Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.600
Filter
1.
Int Heart J ; 65(3): 580-585, 2024.
Article in English | MEDLINE | ID: mdl-38825499

ABSTRACT

Cardiac ryanodine receptor (RyR2) gain-of-function mutations cause catecholaminergic polymorphic ventricular tachycardia (CPVT). Conversely, RyR2 loss-of-function mutations cause a new disease entity, termed calcium release deficiency syndrome (CRDS), which may include RYR2-related long QT syndrome (LQTS). Importantly, unlike CPVT, patients with CRDS do not always exhibit exercise- or epinephrine-induced ventricular arrhythmias, which precludes a diagnosis of CRDS. Here we report a boy and his father, who both experienced exercise-induced cardiac events and harbor the same RYR2 E4107A variant. In the boy, an exercise stress test (EST) and epinephrine provocation test (EPT) did not induce any ventricular arrhythmias. QTc was slightly prolonged (QTc: 474 ms), and an EPT induced QTc prolongation (QTc-baseline: 466 ms, peak: 532 ms, steady-state: 527 ms). In contrast, in his father, QTc was not prolonged (QTc: 417 ms), and neither an EST nor EPT induced QTc prolongation. However, an EST induced multifocal premature ventricular contraction (PVC) bigeminy and bidirectional PVC couplets. Thus, they exhibited distinct clinical phenotypes: the boy exhibited LQTS (or CRDS) phenotype, whereas his father exhibited CPVT phenotype. These findings suggest that, in addition to the altered RyR2 function, other unidentified factors, such as other genetic, epigenetic, and environmental factors, and aging, may be involved in the diverse phenotypic manifestations. Considering that a single RYR2 variant can cause both CPVT and LQTS (or CRDS) phenotypes, in cascade screening of patients with CPVT and CRDS, an EST and EPT are not sufficient and genetic analysis is required to identify individuals who are at increased risk for life-threatening arrhythmias.


Subject(s)
Long QT Syndrome , Phenotype , Ryanodine Receptor Calcium Release Channel , Tachycardia, Ventricular , Humans , Ryanodine Receptor Calcium Release Channel/genetics , Male , Long QT Syndrome/genetics , Long QT Syndrome/diagnosis , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/diagnosis , Electrocardiography , Pedigree , Adult , Exercise Test , Mutation
2.
Neuron ; 112(11): 1730-1732, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38843779

ABSTRACT

In a recent issue of Nature, Chen and colleagues1 reveal the potential for antisense oligonucleotides (ASOs) to rescue the neuropathological mechanisms underlying Timothy syndrome (TS) using three-dimensional neuronal models. Combining in vitro and in vivo approaches, the authors present a strategy to translate disease biology findings into potential therapeutics.


Subject(s)
Autistic Disorder , Long QT Syndrome , Neurons , Syndactyly , Humans , Autistic Disorder/genetics , Autistic Disorder/pathology , Long QT Syndrome/genetics , Long QT Syndrome/physiopathology , Syndactyly/genetics , Oligonucleotides, Antisense/pharmacology , Animals
3.
J Cardiothorac Surg ; 19(1): 321, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845009

ABSTRACT

BACKGROUND: Long QT Syndrome (LQTS) and Beckwith-Wiedemann Syndrome (BWS) are complex disorders with unclear origins, underscoring the need for in-depth molecular investigations into their mechanisms. The main aim of this study is to identify the shared key genes between LQTS and BWS, shedding light on potential common molecular pathways underlying these syndromes. METHODS: The LQTS and BWS datasets are available for download from the GEO database. Differential expression genes (DEGs) were identified. Weighted gene co-expression network analysis (WGCNA) was used to detect significant modules and central genes. Gene enrichment analysis was performed. CIBERSORT was used for immune cell infiltration analysis. The predictive protein interaction (PPI) network of core genes was constructed using STRING, and miRNAs regulating central genes were screened using TargetScan. RESULTS: Five hundred DEGs associated with Long QT Syndrome and Beckwith-Wiedemann Syndrome were identified. GSEA analysis revealed enrichment in pathways such as T cell receptor signaling, MAPK signaling, and adrenergic signaling in cardiac myocytes. Immune cell infiltration indicated higher levels of memory B cells and naive CD4 T cells. Four core genes (CD8A, ICOS, CTLA4, LCK) were identified, with CD8A and ICOS showing low expression in the syndromes and high expression in normal samples, suggesting potential inverse regulatory roles. CONCLUSION: The expression of CD8A and ICOS is low in long QT syndrome and Beckwith-Wiedemann syndrome, indicating their potential as key genes in the pathogenesis of these syndromes. The identification of shared key genes between LQTS and BWS provides insights into common molecular mechanisms underlying these disorders, potentially facilitating the development of targeted therapeutic strategies.


Subject(s)
Beckwith-Wiedemann Syndrome , CD8 Antigens , Inducible T-Cell Co-Stimulator Protein , Long QT Syndrome , Humans , Long QT Syndrome/genetics , Beckwith-Wiedemann Syndrome/genetics , Inducible T-Cell Co-Stimulator Protein/genetics , Inducible T-Cell Co-Stimulator Protein/metabolism , CD8 Antigens/genetics , CD8 Antigens/metabolism , Gene Expression Profiling/methods
4.
PLoS One ; 19(5): e0297914, 2024.
Article in English | MEDLINE | ID: mdl-38691546

ABSTRACT

Inherited cardiovascular diseases are rare diseases that are difficult to diagnose by non-expert professionals. Genetic analyses play a key role in the diagnosis of these diseases, in which the identification of a pathogenic genetic variant is often a diagnostic criterion. Therefore, genetic variant classification and routine reinterpretation as data become available represent one of the main challenges associated with genetic analyses. Using the genetic variants identified in an inherited cardiovascular diseases unit during a 10-year period, the objectives of this study were: 1) to evaluate the impact of genetic variant reinterpretation, 2) to compare the reclassification rates between different cohorts of cardiac channelopathies and cardiomyopathies, and 3) to establish the most appropriate periodicity for genetic variant reinterpretation. All the evaluated cohorts (full cohort of inherited cardiovascular diseases, cardiomyopathies, cardiac channelopathies, hypertrophic cardiomyopathy, dilated cardiomyopathy, arrhythmogenic cardiomyopathy, Brugada syndrome, long QT syndrome and catecholaminergic polymorphic ventricular tachycardia) showed reclassification rates above 25%, showing even higher reclassification rates when there is definitive evidence of the association between the gene and the disease in the cardiac channelopathies. Evaluation of genetic variant reclassification rates based on the year of the initial classification showed that the most appropriate frequency for the reinterpretation would be 2 years, with the possibility of a more frequent reinterpretation if deemed convenient. To keep genetic variant classifications up to date, genetic counsellors play a critical role in the reinterpretation process, providing clinical evidence that genetic diagnostic laboratories often do not have at their disposal and communicating changes in classification and the potential implications of these reclassifications to patients and relatives.


Subject(s)
Cardiovascular Diseases , Humans , Cardiovascular Diseases/genetics , Cardiovascular Diseases/diagnosis , Channelopathies/genetics , Channelopathies/diagnosis , Genetic Testing/methods , Genetic Variation , Cardiomyopathies/genetics , Cardiomyopathies/diagnosis , Long QT Syndrome/genetics , Long QT Syndrome/diagnosis , Brugada Syndrome/genetics , Brugada Syndrome/diagnosis
5.
Card Electrophysiol Clin ; 16(2): 203-210, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749642

ABSTRACT

Bidirectional ventricular tachycardia is a unique arrhythmia that can herald lethal arrhythmia syndromes. Using cases based on real patient stories, this article examines 3 different presentations to help clinicians learn the differential diagnosis associated with this condition. Each associated genetic disorder will be briefly discussed, and valuable tips for distinguishing them from each other will be provided.


Subject(s)
Tachycardia, Ventricular , Child , Humans , Male , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/physiopathology , Diagnosis, Differential , Electrocardiography , Long QT Syndrome/genetics , Long QT Syndrome/diagnosis , Long QT Syndrome/physiopathology , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/physiopathology , Adolescent
6.
BMC Med Genomics ; 17(1): 126, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715010

ABSTRACT

BACKGROUND: Long QT syndrome (LQTS) is a cardiac channelopathy characterized by impaired myocardial repolarization that predisposes to life-threatening arrhythmias. This study aimed to elucidate the genetic basis of LQTS in an affected Iranian family using whole exome sequencing (WES). METHODS: A 37-year-old woman with a personal and family history of sudden cardiac arrest and LQTS was referred for genetic study after losing her teenage daughter due to sudden cardiac death (SCD). WES was performed and variants were filtered and prioritized based on quality, allele frequency, pathogenicity predictions, and conservation scores. Sanger sequencing confirmed segregation in the family. RESULTS: WES identified a novel heterozygous frameshift variant (NM_000238.4:c.3257_3258insG; pGly1087Trpfs*32) in the KCNH2 encoding the α-subunit of the rapid delayed rectifier potassium channel responsible for cardiac repolarization. This variant, predicted to cause a truncated protein, is located in the C-terminal region of the channel and was classified as likely pathogenic based on ACMG guidelines. The variant was absent in population databases and unaffected family members. CONCLUSION: This study reports a novel KCNH2 frameshift variant in an Iranian family with LQTS, expanding the spectrum of disease-causing variants in this gene. Our findings highlight the importance of the C-terminal region in KCNH2 for proper channel function and the utility of WES in identifying rare variants in genetically heterogeneous disorders like LQTS. Functional characterization of this variant is warranted to fully elucidate its pathogenic mechanisms and inform personalized management strategies.


Subject(s)
ERG1 Potassium Channel , Exome Sequencing , Long QT Syndrome , Pedigree , Humans , Long QT Syndrome/genetics , ERG1 Potassium Channel/genetics , Female , Adult , Frameshift Mutation
7.
Arch Cardiovasc Dis ; 117(5): 313-320, 2024 May.
Article in English | MEDLINE | ID: mdl-38704288

ABSTRACT

BACKGROUND: In patients with congenital long QT syndrome (LQTS), the risk of ventricular arrhythmia is correlated with the duration of the corrected QT interval and the changes in the ST-T wave pattern on the 12-lead surface electrocardiogram (12L-ECG). Remote monitoring of these variables could be useful. AIM: To evaluate the abilities of two wearable electrocardiogram devices (Apple Watch and KardiaMobile 6L) to provide reliable electrocardiograms in terms of corrected QT interval and ST-T wave patterns in patients with LQTS. METHODS: In a prospective multicentre study (ClinicalTrials.gov identifier: NCT04728100), a 12L-ECG, a 6-lead KardiaMobile 6L electrocardiogram and two single-lead Apple Watch electrocardiograms were recorded in patients with LQTS. The corrected QT interval and ST-T wave patterns were evaluated manually. RESULTS: Overall, 98 patients with LQTS were included; 12.2% were children and 92.8% had a pathogenic variant in an LQTS gene. The main genotypes were LQTS type 1 (40.8%), LQTS type 2 (36.7%) and LQTS type 3 (7.1%); rarer genotypes were also represented. When comparing the ST-T wave patterns obtained with the 12L-ECG, the level of agreement was moderate with the Apple Watch (k=0.593) and substantial with the KardiaMobile 6L (k=0.651). Regarding the corrected QT interval, the correlation with 12L-ECG was strong for the Apple Watch (r=0.703 in lead II) and moderate for the KardiaMobile 6L (r=0.593). There was a slight overestimation of corrected QT interval with the Apple Watch and a subtle underestimation with the KardiaMobile 6L. CONCLUSIONS: In patients with LQTS, the corrected QT interval and ST-T wave patterns obtained with the Apple Watch and the KardiaMobile 6L correlated with the 12L-ECG. Although wearable electrocardiogram devices cannot replace the 12L-ECG for the follow-up of these patients, they could be interesting additional monitoring tools.


Subject(s)
Heart Rate , Long QT Syndrome , Predictive Value of Tests , Wearable Electronic Devices , Humans , Long QT Syndrome/physiopathology , Long QT Syndrome/diagnosis , Long QT Syndrome/congenital , Long QT Syndrome/genetics , Female , Male , Prospective Studies , Child , Adolescent , Adult , Reproducibility of Results , Young Adult , Electrocardiography, Ambulatory/instrumentation , Action Potentials , Child, Preschool , Equipment Design , Time Factors , Middle Aged , Electrocardiography/instrumentation , Heart Conduction System/physiopathology
8.
Card Electrophysiol Clin ; 16(2): 195-202, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749641

ABSTRACT

The case series reviews differential diagnosis of a genetic arrhythmia syndrome when evaluating a patient with prolonged QTc. Making the correct diagnosis requires: detailed patient history, family history, and careful review of the electrocardiogram (ECG). Signs and symptoms and ECG characteristics can often help clinicians make the diagnosis before genetic testing results return. These skills can help clinicians make an accurate and timely diagnosis and prevent life-threatening events.


Subject(s)
Arrhythmias, Cardiac , Electrocardiography , Long QT Syndrome , Humans , Diagnosis, Differential , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/physiopathology , Long QT Syndrome/diagnosis , Long QT Syndrome/genetics , Long QT Syndrome/physiopathology , Child , Male , Female , Adolescent , Genetic Testing
9.
Card Electrophysiol Clin ; 16(2): 211-218, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749643

ABSTRACT

The following case series presents three different pediatric patients with SCN5A-related disease. In addition, family members are presented to demonstrate the variable penetrance that is commonly seen. Identifying features of this disease is important, because even in the very young, SCN5A disorders can cause lethal arrhythmias and sudden death.


Subject(s)
Arrhythmias, Cardiac , Long QT Syndrome , NAV1.5 Voltage-Gated Sodium Channel , Humans , NAV1.5 Voltage-Gated Sodium Channel/genetics , Long QT Syndrome/genetics , Long QT Syndrome/physiopathology , Male , Female , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/diagnosis , Child , Electrocardiography , Child, Preschool , Adolescent , Infant
11.
Pediatr Cardiol ; 45(5): 1023-1035, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38565666

ABSTRACT

Congenital long QT syndrome (LQTS) is an inherited arrhythmia syndrome associated with sudden cardiac death. Accurate interpretation and classification of genetic variants in LQTS patients are crucial for effective management. All patients with LQTS with a positive genetic test over the past 18 years (2002-2020) in our single tertiary pediatric cardiac center were identified. Reevaluation of the reported variants in LQTS genes was conducted using the American College of Genetics and Genomics (ACMG) guideline after refinement by the US ClinGen SVI working group and guideline by Walsh et al. on genetic variant reclassification, under multidisciplinary input. Among the 59 variants identified. 18 variants (30.5%) were reclassified. A significant larger portion of variants of unknown significance (VUS) were reclassified compared to likely pathogenic (LP)/pathogenic (P) variants (57.7% vs 9.1%, p < 0.001). The rate of reclassification was significantly higher in the limited/disputed evidence group compared to the definite/moderate evidence group (p = 0.0006). All LP/P variants were downgraded in the limited/disputed evidence group (p = 0.0057). VUS upgrades are associated with VUS located in genes within the definite/moderate evidence group (p = 0.0403) and with VUS present in patients exhibiting higher corrected QT intervals (QTc) (p = 0.0445). A significant number of pediatric LQTS variants were reclassified, particularly for VUS. The strength of the gene-disease association of the genes influences the reclassification performance. The study provides important insights and guidance for pediatricians to seek for reclassification of "outdated variants" in order to facilitate contemporary precision medicine.


Subject(s)
Genetic Testing , Long QT Syndrome , Humans , Long QT Syndrome/genetics , Child , Female , Male , Genetic Testing/methods , Genetic Variation , Adolescent , Child, Preschool , Infant , Mutation , Retrospective Studies
13.
Nature ; 628(8009): 818-825, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658687

ABSTRACT

Timothy syndrome (TS) is a severe, multisystem disorder characterized by autism, epilepsy, long-QT syndrome and other neuropsychiatric conditions1. TS type 1 (TS1) is caused by a gain-of-function variant in the alternatively spliced and developmentally enriched CACNA1C exon 8A, as opposed to its counterpart exon 8. We previously uncovered several phenotypes in neurons derived from patients with TS1, including delayed channel inactivation, prolonged depolarization-induced calcium rise, impaired interneuron migration, activity-dependent dendrite retraction and an unanticipated persistent expression of exon 8A2-6. We reasoned that switching CACNA1C exon utilization from 8A to 8 would represent a potential therapeutic strategy. Here we developed antisense oligonucleotides (ASOs) to effectively decrease the inclusion of exon 8A in human cells both in vitro and, following transplantation, in vivo. We discovered that the ASO-mediated switch from exon 8A to 8 robustly rescued defects in patient-derived cortical organoids and migration in forebrain assembloids. Leveraging a transplantation platform previously developed7, we found that a single intrathecal ASO administration rescued calcium changes and in vivo dendrite retraction of patient neurons, suggesting that suppression of CACNA1C exon 8A expression is a potential treatment for TS1. Broadly, these experiments illustrate how a multilevel, in vivo and in vitro stem cell model-based approach can identify strategies to reverse disease-relevant neural pathophysiology.


Subject(s)
Autistic Disorder , Long QT Syndrome , Oligonucleotides, Antisense , Syndactyly , Animals , Female , Humans , Male , Mice , Alternative Splicing/drug effects , Alternative Splicing/genetics , Autistic Disorder/drug therapy , Autistic Disorder/genetics , Calcium/metabolism , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/genetics , Cell Movement/drug effects , Dendrites/metabolism , Exons/genetics , Long QT Syndrome/drug therapy , Long QT Syndrome/genetics , Neurons/metabolism , Neurons/drug effects , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/therapeutic use , Organoids/drug effects , Organoids/metabolism , Prosencephalon/metabolism , Prosencephalon/cytology , Syndactyly/drug therapy , Syndactyly/genetics , Interneurons/cytology , Interneurons/drug effects
14.
Mol Biol Rep ; 51(1): 520, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625436

ABSTRACT

BACKGROUND: Mutations in human ether-à-go-go-related gene (hERG) potassium channels are closely associated with long QT syndrome (LQTS). Previous studies have demonstrated that macrolide antibiotics increase the risk of cardiovascular diseases. To date, the mechanisms underlying acquired LQTS remain elusive. METHODS: A novel hERG mutation I1025N was identified in an azithromycin-treated patient with acquired long QT syndrome via Sanger sequencing. The mutant I1025N plasmid was transfected into HEK-293 cells, which were subsequently incubated with azithromycin. The effect of azithromycin and mutant I1025N on the hERG channel was evaluated via western blot, immunofluorescence, and electrophysiology techniques. RESULTS: The protein expression of the mature hERG protein was down-regulated, whereas that of the immature hERG protein was up-regulated in mutant I1025N HEK-293 cells. Azithromycin administration resulted in a negative effect on the maturation of the hERG protein. Additionally, the I1025N mutation exerted an inhibitory effect on hERG channel current. Moreover, azithromycin inhibited hERG channel current in a concentration-dependent manner. The I1025N mutation and azithromycin synergistically decreased hERG channel expression and hERG current. However, the I1025N mutation and azithromycin did not alter channel gating dynamics. CONCLUSIONS: These findings suggest that hERG gene mutations might be involved in the genetic susceptibility mechanism underlying acquired LQTS induced by azithromycin.


Subject(s)
Azithromycin , Long QT Syndrome , Humans , Azithromycin/adverse effects , HEK293 Cells , Anti-Bacterial Agents/adverse effects , Long QT Syndrome/chemically induced , Long QT Syndrome/genetics , Mutation
15.
Biochem Biophys Res Commun ; 714: 149947, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38657442

ABSTRACT

Here, we characterized the p.Arg583His (R583H) Kv7.1 mutation, identified in two unrelated families suffered from LQT syndrome. This mutation is located in the HС-HD linker of the cytoplasmic portion of the Kv7.1 channel. This linker, together with HD helix are responsible for binding the A-kinase anchoring protein 9 (AKAP9), Yotiao. We studied the electrophysiological characteristics of the mutated channel expressed in CHO-K1 along with KCNE1 subunit and Yotiao protein, using the whole-cell patch-clamp technique. We found that R583H mutation, even at the heterozygous state, impedes IKs activation. Molecular modeling showed that HС and HD helixes of the C-terminal part of Kv7.1 channel are swapped along the C-terminus length of the channel and that R583 position is exposed to the outer surface of HC-HD tandem coiled-coil. Interestingly, the adenylate cyclase activator, forskolin had a smaller effect on the mutant channel comparing with the WT protein, suggesting that R583H mutation may disrupt the interaction of the channel with the adaptor protein Yotiao and, therefore, may impair phosphorylation of the KCNQ1 channel.


Subject(s)
A Kinase Anchor Proteins , Cytoskeletal Proteins , KCNQ1 Potassium Channel , Long QT Syndrome , Animals , Female , Humans , Male , A Kinase Anchor Proteins/metabolism , A Kinase Anchor Proteins/genetics , A Kinase Anchor Proteins/chemistry , CHO Cells , Cricetulus , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , KCNQ1 Potassium Channel/genetics , KCNQ1 Potassium Channel/metabolism , KCNQ1 Potassium Channel/chemistry , Long QT Syndrome/genetics , Long QT Syndrome/metabolism , Models, Molecular , Mutation , Potassium Channels, Voltage-Gated/chemistry , Potassium Channels, Voltage-Gated/genetics , Potassium Channels, Voltage-Gated/metabolism , Protein Binding
16.
Biochemistry (Mosc) ; 89(3): 543-552, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38648771

ABSTRACT

Brugada syndrome (BrS) is an inherited disease characterized by right precordial ST-segment elevation in the right precordial leads on electrocardiograms (ECG), and high risk of life-threatening ventricular arrhythmia and sudden cardiac death (SCD). Mutations in the responsible genes have not been fully characterized in the BrS patients, except for the SCN5A gene. We identified a new genetic variant, c.1189C>T (p.R397C), in the KCNH2 gene in the asymptomatic male proband diagnosed with BrS and mild QTc shortening. We hypothesize that this variant could alter IKr-current and may be causative for the rare non-SCN5A-related form of BrS. To assess its pathogenicity, we performed patch-clamp analysis on IKr reconstituted with this KCNH2 mutation in the Chinese hamster ovary cells and compared the phenotype with the wild type. It appeared that the R397C mutation does not affect the IKr density, but facilitates activation, hampers inactivation of the hERG channels, and increases magnitude of the window current suggesting that the p.R397C is a gain-of-function mutation. In silico modeling demonstrated that this missense mutation potentially leads to the shortening of action potential in the heart.


Subject(s)
Brugada Syndrome , ERG1 Potassium Channel , Gain of Function Mutation , Adult , Animals , Humans , Male , Middle Aged , Brugada Syndrome/genetics , Brugada Syndrome/metabolism , CHO Cells , Cricetulus , Electrocardiography , ERG1 Potassium Channel/genetics , ERG1 Potassium Channel/metabolism , Long QT Syndrome/genetics , Long QT Syndrome/metabolism , Mutation, Missense
17.
EBioMedicine ; 103: 105108, 2024 May.
Article in English | MEDLINE | ID: mdl-38653189

ABSTRACT

The clinical significance of optimal pharmacotherapy for inherited arrhythmias such as short QT syndrome (SQTS) and long QT syndrome (LQTS) has been increasingly recognised. The advancement of gene technology has opened up new possibilities for identifying genetic variations and investigating the pathophysiological roles and mechanisms of genetic arrhythmias. Numerous variants in various genes have been proven to be causative in genetic arrhythmias. Studies have demonstrated that the effectiveness of certain drugs is specific to the patient or genotype, indicating the important role of gene-variants in drug response. This review aims to summarize the reported data on the impact of different gene-variants on drug response in SQTS and LQTS, as well as discuss the potential mechanisms by which gene-variants alter drug response. These findings may provide valuable information for future studies on the influence of gene variants on drug efficacy and the development of genotype-guided or precision treatment for these diseases.


Subject(s)
Genetic Variation , Genotype , Long QT Syndrome , Humans , Long QT Syndrome/genetics , Long QT Syndrome/drug therapy , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/drug therapy , Genetic Predisposition to Disease , Anti-Arrhythmia Agents/therapeutic use , Treatment Outcome , Pharmacogenomic Variants
18.
Pharmacogenomics ; 25(3): 117-131, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38506312

ABSTRACT

Aim: Drug-induced long QT syndrome (diLQTS), an adverse effect of many drugs, can lead to sudden cardiac death. Candidate genetic variants in cardiac ion channels have been associated with diLQTS, but several limitations of previous studies hamper clinical utility. Materials & methods: Thus, the purpose of this study was to assess the associations of KCNE1-D85N, KCNE2-I57T and SCN5A-G615E with diLQTS in a large observational case-control study (6,083 self-reported white patients treated with 27 different high-risk QT-prolonging medications; 12.0% with diLQTS). Results: KCNE1-D85N significantly associated with diLQTS (adjusted odds ratio: 2.24 [95% CI: 1.35-3.58]; p = 0.001). Given low minor allele frequencies, the study had insufficient power to analyze KCNE2-I57T and SCN5A-G615E. Conclusion: KCNE1-D85N is a risk factor for diLQTS that should be considered in future clinical practice guidelines.


Some medications can lead to a condition called drug-induced long QT syndrome (diLQTS), which can be a serious abnormal heart rhythm in some patients. In our research, we explored three specific changes in DNA related to the electrical function of the heart (KCNE1-D85N, KCNE2-I57T, SCN5A-G615E) and their link to diLQTS. Our study revealed a connection between KCNE1-D85N and diLQTS. This study emphasized the importance of including KCNE1-D85N in the medical guidelines to help identify patients at risk of diLQTS. We were unable to identify the connection of KCNE2-I57T and SCN5A-G615E with diLQTS, due to a low number of carriers in the study.


Subject(s)
Long QT Syndrome , Potassium Channels, Voltage-Gated , Humans , Potassium Channels, Voltage-Gated/genetics , Potassium Channels, Voltage-Gated/adverse effects , Case-Control Studies , Long QT Syndrome/chemically induced , Long QT Syndrome/genetics , Risk Factors
19.
JAMA Cardiol ; 9(4): 377-384, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38446445

ABSTRACT

Importance: Congenital long QT syndrome (LQTS) is associated with syncope, ventricular arrhythmias, and sudden death. Half of patients with LQTS have a normal or borderline-normal QT interval despite LQTS often being detected by QT prolongation on resting electrocardiography (ECG). Objective: To develop a deep learning-based neural network for identification of LQTS and differentiation of genotypes (LQTS1 and LQTS2) using 12-lead ECG. Design, Setting, and Participants: This diagnostic accuracy study used ECGs from patients with suspected inherited arrhythmia enrolled in the Hearts in Rhythm Organization Registry (HiRO) from August 2012 to December 2021. The internal dataset was derived at 2 sites and an external validation dataset at 4 sites within the HiRO Registry; an additional cross-sectional validation dataset was from the Montreal Heart Institute. The cohort with LQTS included probands and relatives with pathogenic or likely pathogenic variants in KCNQ1 or KCNH2 genes with normal or prolonged corrected QT (QTc) intervals. Exposures: Convolutional neural network (CNN) discrimination between LQTS1, LQTS2, and negative genetic test results. Main Outcomes and Measures: The main outcomes were area under the curve (AUC), F1 scores, and sensitivity for detecting LQTS and differentiating genotypes using a CNN method compared with QTc-based detection. Results: A total of 4521 ECGs from 990 patients (mean [SD] age, 42 [18] years; 589 [59.5%] female) were analyzed. External validation within the national registry (101 patients) demonstrated the CNN's high diagnostic capacity for LQTS detection (AUC, 0.93; 95% CI, 0.89-0.96) and genotype differentiation (AUC, 0.91; 95% CI, 0.86-0.96). This surpassed expert-measured QTc intervals in detecting LQTS (F1 score, 0.84 [95% CI, 0.78-0.90] vs 0.22 [95% CI, 0.13-0.31]; sensitivity, 0.90 [95% CI, 0.86-0.94] vs 0.36 [95% CI, 0.23-0.47]), including in patients with normal or borderline QTc intervals (F1 score, 0.70 [95% CI, 0.40-1.00]; sensitivity, 0.78 [95% CI, 0.53-0.95]). In further validation in a cross-sectional cohort (406 patients) of high-risk patients and genotype-negative controls, the CNN detected LQTS with an AUC of 0.81 (95% CI, 0.80-0.85), which was better than QTc interval-based detection (AUC, 0.74; 95% CI, 0.69-0.78). Conclusions and Relevance: The deep learning model improved detection of congenital LQTS from resting ECGs and allowed for differentiation between the 2 most common genetic subtypes. Broader validation over an unselected general population may support application of this model to patients with suspected LQTS.


Subject(s)
Deep Learning , Long QT Syndrome , Humans , Female , Adult , Male , Cross-Sectional Studies , Long QT Syndrome/diagnosis , Long QT Syndrome/genetics , Electrocardiography , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/complications , Genotype
20.
J Psychopharmacol ; 38(5): 481-488, 2024 May.
Article in English | MEDLINE | ID: mdl-38519421

ABSTRACT

OBJECTIVE: Ibogaine is a hallucinogenic drug that may be used to treat opioid use disorder (OUD). The relationships between pharmacokinetics (PKs) of ibogaine and its metabolites and their clinical effects on side effects and opioid withdrawal severity are unknown. We aimed to study these relationships in patients with OUD undergoing detoxification supported by ibogaine. METHODS: The study was performed in 14 subjects with OUD. They received a single dose of 10mg/kg ibogaine hydrochloride. Plasma PKs of ibogaine, noribogaine, and noribogaine glucuronide were obtained during 24 h. Cytochrome P450 isoenzyme 2D6 (CYP2D6) genotyping was performed. The PKs were analyzed by means of nonlinear mixed effects modeling and related with corrected QT interval (QTc) prolongation, cerebellar ataxia, and opioid withdrawal severity. RESULTS: The PK of ibogaine were highly variable and significantly correlated to CYP2D6 genotype (p < 0.001). The basic clearance of ibogaine (at a CYP2D6 activity score (AS) of 0) was 0.82 L/h. This increased with 30.7 L/h for every point of AS. The relation between ibogaine plasma concentrations and QTc was best described by a sigmoid Emax model. Spearman correlations were significant (p < 0.03) for ibogaine but not noribogaine with QTc (p = 0.109) and cerebellar effects (p = 0.668); neither correlated with the severity of opioid withdrawal symptoms. CONCLUSIONS: The clearance of ibogaine is strongly related to CYPD2D6 genotype. Ibogaine cardiac side effects (QTc time) and cerebellar effects are most likely more driven by ibogaine rather than noribogaine. Future studies should aim at exploring lower doses and/or applying individualized dosing based on CYP2D6 genotype.


Subject(s)
Cytochrome P-450 CYP2D6 , Genotype , Hallucinogens , Ibogaine , Opioid-Related Disorders , Humans , Ibogaine/pharmacokinetics , Ibogaine/adverse effects , Ibogaine/pharmacology , Ibogaine/analogs & derivatives , Male , Adult , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 CYP2D6/metabolism , Female , Hallucinogens/pharmacokinetics , Hallucinogens/adverse effects , Hallucinogens/blood , Opioid-Related Disorders/drug therapy , Opioid-Related Disorders/genetics , Middle Aged , Substance Withdrawal Syndrome/genetics , Young Adult , Long QT Syndrome/chemically induced , Long QT Syndrome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...