as tissue-specific gene expression, matching the expected characteristics of SI determinants known from other systems. Revisiting the S-locus using the latest high-quality whole-genome assemblies revealed a similar gene composition and structure as found for Z, supporting the hypothesis of a duplicated origin of the two-locus SI system of grasses. Ultimately, comparative genomic analyses across a wide range of self-compatible and self-incompatible Poaceae species revealed that the absence of a functional copy of at least one of the six putative SI determinants is accompanied by a self-compatible phenotype. Our study provides new insights into the origin and evolution of the unique gametophytic SI system in one of the largest and economically most important plant families.


Subject(s)
Lolium , Poaceae , Poaceae/genetics , Lolium/genetics , Pollen/genetics , Plants , Genomics
20.
Genes (Basel) ; 13(11)2022 11 11.
Article in English | MEDLINE | ID: mdl-36421771

ABSTRACT

Lolium multiflorum Lam., commonly known as Italian ryegrass, is a forage grass mostly valued for its high palatability and digestibility, along with its high productivity. However, Italian ryegrass has an outbreeding nature and therefore has high genetic heterogeneity within each variety. Consequently, the exclusive use of morphological descriptors in the existing varietal identification and registration process based on the Distinctness, Uniformity, and Stability (DUS) test results in an inadequately precise assessment. The primary objective of this work was to effectively test whether the uniformity observed at the phenological level within each population of Italian ryegrass was confirmed at the genetic level through an SSR marker analysis. In this research, using 12 polymorphic SSR loci, we analyzed 672 samples belonging to 14 different Italian ryegrass commercial varieties to determine the pairwise genetic similarity (GS), verified the distribution of genetic diversity within and among varieties, and investigated the population structure. Although the fourteen commercial varieties did not show elevated genetic differentiation, with only 13% of the total variation attributable to among-cultivar genetic variation, when analyzed as a core, each variety constitutes a genetic cluster on its own, resulting in distinct characteristics from the others, except for two varieties. In this way, by combining a genetic tool with the traditional morphological approach, we were able to limit biases linked to the environmental effect of field trials, assessing the real source of diversity among varieties and concretely answering the key requisites of the Plant Variety Protection (PVP) system.


Subject(s)
Lolium , Lolium/genetics , Genetic Markers , Plants , Seeds/genetics , Italy
SELECTION OF CITATIONS
SEARCH DETAIL
...