Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 24(1): 406, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38750463

ABSTRACT

BACKGROUND: The lifestyle transition from autotrophy to heterotrophy often leads to extensive degradation of plastomes in parasitic plants, while the evolutionary trajectories of plastome degradation associated with parasitism in hemiparasitic plants remain poorly understood. In this study, phylogeny-oriented comparative analyses were conducted to investigate whether obligate Loranthaceae stem-parasites experienced higher degrees of plastome degradation than closely related facultative root-parasites and to explore the potential evolutionary events that triggered the 'domino effect' in plastome degradation of hemiparasitic plants. RESULTS: Through phylogeny-oriented comparative analyses, the results indicate that Loranthaceae hemiparasites have undergone varying degrees of plastome degradation as they evolved towards a heterotrophic lifestyle. Compared to closely related facultative root-parasites, all obligate stem-parasites exhibited an elevated degree plastome degradation, characterized by increased downsizing, gene loss, and pseudogenization, thereby providing empirical evidence supporting the theoretical expectation that evolution from facultative parasitism to obligate parasitism may result in a higher degree of plastome degradation in hemiparasites. Along with infra-familial divergence in Loranthaceae, several lineage-specific gene loss/pseudogenization events occurred at deep nodes, whereas further independent gene loss/pseudogenization events were observed in shallow branches. CONCLUSIONS: The findings suggest that in addition to the increasing levels of nutritional reliance on host plants, cladogenesis can be considered as another pivotal evolutionary event triggering the 'domino effect' in plastome degradation of hemiparasitic plants. These findings provide new insights into the evolutionary trajectory of plastome degradation in hemiparasitic plants.


Subject(s)
Loranthaceae , Phylogeny , Loranthaceae/genetics , Loranthaceae/physiology , Biological Evolution , Plastids/genetics , Evolution, Molecular
2.
BMC Plant Biol ; 24(1): 440, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778295

ABSTRACT

BACKGROUND: Exploring the relationship between parasitic plants and answering taxonomic questions is still challenging. The subtribe Scurrulinae (Loranthaceae), which has a wide distribution in Asia and Africa, provides an excellent example to illuminate this scenario. Using a comprehensive taxon sampling of the subtribe, this study focuses on infer the phylogenetic relationships within Scurrulinae, investigate the phylogeny and biogeography of the subtribe, and establish a phylogenetically-based classification incorporating both molecular and morphological evidence. We conducted phylogenetic, historical biogeography, and ancestral character state reconstruction analyses of Scurrulinae based on the sequences of six DNA regions from 89 individuals to represent all five tribes of the Loranthaceae and the dataset from eleven morphological characters. RESULTS: The results strongly support the non-monophyletic of Scurrulinae, with Phyllodesmis recognized as a separate genus from its allies Taxillus and Scurrula based on the results from molecular data and morphological character reconstruction. The mistletoe Scurrulinae originated in Asia during the Oligocene. Scurrulinae was inferred to have been widespread in Asia but did not disperse to other areas. The African species of Taxillus, T. wiensii, was confirmed to have originated in Africa from African Loranthaceae ca. 17 Ma, and evolved independently from Asian members of Taxillus. CONCLUSIONS: This study based on comprehensive taxon sampling of the subtribe Scurrulinae, strongly supports the relationship between genera. The taxonomic treatment for Phyllodesmis was provided. The historical biogeography of mistletoe Scurrulinae was determined with origin in Asia during the Oligocene. Taxillus and Scurrula diverged during the climatic optimum in the middle Miocene. Taxillus wiensii originated in Africa from African Loranthaceae, and is an independent lineage from the Asian species of Taxillus. Diversification of Scurrulinae and the development of endemic species in Asia may have been supported by the fast-changing climate, including cooling, drying, and the progressive uplift of the high mountains in central Asia, especially during the late Pliocene and Pleistocene.


Subject(s)
Loranthaceae , Phylogeny , Phylogeography , Loranthaceae/genetics , Africa , Asia , Biological Evolution , DNA, Plant/genetics , Evolution, Molecular , Sequence Analysis, DNA
3.
Genes (Basel) ; 14(4)2023 04 19.
Article in English | MEDLINE | ID: mdl-37107701

ABSTRACT

Research on the chloroplast genome of parasitic plants is limited. In particular, the homology between the chloroplast genomes of parasitic and hyperparasitic plants has not been reported yet. In this study, three chloroplast genomes of Taxillus (Taxillus chinensis, Taxillus delavayi, and Taxillus thibetensis) and one chloroplast genome of Phacellaria (Phacellaria rigidula) were sequenced and analyzed, among which T. chinensis is the host of P. rigidula. The chloroplast genomes of the four species were 119,941-138,492 bp in length. Compared with the chloroplast genome of the autotrophic plant Nicotiana tabacum, all of the ndh genes, three ribosomal protein genes, three tRNA genes and the infA gene were lost in the three Taxillus species. Meanwhile, in P. rigidula, the trnV-UAC gene and the ycf15 gene were lost, and only one ndh gene (ndhB) existed. The results of homology analysis showed that the homology between P. rigidula and its host T. chinensis was low, indicating that P. rigidula grows on its host T. chinensis but they do not share the chloroplast genome. In addition, horizontal gene transfer was not found between P. rigidula and its host T. chinensis. Several candidate highly variable regions in the chloroplast genomes of Taxillus and Phacellaria species were selected for species identification study. Phylogenetic analysis revealed that the species of Taxillus and Scurrula were closely related and supported that Scurrula and Taxillus should be treated as congeneric, while species in Phacellaria had a close relationship with that in Viscum.


Subject(s)
Genome, Chloroplast , Loranthaceae , Loranthaceae/genetics , Phylogeny , Base Sequence
4.
Genes (Basel) ; 14(3)2023 02 23.
Article in English | MEDLINE | ID: mdl-36980832

ABSTRACT

When a flowering plant species changes its life history from self-supply to parasite, its chloroplast genomes may have experienced functional physical reduction, and gene loss. Most species of Santalales are hemiparasitic and few studies focus on comparing the chloroplast genomes of the species from this order. In this study, we collected and compared chloroplast genomes of 12 species of Santalales and sequenced the chloroplast genomes of Taxillus nigrans and Scurrula parasitica for the first time. The chloroplast genomes for these species showed typical quadripartite structural organization. Phylogenetic analysis suggested that these 12 species of Santalales clustered into three clades: Viscum (4 spp.) and Osyris (1 sp.) in the Santalaceae and Champereia (1 sp.) in the Opiliaceae formed one clade, while Taxillus (3 spp.) and Scurrula (1 sp.) in the Loranthaceae and Schoepfia (1 sp.) in the Schoepfiaceae formed another clade. Erythropalum (1 sp.), in the Erythropalaceae, appeared as a third, most distant, clade within the Santalales. In addition, both Viscum and Taxillus are monophyletic, and Scurrula is sister to Taxillus. A comparative analysis of the chloroplast genome showed differences in genome size and the loss of genes, such as the ndh genes, infA genes, partial ribosomal genes, and tRNA genes. The 12 species were classified into six categories by the loss, order, and structure of genes in the chloroplast genome. Each of the five genera (Viscum, Osyris, Champereia, Schoepfia, and Erythropalum) represented an independent category, while the three Taxillus species and Scurrula were classified into a sixth category. Although we found that different genes were lost in various categories, most genes related to photosynthesis were retained in the 12 species. Hence, the genetic information accorded with observations that they are hemiparasitic species. Our comparative genomic analyses can provide a new case for the chloroplast genome evolution of parasitic species.


Subject(s)
Genome, Chloroplast , Loranthaceae , Parasites , Animals , Loranthaceae/genetics , Phylogeny , Base Sequence
5.
Genome Biol Evol ; 14(5)2022 05 03.
Article in English | MEDLINE | ID: mdl-35482027

ABSTRACT

The hemiparasitic Taxillus chinensis (DC.) Danser is a root-parasitizing medicinal plant with photosynthetic ability, which is lost in other parasitic plants. However, the cultivation and medical application of the species are limited by the recalcitrant seeds of the species, and even though the molecular mechanisms underlying this recalcitrance have been investigated using transcriptomic and proteomic methods, genome resources for T. chinensis have yet to be reported. Accordingly, the aim of the present study was to use nanopore, short-read, and high-throughput chromosome conformation capture sequencing to construct a chromosome-level assembly of the T. chinensis genome. The final genome assembly was 521.90 Mb in length, and 496.43 Mb (95.12%) could be grouped into nine chromosomes with contig and scaffold N50 values of 3.80 and 56.90 Mb, respectively. In addition, a total of 33,894 protein-coding genes were predicted, and gene family clustering identified 11 photosystem-related gene families, thereby indicating photosynthetic ability, which is a characteristic of hemiparasitic plants. This chromosome-level genome assembly of T. chinensis provides a valuable genomic resource for elucidating the genetic basis underlying the recalcitrant characteristics of T. chinensis seeds and the evolution of photosynthesis loss in parasitic plants.


Subject(s)
Loranthaceae , Chromosomes , Genome , Loranthaceae/genetics , Phylogeny , Proteomics
6.
Rev. biol. trop ; 69(3)sept. 2021.
Article in English | LILACS, SaludCR | ID: biblio-1387682

ABSTRACT

Abstract Introducction: Gaiadendron punctatum is a hemiparasitic species of Loranthaceae (Tribe Gaiadendreae) that is widely distributed in mountainous regions of Central and South America. Embryological and phylogenetic studies in the family indicate a trend towards reduction of the gynoecium and ovules, the morphology of which supports the current circumscription of Tribe Gaiadendreae (Gaiadendron and Atkinsonia). Molecular phylogenetic studies suggest that Nuytsia, Atkinsonia and Gaiadendron diverged successively, forming a grade at the base of the Loranthaceae, but support values are low. Objetive: In the present study, the floral anatomy of Gaiadendron punctatum was investigated in order to provide additional data to permit comparisons among the three basal-most genera in the Loranthaceae and reevaluate their relationships. Methods: Flowers of G. punctatum were collected at different developmental stages and serial sections were prepared and analyzed by light microscopy. Results: Inflorescence development is acropetal; the flowers are bisexual with an inferior ovary surmounted by a calyculus, a ring-shaped structure lacking vascular tissue; the ovary is comprised of seven basal locules, each with an ategmic, tenuinucellate ovule. Above the locules is a mamelon that is fused with the adjacent tissues. The androecium is comprised of seven epipetalous stamens, the anthers with fibrous endothecium dehiscence through a single longitudinal slit, releasing tricolpated pollen. Conclusions: The results of this study show that Gaiadendron and Atkinsonia share versatile, dorsifixed anthers, while Gaiadendron and Nuytsia share the same mode of anther dehiscence. On the other hand, Gaiadendron shares with members of Tribe Elytrantheae an amyliferous mamelon and an unvascularized calyculus. Combined phylogenetic analyses of morphological and molecular data are desirable to determine whether Tribe Gaiadendreae comprises a clade, a grade or if the two genera are more distantly related.


Resumen Introducción: Gaiadendron punctatum es una especie hemiparásita perteneciente a uno de los tres géneros basales de la familia Loranthaceae, siendo los otros dos Nuytsia y Atkinsonia. El género está conformado por dos especies distribuidas en regiones montañosas de Sudamérica y Centroamérica. Tanto los estudios embriológicos, como los filogenéticos, indican una tendencia hacia la reducción del gineceo y de los óvulos en la familia, cuya morfología respalda la circunscripción de la tribu Gaiadendreae (Gaiadendron y Atkinsonia). Estudios filogenéticos moleculares sugieren que Nuytsia, Atkinsonia y Gaiadendron divergieron sucesivamente, formando un grado en la base de la familia Loranthaceae, pero los valores en los que se sustenta son bajos. Objetivo: En el presente trabajo se describe la anatomía floral de la especie Gaiadendron punctatum con el objetivo de complementar la información embriológica, de manera que se pueda comparar directamente la morfología floral y los caracteres embriológicos entre los tres géneros basales de la familia Loranthaceae y reevaluar sus relaciones. Métodos: Las flores de G. punctatum fueron recolectadas en diferentes estados de desarrollo, se realizaron cortes histológicos seriados, se tiñeron con azul de astra y fucsina, y se analizaron mediante microscopía óptica. Resultados: Las inflorescencias mostraron un desarrollo acrópeto, las flores bisexuales presentaron ovario ínfero con presencia de una estructura en forma de anillo, carente de tejidos vasculares llamada calículo; el ovario se compone por siete lóculos basales, cada uno con un óvulo atégmico tenuinucelar. Por encima de los óvulos, el mamelón se fusiona con los tejidos adyacentes. El androceo está conformado por siete estambres epipétalos, las anteras presentan un endotecio fibroso y granos de polen tricolpados. La dehiscencia de las anteras es mediante una sola apertura longitudinal. Conclusiones: Los resultados del presente trabajo demuestran que Gaiadendron y Atkinsonia comparten anteras dorsifijas y versátiles, mientras Gaiadendron y Nuytsia comparten el tipo de dehiscencia anteral y por otro lado Gaiadendron comparte los caracteres de mamelón amilífero y calículo no vascularizado con la tribu Elytrantheae. La clasificación del género Gaiadendron con respecto a los dos géneros basales de la familia debe ser objeto de investigación (análisis filogenético combinado) que permita dirimir si la tribu Gaiadendrae es un clado, un grado o dos géneros más lejanamente emparentados.


Subject(s)
Loranthaceae/genetics , Epistasis, Genetic
7.
PLoS One ; 16(8): e0256345, 2021.
Article in English | MEDLINE | ID: mdl-34407123

ABSTRACT

Several molecular phylogenetic studies of the mistletoe family Loranthaceae have been published such that now the general pattern of relationships among the genera and their biogeographic histories are understood. Less is known about species relationships in the larger (> 10 species) genera. This study examines the taxonomically difficult genus Taxillus composed of 35-40 Asian species. The goal was to explore the genetic diversity present in Taxillus plastomes, locate genetically variable hotspots, and test these for their utility as potential DNA barcodes. Using genome skimming, complete plastomes, as well as nuclear and mitochondrial rDNA sequences, were newly generated for eight species. The plastome sequences were used in conjunction with seven publicly available Taxillus sequences and three sequences of Scurrula, a close generic relative. The Taxillus plastomes ranged from 121 to 123 kbp and encoded 90-93 plastid genes. In addition to all of the NADH dehydrogenase complex genes, four ribosomal genes, infA and four intron-containing tRNA genes were lost or pseudogenized in all of the Taxillus and Scurrula plastomes. The topologies of the plastome, mitochondrial rDNA and nuclear rDNA trees were generally congruent, though with discordance at the position of T. chinensis. Several variable regions in the plastomes were identified that have sufficient numbers of parsimony informative sites as to recover the major clades seen in the complete plastome tree. Instead of generating complete plastome sequences, our study showed that accD alone or the concatenation of accD and rbcL can be used in future studies to facilitate identification of Taxillus samples and to generate a molecular phylogeny with robust sampling within the genus.


Subject(s)
Loranthaceae/classification , Plastids/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/classification , DNA, Ribosomal/metabolism , Evolution, Molecular , Genome, Plastid , Loranthaceae/genetics , Mitochondria/genetics , NADH Dehydrogenase/classification , NADH Dehydrogenase/genetics , Phylogeny , RNA, Transfer/genetics , Ribosomal Proteins/classification , Ribosomal Proteins/genetics
8.
Biomed Res Int ; 2021: 5585884, 2021.
Article in English | MEDLINE | ID: mdl-34159194

ABSTRACT

Taxillus chinensis (DC.) Danser, a parasitic plant that belongs to the Loranthaceae family, has a long history of being used in the Chinese medicine. We observed that the loranthus seeds were sensitive to temperature and could lose viability below 0°C quickly. Thus, we performed small RNA sequencing to study the microRNA (miRNA) regulation in the loranthus seeds under cold stress. In total, we identified 600 miRNAs, for the first time, in the loranthus seeds under cold stress. Then, we detected 224, 229, and 223 miRNAs (TPM > 1) in A0 (control), A1 (cold treatment for 12 h at 0°C), and A2 (cold treatment for 36 h at 0°C), respectively. We next identified 103 differentially expressed miRNAs (DEmiRs) in the loranthus seeds in response to cold. Notably, miR408 was upregulated during the cold treatment, which can regulate genes encoding phytocyanin family proteins and phytophenol oxidases. Some DEmiRs were specific to A1 and may function in early response to cold, such as gma-miR393b-3p, miR946, ath-miR779.2-3p, miR398, and miR9662. It is interesting that ICE3, IAA13, and multiple transcription factors (e.g., WRKY and CRF4 and TCP4) regulated by the DEmiRs have been reported to respond cold in other plants. We further identified 4, 3, and 4 DEmiRs involved in the pathways "responding to cold," "responding to abiotic stimulus," and "seed development/germination," respectively. qRT-PCR was used to confirm the expression changes of DEmiRs and their targets in the loranthus seeds during the cold treatment. This is the first time to study cold-responsive miRNAs in loranthus, and our findings provide a valuable resource for future studies.


Subject(s)
Loranthaceae/genetics , MicroRNAs/metabolism , Seeds/genetics , Cold Temperature , Cold-Shock Response , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Library , Germination , RNA, Plant/genetics , RNA, Small Untranslated/metabolism , Sequence Analysis, RNA , Temperature , Transcription Factors/genetics
9.
Biomed Res Int ; 2020: 7871918, 2020.
Article in English | MEDLINE | ID: mdl-32149138

ABSTRACT

Loranthus (Taxillus chinensis) is a facultative, hemiparasite and stem parasitic plant that attacks other plants for living. Transcriptome sequencing and bioinformatics analysis were applied in this study to identify the gene expression profiles of fresh seeds (CK), baby (FB), and adult haustoria tissues (FD). We assembled 160,571 loranthus genes, of which 64,926, 35,417, and 47,249 were aligned to NR, GO, and KEGG pathway databases, respectively. We identified 14,295, 15,921, and 16,402 genes in CK, FB, and FD, respectively. We next identified 5,480 differentially expressed genes (DEGs) in the process, of which 258, 174, 81, and 94 were encoding ribosomal proteins (RP), transcription factors (TF), ubiquitin, and disease resistance proteins, respectively. Some DEGs were identified to be upregulated along with the haustoria development (e.g., 68 RP and 26 ubiquitin genes). Notably, 36 RP DEGs peak at FB; 10 ER, 5 WRKY, 6 bHLH, and 4 MYB TF genes upregulated only in FD. Further, we identified 4 out of 32 microRNA genes dysregulated in the loranthus haustoria development. This is the first haustoria transcriptome of loranthus, and our findings will improve our understanding of the molecular mechanism of haustoria.


Subject(s)
Endosperm/growth & development , Endosperm/genetics , Endosperm/metabolism , Genes, Plant/genetics , Loranthaceae/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcriptome , Gene Expression Profiling , Gene Expression Regulation, Plant , MicroRNAs/genetics , RNA, Plant/genetics , RNA, Untranslated , Ribosomal Proteins/genetics , Seeds/genetics , Seeds/metabolism , Transcription Factors/genetics
10.
Int J Mol Sci ; 20(22)2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31752332

ABSTRACT

Macrosolen plants are parasitic shrubs, several of which are important medicinal plants, that are used as folk medicine in some provinces of China. However, reports on Macrosolen are limited. In this study, the complete chloroplast genome sequences of Macrosolen cochinchinensis, Macrosolen tricolor and Macrosolen bibracteolatus are reported. The chloroplast genomes were sequenced by Illumina HiSeq X. The length of the chloroplast genomes ranged from 129,570 bp (M. cochinchinensis) to 126,621 bp (M. tricolor), with a total of 113 genes, including 35 tRNA, eight rRNA, 68 protein-coding genes, and two pseudogenes (ycf1 and rpl2). The simple sequence repeats are mainly comprised of A/T mononucleotide repeats. Comparative genome analyses of the three species detected the most divergent regions in the non-coding spacers. Phylogenetic analyses using maximum parsimony and maximum likelihood strongly supported the idea that Loranthaceae and Viscaceae are monophyletic clades. The data obtained in this study are beneficial for further investigations of Macrosolen in respect to evolution and molecular identification.


Subject(s)
Genetic Variation/genetics , Genome, Chloroplast/genetics , Loranthaceae/genetics , China , Chloroplasts/genetics , Genome, Plant/genetics , Microsatellite Repeats/genetics , Phylogeny , Plants, Medicinal/genetics , RNA, Ribosomal/genetics , RNA, Transfer/genetics , Sequence Analysis, DNA
11.
Am J Bot ; 106(3): 402-414, 2019 03.
Article in English | MEDLINE | ID: mdl-30856677

ABSTRACT

PREMISE OF THE STUDY: The sandalwood order (Santalales) includes members that present a diverse array of inflorescence types, some of which are unique among angiosperms. This diversity presents not only interpretational challenges but also opportunities to test fundamental concepts in plant morphology. Here we used modern phylogenetic approaches to address the evolution of inflorescences in the sandalwood order. METHODS: Phylogenetic analyses of two nuclear and three chloroplast genes were conducted on representatives of 146 of the 163 genera in the order. A matrix was constructed that scored nine characters dealing with inflorescences. One character, "trios", that encompasses any grouping of three flowers (i.e., both dichasia and triads) was optimized on samples of the posterior distribution of trees from the Bayesian analysis using BayesTraits. Three nodes were examined: the most recent common ancestors of (A) all ingroup members, (B) Loranthaceae, and (C) Opiliaceae, Santalaceae s.l., and Viscaceae. KEY RESULTS: The phylogenetic analysis resulted in many fully resolved nodes across Santalales with strong support for 18 clades previously named as families. The trios character was not supported for nodes A and C, whereas it was supported for node B where this partial inflorescence type is best described as a triad. CONCLUSIONS: Essentially every major inflorescence type can be found in Santalales; however, the dichasium, a type of partial inflorescence, is rarely seen and is not plesiomorphic for the order. In the family Erythropalaceae, inflorescences are mostly in small, axillary fascicles or cymes. Successive families show both cymose and racemose types and compound systems (e.g., thyrses). Inflorescences in Amphorogynaceae and Viscaceae are not dichasial and in general are difficult to compare to "standard" inflorescences.


Subject(s)
Biological Evolution , Inflorescence/anatomy & histology , Loranthaceae/anatomy & histology , Santalaceae/anatomy & histology , Viscaceae/anatomy & histology , Evolution, Molecular , Loranthaceae/genetics , Phylogeny , Santalaceae/genetics , Viscaceae/genetics
12.
J Hered ; 110(2): 229-246, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30496534

ABSTRACT

The host dependence of mistletoes suggests that they track the distributions of their hosts. However, the factors that determine the geographic distribution of mistletoes are not well understood. In this study, the phylogeography of Psittacanthus sonorae was reconstructed by sequencing one nuclear (ITS) and two plastid (trnL-F and atpB-rbcL) regions of 148 plants from populations separated by the Sea of Cortez. Divergence time and gene flow were estimated to gain insight into the historical demography and geographic structuring of genetic variation. We also described and mapped the spatial distribution of suitable habitat occupied by P. sonorae and its most common host Bursera microphylla in the Sonoran Desert, along with their responses to Quaternary climate fluctuations using environmental data and ecological niche modeling (ENM). We detected environmental and genetic differentiation between the peninsular and continental P. sonorae populations. Population divergence occurred during the Pleistocene, around the time of the Last Glacial Maximum. No signals of population growth were detected, with net gene flow moving from the continent to the peninsula. ENM models indicate decoupled responses by the mistletoe and its main host to past climate changes. For the Last Interglacial to the present, most models produce only partial areas of overlap on both the peninsula and the continent. Our results support a scenario of Late-Pleistocene isolation and divergence with asymmetrical gene flow between peninsular and continental P. sonorae populations. Continental populations migrated to the peninsula and the spatial isolation probably produced genetic differentiation under different environmental conditions.


Subject(s)
Loranthaceae/classification , Loranthaceae/genetics , Phylogeny , Phylogeography , Biological Evolution , Desert Climate , Environment , Genetic Variation , Genetics, Population , Geography , Haplotypes , Models, Theoretical
13.
Sci Rep ; 7(1): 12834, 2017 10 12.
Article in English | MEDLINE | ID: mdl-29026168

ABSTRACT

Numerous variations are known to occur in the chloroplast genomes of parasitic plants. We determined the complete chloroplast genome sequences of two hemiparasitic species, Taxillus chinensis and T. sutchuenensis, using Illumina and PacBio sequencing technologies. These species are the first members of the family Loranthaceae to be sequenced. The complete chloroplast genomes of T. chinensis and T. sutchuenensis comprise circular 121,363 and 122,562 bp-long molecules with quadripartite structures, respectively. Compared with the chloroplast genomes of Nicotiana tabacum and Osyris alba, all ndh genes as well as three ribosomal protein genes, seven tRNA genes, four ycf genes, and the infA gene of these two species have been lost. The results of the maximum likelihood and neighbor-joining phylogenetic trees strongly support the theory that Loranthaceae and Viscaceae are monophyletic clades. This research reveals the effect of a parasitic lifestyle on the chloroplast structure and genome content of T. chinensis and T. sutchuenensis, and enhances our understanding of the discrepancies in terms of assembly results between Illumina and PacBio.


Subject(s)
Gene Deletion , Gene Dosage , Genome, Chloroplast , Loranthaceae/genetics , Chromosome Mapping , Codon/genetics , Databases, Genetic , Exons/genetics , Genome, Plant , Introns/genetics , Microsatellite Repeats/genetics , Phylogeny , Species Specificity
14.
BMC Evol Biol ; 16: 78, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-27071983

ABSTRACT

BACKGROUND: Ecological adaptation to host taxa is thought to result in mistletoe speciation via race formation. However, historical and ecological factors could also contribute to explain genetic structuring particularly when mistletoe host races are distributed allopatrically. Using sequence data from nuclear (ITS) and chloroplast (trnL-F) DNA, we investigate the genetic differentiation of 31 Psittacanthus schiedeanus (Loranthaceae) populations across the Mesoamerican species range. We conducted phylogenetic, population and spatial genetic analyses on 274 individuals of P. schiedeanus to gain insight of the evolutionary history of these populations. Species distribution modeling, isolation with migration and Bayesian inference methods were used to infer the evolutionary transition of mistletoe invasion, in which evolutionary scenarios were compared through posterior probabilities. RESULTS: Our analyses revealed shallow levels of population structure with three genetic groups present across the sample area. Nine haplotypes were identified after sequencing the trnL-F intergenic spacer. These haplotypes showed phylogeographic structure, with three groups with restricted gene flow corresponding to the distribution of individuals/populations separated by habitat (cloud forest localities from San Luis Potosí to northwestern Oaxaca and Chiapas, localities with xeric vegetation in central Oaxaca, and localities with tropical deciduous forests in Chiapas), with post-glacial population expansions and potentially corresponding to post-glacial invasion types. Similarly, 44 ITS ribotypes suggest phylogeographic structure, despite the fact that most frequent ribotypes are widespread indicating effective nuclear gene flow via pollen. Gene flow estimates, a significant genetic signal of demographic expansion, and range shifts under past climatic conditions predicted by species distribution modeling suggest post-glacial invasion of P. schiedeanus mistletoes to cloud forests. However, Approximate Bayesian Computation (ABC) analyses strongly supported a scenario of simultaneous divergence among the three groups isolated recently. CONCLUSIONS: Our results provide support for the predominant role of isolation and environmental factors in driving genetic differentiation of Mesoamerican parrot-flower mistletoes. The ABC results are consistent with a scenario of post-glacial mistletoe invasion, independent of host identity, and that habitat types recently isolated P. schiedeanus populations, accumulating slight phenotypic differences among genetic groups due to recent migration across habitats. Under this scenario, climatic fluctuations throughout the Pleistocene would have altered the distribution of suitable habitat for mistletoes throughout Mesoamerica leading to variation in population continuity and isolation. Our findings add to an understanding of the role of recent isolation and colonization in shaping cloud forest communities in the region.


Subject(s)
Forests , Loranthaceae/genetics , Bayes Theorem , Biological Evolution , Climate Change , Ecosystem , Gene Flow , Genetic Variation , Haplotypes , Humans , Loranthaceae/classification , Models, Biological , Phylogeny , Phylogeography
15.
J Nat Med ; 67(3): 438-45, 2013 Jul.
Article in English | MEDLINE | ID: mdl-22864809

ABSTRACT

Medicinal properties of parasitic plants were investigated by means of ethnobotanical study in some areas of northeastern Thailand. Important traditional usages are: Scurrula atropurpurea nourishes blood, Dendrophthoe pentandra decreases high blood pressure, and Helixanthera parasitica treats liver disease. Their systematics were also determined. The research is based on findings obtained from 100 parasite-host pairs. Of these, eight parasitic species were recorded; they are members of two families, viz. family Loranthaceae, namely D. lanosa, D. pentandra, H. parasitica, Macrosolen brandisianus, M. cochinchinensis and S. atropurpurea, and family Viscaceae, namely Viscum articulatum and V. ovalifolium. In addition, each parasitic species is found on diverse hosts, indicating non-host-parasitic specificity. Species-specific tagging of all species studied was carried out using the rbcL and psbA-trnH chloroplast regions. These tag sequences are submitted to GenBank databases under accession numbers JN687563-JN687578. Genetic distances calculated from nucleotide variations in a couple of species of each genus, Dendrophthoe, Macrosolen, and Viscum, were 0.032, 0.067 and 0.036 in the rbcL region, and 0.269, 0.073 and 0.264 in the psbA-trnH spacer region, respectively. These variations will be used for further identification of incomplete plant parts or other forms such as capsule, powder, dried or chopped pieces.


Subject(s)
DNA Barcoding, Taxonomic , DNA, Plant/analysis , Host-Parasite Interactions , Loranthaceae/genetics , Viscaceae/genetics , Base Sequence , DNA, Intergenic , DNA, Plant/classification , Databases, Genetic , Ethnobotany , Expressed Sequence Tags , Gene Expression Regulation, Plant , Genetic Markers , Genotype , Loranthaceae/classification , Molecular Sequence Data , Phenotype , Photosynthetic Reaction Center Complex Proteins/genetics , Phytotherapy , Plants, Medicinal , Ribulose-Bisphosphate Carboxylase/genetics , Species Specificity , Thailand , Viscaceae/classification
16.
Ann Bot ; 109(6): 1101-9, 2012 May.
Article in English | MEDLINE | ID: mdl-22442343

ABSTRACT

BACKGROUND AND AIMS: Potassium, sulphur and zinc contents of mistletoe leaves are generally higher than in their hosts. This is attributed to the fact that chemical elements which are cycled between xylem and phloem in the process of phloem loading of sugars are trapped in the mistletoe, because these parasites do not feed their hosts. Here it is hypothesized that mutant albino shoots on otherwise green plants should behave similarly, because they lack photosynthesis and thus cannot recycle elements involved in sugar loading. METHODS: The mineral nutrition of the mistletoe Scurrula elata was compared with that of albino shoots on Citrus sinensis and Nerium oleander. The potential for selective nutrient uptake by the mistletoe was studied by comparing element contents of host leaves on infected and uninfected branches and by manipulation of the haustorium-shoot ratio in mistletoes. Phloem anatomy of albino leaves was compared with that of green leaves. KEY RESULTS: Both mistletoes and albino leaves had higher contents of potassium, sulphur and zinc than hosts or green leaves, respectively. Hypothetical discrimination of nutrient elements during the uptake by the haustorium is not supported by our data. Anatomical studies of albino leaves showed characteristics of release phloem. CONCLUSIONS: Both albino shoots and mistletoes are traps for elements normally recycled between xylem and phloem, because retranslocation of phloem mobile elements into the mother plant or the host is low or absent. It can be assumed that the lack of photosynthetic activity in albino shoots and thus of sugars needed in phloem loading is responsible for the accumulation of elements. The absence of phloem loading is reflected in phloem anatomy of these abnormal shoots. In mistletoes the evolution of a parasitic lifestyle has obviously eliminated substantial feeding of the host with photosynthates produced by the mistletoe.


Subject(s)
Citrus sinensis/parasitology , Host-Parasite Interactions/physiology , Loranthaceae/physiology , Minerals/metabolism , Nerium/parasitology , Plant Leaves/anatomy & histology , Plant Leaves/metabolism , Biological Transport, Active , Loranthaceae/genetics , Phloem/physiology , Photosynthesis , Pigmentation , Potassium/metabolism , Sulfur/metabolism , Xylem/physiology , Zinc/metabolism
17.
Proc Biol Sci ; 272(1578): 2237-42, 2005 Nov 07.
Article in English | MEDLINE | ID: mdl-16191635

ABSTRACT

The rattlesnake fern (Botrychium virginianum (L.) Sw.) is obligately mycotrophic and widely distributed across the northern hemisphere. Three mitochondrial gene regions place this species with other ferns in Ophioglossaceae, while two regions place it as a member of the largely parasitic angiosperm order Santalales (sandalwoods and mistletoes). These discordant phylogenetic placements suggest that part of the genome in B. virginianum was acquired by horizontal gene transfer (HGT), perhaps from root-parasitic Loranthaceae. These transgenes are restricted to B. virginianum and occur across the range of the species. Molecular and life-history traits indicate that the transfer preceded the global expansion of B. virginianum, and that the latter may have happened very rapidly. This is the first report of HGT from an angiosperm to a fern, through either direct parasitism or the mediation of interconnecting fungal symbionts.


Subject(s)
Ferns/genetics , Gene Transfer, Horizontal/genetics , Magnoliopsida/genetics , Phylogeny , Geography , Likelihood Functions , Loranthaceae/genetics , Models, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...