Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 764
Filter
1.
Sci Rep ; 14(1): 10227, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702443

ABSTRACT

Hydrolyzed egg yolk peptide (YPEP) was shown to increase bone mineral density in ovariectomized rats. However, the underlying mechanism of YPEP on osteoporosis has not been explored. Recent studies have shown that Wnt/ß-catenin signaling pathway and gut microbiota may be involved in the regulation of bone metabolism and the progression of osteoporosis. The present study aimed to explore the preventive effect of the YPEP supplementation on osteoporosis in ovariectomized (OVX) rats and to verify whether YPEP can improve osteoporosis by regulating Wnt/ß-catenin signaling pathway and gut microbiota. The experiment included five groups: sham surgery group (SHAM), ovariectomy group (OVX), 17-ß estradiol group (E2: 25 µg /kg/d 17ß-estradiol), OVX with low-dose YPEP group (LYPEP: 10 mg /kg/d YPEP) and OVX with high-dose YPEP group (HYPEP: 40 mg /kg/d YPEP). In this study, all the bone samples used were femurs. Micro-CT analysis revealed improvements in both bone mineral density (BMD) and microstructure by YPEP treatment. The three-point mechanical bending test indicated an enhancement in the biomechanical properties of the YPEP groups. The serum levels of bone alkaline phosphatase (BALP), bone gla protein (BGP), calcium (Ca), and phosphorus (P) were markedly higher in the YPEP groups than in the OVX group. The LYPEP group had markedly lower levels of alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) and C-terminal telopeptide of type I collagen (CTX-I) than the OVX group. The YPEP groups had significantly higher protein levels of the Wnt3a, ß-catenin, LRP5, RUNX2 and OPG of the Wnt/ß-catenin signaling pathway compared with the OVX group. Compared to the OVX group, the ratio of OPG/RANKL was markedly higher in the LYPEP group. At the genus level, there was a significantly increase in relative abundance of Lachnospiraceae_NK4A136_group and a decrease in Escherichia_Shigella in YPEP groups, compared with the OVX group. However, in the correlation analysis, there was no correlation between these two bacteria and bone metabolism and microstructure indexes. These findings demonstrate that YPEP has the potential to improve osteoporosis, and the mechanism may be associated with its modulating effect on Wnt/ß-catenin signaling pathway.


Subject(s)
Bone Density , Osteoporosis , Ovariectomy , Wnt Signaling Pathway , Animals , Female , Rats , Alkaline Phosphatase/metabolism , beta Catenin/metabolism , Bone Density/drug effects , Egg Proteins/pharmacology , Egg Proteins/metabolism , Egg Yolk/chemistry , Egg Yolk/metabolism , Femur/drug effects , Femur/metabolism , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Osteoporosis/prevention & control , Osteoporosis/metabolism , Peptides/pharmacology , Rats, Sprague-Dawley , Wnt Signaling Pathway/drug effects , X-Ray Microtomography
2.
Hum Genomics ; 18(1): 53, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802968

ABSTRACT

BACKGROUND: The human lineage has undergone a postcranial skeleton gracilization (i.e. lower bone mass and strength relative to body size) compared to other primates and archaic populations such as the Neanderthals. This gracilization has been traditionally explained by differences in the mechanical load that our ancestors exercised. However, there is growing evidence that gracilization could also be genetically influenced. RESULTS: We have analyzed the LRP5 gene, which is known to be associated with high bone mineral density conditions, from an evolutionary and functional point of view. Taking advantage of the published genomes of archaic Homo populations, our results suggest that this gene has a complex evolutionary history both between archaic and living humans and within living human populations. In particular, we identified the presence of different selective pressures in archaics and extant modern humans, as well as evidence of positive selection in the African and South East Asian populations from the 1000 Genomes Project. Furthermore, we observed a very limited evidence of archaic introgression in this gene (only at three haplotypes of East Asian ancestry out of the 1000 Genomes), compatible with a general erasing of the fingerprint of archaic introgression due to functional differences in archaics compared to extant modern humans. In agreement with this hypothesis, we observed private mutations in the archaic genomes that we experimentally validated as putatively increasing bone mineral density. In particular, four of five archaic missense mutations affecting the first ß-propeller of LRP5 displayed enhanced Wnt pathway activation, of which two also displayed reduced negative regulation. CONCLUSIONS: In summary, these data suggest a genetic component contributing to the understanding of skeletal differences between extant modern humans and archaic Homo populations.


Subject(s)
Evolution, Molecular , Low Density Lipoprotein Receptor-Related Protein-5 , Neanderthals , Humans , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Animals , Neanderthals/genetics , Selection, Genetic/genetics , Hominidae/genetics , Haplotypes/genetics , Bone Density/genetics , Genome, Human/genetics
3.
J Biochem Mol Toxicol ; 38(4): e23677, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38528715

ABSTRACT

The study investigated the potential association of the low-density lipoprotein (LDL) genome with endometrial cancer progression based on the Gene Expression Omnibus data set and The Cancer Genome Atlas data set. Differential and weighted gene coexpression network analysis was performed on endometrial cancer transcriptome datasets GSE9750 and GSE106191. The protein-protein interaction network was built using LDL-receptor proteins and the top 50 tumor-associated genes. Low-density lipoprotein-related receptors 5/6 (LRP5/6) in endometrial cancer tissues were correlated with oncogenes, cell cycle-related genes, and immunological checkpoints using Spearman correlation. MethPrimer predicted the LRP5/6 promoter CpG island. LRP2, LRP6, LRP8, LRP12, low-density lipoprotein receptor-related protein-associated protein, and LRP5 were major LDL-receptor-related genes associated with endometrial cancer. LRP5/6 was enriched in various cancer-related pathways and may be a key LDL-receptor-related gene in cancer progression. LRP5/6 may be involved in the proliferation process of endometrial cancer cells by promoting the expression of cell cycle-related genes. LRP5/6 may be involved in the proliferation of endometrial cancer cells by promoting the expression of cell cycle-related genes. LRP5/6 may promote the immune escape of cancer cells by promoting the expression of immune checkpoints, promoting endometrial cancer progression. The MethPrimer database predicted that the LRP5/6 promoter region contained many CpG islands, suggesting that DNA methylation can occur in the LRP5/6 promoter region. LRP5/6 may aggravate endometrial cancer by activating the phosphoinositide 3-kinase/protein kinase B pathway.


Subject(s)
Endometrial Neoplasms , Low Density Lipoprotein Receptor-Related Protein-5 , Humans , Female , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Phosphatidylinositol 3-Kinases , Receptors, LDL , Endometrial Neoplasms/genetics , Lipoproteins, LDL
4.
J Cell Physiol ; 239(4): e31183, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38348695

ABSTRACT

Osteogenic differentiation is important for fracture healing. Microfibrial-associated glycoprotein 2 (MAGP2) is found to function as a proangiogenic regulator in bone formation; however, its role in osteogenic differentiation during bone repair is not clear. Here, a mouse model of critical-sized femur fracture was constructed, and the adenovirus expressing MAGP2 was delivered into the fracture site. Mice with MAGP2 overexpression exhibited increased bone mineral density and bone volume fraction (BV/TV) at Day 14 postfracture. Within 7 days postfracture, overexpression of MAGP2 increased collagen I and II expression at the fracture callus, with increasing chondrogenesis. MAGP2 inhibited collagen II level but elevated collagen I by 14 days following fracture, accompanied by increased endochondral bone formation. In mouse osteoblast precursor MC3T3-E1 cells, MAGP2 treatment elevated the expression of osteoblastic factors (osterix, BGLAP and collagen I) and enhanced ALP activity and mineralization through activating ß-catenin signaling after osteogenic induction. Besides, MAGP2 could interact with lipoprotein receptor-related protein 5 (LRP5) and upregulated its expression. Promotion of osteogenic differentiation and ß-catenin activation mediated by MAGP2 was partially reversed by LRP5 knockdown. Interestingly, ß-catenin/transcription factor 4 (TCF4) increased MAGP2 expression probably by binding to MAGP2 promoter. These findings suggest that MAGP2 may interact with ß-catenin/TCF4 to enhance ß-catenin/TCF4's function and activate LRP5-activated ß-catenin signaling pathway, thus promoting osteogenic differentiation for fracture repair. mRNA sequencing identified the potential targets of MAGP2, providing novel insights into MAGP2 function and the directions for future research.


Subject(s)
Fractures, Bone , Osteogenesis , Animals , Mice , beta Catenin/genetics , beta Catenin/metabolism , Cell Differentiation/genetics , Collagen/metabolism , Fracture Healing , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Osteoblasts/metabolism , Wnt Signaling Pathway , Male , Mice, Inbred C57BL , Cell Line
5.
J Orthop Surg Res ; 19(1): 104, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302983

ABSTRACT

OBJECTIVE: To analyze the relationship between the polymorphism and mutation of rs7125942 and rs3736228 locus in the low-density lipoprotein receptor-related protein 5 (LRP5) genotype and bone mineral density (BMD) in postmenopausal women in Xinjiang, China, to provide a basis for prevention and treatment of the disease. METHODS: According to the results of dual-energy X-ray (DEXA) determination of BMD, the 136 subjects were divided into three groups: Group A: normal bone mass, Group B: osteopenia, Group C: osteoporosis. 1. Age, body, mass index (BMI), and menopause of all subjects were recorded. 2. Fasting blood glucose (FBG), glycosylated hemoglobin (HbA1c), calcium (Ca), phosphorus (P), alkaline phosphatase (ALP), and clinical biochemical data were determined. 3. LRP5 locus polymorphisms were determined by time-of-flight mass spectrometry. RESULTS: 1. Compared with group A, the age, ALP, Cr, and BUN levels in group B and group C were increased, but UA levels were lower (P < 0.05), and Serum P was higher in the group C (P < 0.05). 2. There was no statistically significant difference in the prevalence of diabetes between the three groups (P > 0.05). 3. The ROC curves for different BMD sites such as L1, L2, L3, L4, L total, and femoral neck were 0.929, 0.955, 0.901, 0.914, 0.885, and 0.873 (P < 0.01). 4. At rs7125942 locus, there was statistically significant difference in the distribution of wild-type (CC) and mutant (CG) with the normal bone mass (NBM) group and the abnormal bone mass (ABM) group (P < 0.05). 5. At rs7125942 locus, compared with wild-type (CC), mutant (CG) had lower LDL and FPG in NBM group (P < 0.05), and lower serum ALP in the ABM group (P < 0.05). At rs3736228 locus, the BMD (Femoral neck) of mutant (CT/TT) was lower than that of wild-type (CC) in the NBM group (P < 0.05). 6. Age and menopausal years were negatively correlated with BMD of the femoral neck and L1-4 (P < 0.05), and BMI and TG were positively (P < 0.05), and the results of multiple linear regression analysis showed that age, BMI, and TG were both independent factors affecting BMD (P < 0.05).


Subject(s)
Low Density Lipoprotein Receptor-Related Protein-5 , Osteoporosis, Postmenopausal , Humans , Female , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Postmenopause/genetics , Bone Density/genetics , Polymorphism, Genetic , Mutation , Osteoporosis, Postmenopausal/genetics
6.
Am J Ophthalmol ; 262: 73-85, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38280677

ABSTRACT

PURPOSE: This study aimed to ascertain the occurrence of foveal hypoplasia (FH) in individuals diagnosed with familial exudative vitreoretinopathy (FEVR). DESIGN: Retrospective cohort study. METHODS: In this study, FEVR families and sporadic cases were diagnosed at the Eye and ENT Hospital, Fudan University, between 2017 and 2023. All patients attended routine ophthalmologic examinations and genetic screenings. The classification of FH was determined using optical coherence tomography (OCT) scans. The FH condition was classified into 2 subgroups: group A (FH being limited to the inner layers) and group B (FH affecting the outer layers). A total of 102 eyes from 58 patients were suitable for analysis. RESULTS: Forty-nine mutations in LRP5, FZD4, NDP, TSPAN12, KIF11, CTNNB1, and ZNF408 were examined and detected, with 26 of them being novel. Forty-seven eyes (46.1%) revealed FH. The majority (53.2%) were due to the typical grade 1 FH. Patients with mutations in LRP5 and KIF11 were found to exhibit a higher prevalence of FH (P = .0088). Group B displayed the lowest visual acuity compared with group A (P = .048) and the group without FH (P < .001). The retinal arteriolar angle in group B was significantly smaller than in group A (P = .001) and those without FH (P < .001). CONCLUSIONS: This study offers a new diagnostic approach and expands the spectrum of FEVR mutations. LRP5 and KIF11 were found to be more susceptible to causing FH in patients with FEVR. FEVR eyes with FH exhibited both greater visual impairment and reduced retinal arteriolar angles. The assessment of foveal status in patients with FEVR should be valued.


Subject(s)
Eye Diseases, Hereditary , Eye Proteins , Familial Exudative Vitreoretinopathies , Fovea Centralis , Frizzled Receptors , Kinesins , Low Density Lipoprotein Receptor-Related Protein-5 , Mutation , Tetraspanins , Tomography, Optical Coherence , Visual Acuity , Humans , Male , Familial Exudative Vitreoretinopathies/diagnosis , Female , Retrospective Studies , Fovea Centralis/abnormalities , Kinesins/genetics , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Adult , Eye Proteins/genetics , Visual Acuity/physiology , Child , Frizzled Receptors/genetics , Adolescent , Tetraspanins/genetics , Eye Diseases, Hereditary/diagnosis , Eye Diseases, Hereditary/genetics , Eye Diseases, Hereditary/physiopathology , Young Adult , Retinal Diseases/genetics , Retinal Diseases/diagnosis , Retinal Diseases/physiopathology , DNA Mutational Analysis , Pedigree , Fluorescein Angiography/methods , Child, Preschool , Middle Aged , Eye Abnormalities/genetics , Eye Abnormalities/diagnosis , DNA-Binding Proteins , Nerve Tissue Proteins , Transcription Factors
7.
Cardiovasc Res ; 120(2): 140-151, 2024 03 13.
Article in English | MEDLINE | ID: mdl-37882606

ABSTRACT

AIMS: There is little information on the regulation of cholesterol homeostasis in the brain. Whether cholesterol crosses the blood-brain barrier is under investigation, but the present understanding is that cholesterol metabolism in the brain is independent from that in peripheral tissues. Lipoprotein receptors from the LDL receptor family (LRPs) have key roles in lipid particle accumulation in cells involved in vascular and cardiac pathophysiology; however, their function on neural cells is unknown. METHODS AND RESULTS: The expression of LRP5 and the components and targets of its downstream signalling pathway, the canonical Wnt pathway, including ß-catenin, LEF1, VEGF, OPN, MMP7, and ADAM10, is analysed in the brains of Wt and Lrp5-/- mice and in a neuroblastoma cell line. LRP5 expression is increased in a time- and dose-dependent manner after lipid loading in neuronal cells; however, it does not participate in cholesterol homeostasis as shown by intracellular lipid accumulation analyses. Neurons challenged with staurosporin and H2O2 display an anti-apoptotic protective role for LRP5. CONCLUSIONS: For the first time, it has been shown that neurons can accumulate intracellular lipids and lipid uptake is performed mainly by the LDLR, while CD36, LRP1, and LRP5 do not play a major role. In addition, it has been shown that LRP5 triggers the canonical Wnt pathway in neuronal cells to generate pro-survival signals. Finally, Lrp5-/- mice have maintained expression of LRP5 only in the brain supporting the biological plausible concept of the need of brain LRP5 to elicit pro-survival processes and embryonic viability.


Subject(s)
Hypercholesterolemia , Wnt Signaling Pathway , Animals , Mice , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Hydrogen Peroxide , Receptors, LDL , Cholesterol , beta Catenin/metabolism , Homeostasis , Neurons/metabolism
8.
Exp Cell Res ; 434(1): 113857, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38008278

ABSTRACT

Genetic factors coordinate with environmental factors to drive the pathogenesis of prostate adenocarcinoma (PRAD). SPOP is one of the most mutated genes and LRP5 mediates lipid metabolism that is abnormally altered in PRAD. Here, we investigated the potential cross-talk between SPOP and LRP5 in PRAD. We find a negative correlation between SPOP and LRP5 proteins in PRAD. SPOP knockdown increased LRP5 protein while SPOP overexpression resulted in LRP5 reduction that was fully rescued by proteasome inhibitors. LRP5 intracellular tail has SPOP binding site and the direct interaction between LRP5 and SPOP was confirmed by Co-IP and GST-pulldown. Moreover, LRP5 competed with Daxx for SPOP-mediated degradation, establishing a dynamic balance among SPOP, LRP5 and Daxx. Overexpression of LRP5 tail could shift this balance to enhance Daxx-mediated transcriptional inhibition, and inhibit T cell activity in a co-culture system. Further, we generated human and mouse prostate cancer cell lines expressing SPOP variants (F133V, A227V, R368H). SPOP-F133V and SPOP-A227V have specific effects in up-regulating the protein levels of PD-1 and PD-L1. Consistently, SPOP-F133V and SPOP-A227V show robust inhibitory effects on T cells compared to WT SPOP in co-culture. This is further supported by the mouse syngeneic model showing that SPOP-F133V and SPOP-A227V enhance tumorigenesis of prostate cancer in in-vivo condition. Taken together, our study provides evidence that SPOP-LRP5 crosstalk plays an essential role, and the genetic variants of SPOP differentially modulate the expression and activity of immune checkpoints in prostate cancer.


Subject(s)
Prostatic Neoplasms , Repressor Proteins , Male , Animals , Mice , Humans , Repressor Proteins/genetics , Repressor Proteins/metabolism , B7-H1 Antigen/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Prostatic Neoplasms/pathology , Carcinogenesis/genetics , Cell Transformation, Neoplastic , Mutation , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Molecular Chaperones/genetics , Co-Repressor Proteins/genetics
9.
BMC Ophthalmol ; 23(1): 489, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38030997

ABSTRACT

BACKGROUND: Familial exudative vitreoretinopathy (FEVR) is a genetic eye disorder that leads to abnormal development of retinal blood vessels, resulting in vision impairment. This study aims to identify pathogenic variants by targeted exome sequencing in 9 independent pedigrees with FEVR and characterize the novel pathogenic variants by molecular dynamics simulation. METHODS: Clinical data were collected from 9 families with FEVR. The causative genes were screened by targeted next-generation sequencing (TGS) and verified by Sanger sequencing. In silico analyses (SIFT, Polyphen2, Revel, MutationTaster, and GERP + +) were carried out to evaluate the pathogenicity of the variants. Molecular dynamics was simulated to predict protein conformation and flexibility transformation alterations on pathogenesis. Furthermore, molecular docking techniques were employed to explore the interactions and binding properties between LRP5 and DKK1 proteins relevant to the disease. RESULTS: A 44% overall detection rate was achieved with four variants including c.4289delC: p.Pro1431Argfs*8, c.2073G > T: p.Trp691Cys, c.1801G > A: p.Gly601Arg in LRP5 and c.633 T > A: p.Tyr211* in TSPAN12 in 4 unrelated probands. Based on in silico analysis and ACMG standard, two of them, c.4289delC: p.Pro1431Argfs*8 and c.2073G > T: p.Trp691Cys of LRP5 were identified as novel pathogenic variants. Based on computational predictions using molecular dynamics simulations and molecular docking, there are indications that these two variants might lead to alterations in the secondary structure and spatial conformation of the protein, potentially impacting its rigidity and flexibility. Furthermore, these pathogenic variants are speculated to potentially influence hydrogen bonding interactions and could result in an increased binding affinity with the DKK1 protein. CONCLUSIONS: Two novel genetic variants of the LRP5 gene were identified, expanding the range of mutations associated with FEVR. Through molecular dynamics simulations and molecular docking, the potential impact of these variants on protein structure and their interactions with the DKK1 protein has been explored. These findings provide further support for the involvement of these variants in the pathogenesis of the disease.


Subject(s)
Eye Diseases, Hereditary , Retinal Diseases , Humans , Familial Exudative Vitreoretinopathies , Retinal Diseases/genetics , Retinal Diseases/metabolism , Molecular Docking Simulation , Eye Diseases, Hereditary/genetics , Tetraspanins/genetics , DNA Mutational Analysis , Mutation , Pedigree , Phenotype , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Low Density Lipoprotein Receptor-Related Protein-5/metabolism
10.
Genes (Basel) ; 14(10)2023 09 23.
Article in English | MEDLINE | ID: mdl-37895195

ABSTRACT

The formation and maintenance of the gross structure and microarchitecture of the human skeleton require the concerted functioning of a plethora of morphogenic signaling processes. Through recent discoveries in the field of genetics, numerous genotypic variants have been implicated in pathologic skeletal phenotypes and disorders arising from the disturbance of one or more of these processes. For example, total loss-of-function variants of LRP5 were found to be the cause of osteoporosis-pseudoglioma syndrome (OPPG). LRP5 encodes for the low-density lipoprotein receptor-related protein 5, a co-receptor in the canonical WNT-ß-catenin signaling pathway and a crucial protein involved in the formation and maintenance of homeostasis of the human skeleton. Beyond OPPG, other partial loss-of-function variants of LRP5 have been found to be associated with other low bone mass phenotypes and disorders, while LRP5 gain-of-function variants have been implicated in high bone mass phenotypes. This review introduces the roles that LRP5 plays in skeletal morphogenesis and discusses some of the structural consequences that result from abnormalities in LRP5. A greater understanding of how the LRP5 receptor functions in bone and other body tissues could provide insights into a variety of pathologies and their potential treatments, from osteoporosis and a variety of skeletal abnormalities to congenital disorders that can lead to lifelong disabilities.


Subject(s)
Osteogenesis Imperfecta , Osteoporosis , Humans , Bone Density/genetics , Osteoporosis/genetics , Osteoporosis/complications , Osteogenesis Imperfecta/genetics , Bone and Bones , Low Density Lipoprotein Receptor-Related Protein-5/genetics
11.
Arch Osteoporos ; 18(1): 112, 2023 09 02.
Article in English | MEDLINE | ID: mdl-37659026

ABSTRACT

PURPOSE: LRP5 high bone mass (HBM) is an autosomal dominant endosteal hyperostosis caused by mutations of the low-density lipoprotein receptor-related protein 5 (LRP5) gene. Alternative names included "autosomal dominant osteosclerosis" and "Worth disease." The aim of the paper is to provide an historical overview of a disorder whose literature is complicated and confusing due to the past use of several denominations and lack of reviews. METHODS: We collected case reports of HBM with evidence of autosomal dominant transmission preceding the identification of the LRP5 mutations in 2002 (Worth-type endosteal hyperostosis) and cases of LRP5 HBM confirmed by genetic analysis since 2002. The prevalence of relevant clinical and laboratory findings was estimated. We described an affected woman with neurological manifestations. RESULTS: A 44-year-old Caucasian woman with torus palatinus complained of headache, hypo-/anosmia, and complete mixed deafness. Dual-energy X-ray absorptiometry (DEXA) scan revealed elevated bone mass. The A242T mutation of the LRP5 gene was detected. Including the present case, 155 patients have been reported to date. Neurological involvement and increased serum alkaline phosphatase (ALP) were present in 19.4% and 3.7% of cases, respectively. Facial changes and torus palatinus were observed in 61% and 41% of cases, respectively. CONCLUSIONS: We present the only historical review on Worth-type endosteal hyperostosis, now known as LRP5 HBM. Neurological manifestations, previously considered absent in the disease, affect 19.4% of the patients. Genetic analysis and appropriate denomination of LRP5 HBM are fundamental for diagnosis and to mitigate the confusion that has long characterized this disease.


Subject(s)
Arthrogryposis , Hyperostosis, Cortical, Congenital , Female , Humans , Adult , Low Density Lipoprotein Receptor-Related Protein-5/genetics
12.
Bone Res ; 11(1): 47, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37612291

ABSTRACT

Proper regulation of Wnt signaling is critical for normal bone development and homeostasis. Mutations in several Wnt signaling components, which increase the activity of the pathway in the skeleton, cause high bone mass in human subjects and mouse models. Increased bone mass is often accompanied by severe headaches from increased intracranial pressure, which can lead to fatality and loss of vision or hearing due to the entrapment of cranial nerves. In addition, progressive forehead bossing and mandibular overgrowth occur in almost all subjects. Treatments that would provide symptomatic relief in these subjects are limited. Porcupine-mediated palmitoylation is necessary for Wnt secretion and binding to the frizzled receptor. Chemical inhibition of porcupine is a highly selective method of Wnt signaling inhibition. We treated three different mouse models of high bone mass caused by aberrant Wnt signaling, including homozygosity for loss-of-function in Sost, which models sclerosteosis, and two strains of mice carrying different point mutations in Lrp5 (equivalent to human G171V and A214V), at 3 months of age with porcupine inhibitors for 5-6 weeks. Treatment significantly reduced both trabecular and cortical bone mass in all three models. This demonstrates that porcupine inhibition is potentially therapeutic for symptomatic relief in subjects who suffer from these disorders and further establishes that the continued production of Wnts is necessary for sustaining high bone mass in these models.


Subject(s)
Gain of Function Mutation , Hyperostosis , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing , Bodily Secretions , Disease Models, Animal , Hyperostosis/genetics , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Mutation
13.
Genes (Basel) ; 14(8)2023 07 26.
Article in English | MEDLINE | ID: mdl-37628576

ABSTRACT

Cell proliferation and invasion are characteristic of many tumors, including ameloblastoma, and are important features to target in possible future therapeutic applications. OBJECTIVE: The objective of this study was the identification of key genes and inhibitory drugs related to the cell proliferation and invasion of ameloblastoma using bioinformatic analysis. METHODS: The H10KA_07_38 gene profile database was analyzed by Rstudio and ShinyGO Gene Ontology enrichment. String, Cytoscape-MCODE, and Kaplan-Meier plots were generated, which were subsequently validated by RT-qPCR relative expression and immunoexpression analyses. To propose specific inhibitory drugs, a bioinformatic search using Drug Gene Budger and DrugBank was performed. RESULTS: A total of 204 significantly upregulated genes were identified. Gene ontology enrichment analysis identified four pathways related to cell proliferation and cell invasion. A total of 37 genes were involved in these pathways, and 11 genes showed an MCODE score of ≥0.4; however, only SLC6A3, SOX10, and LRP5 were negatively associated with overall survival (HR = 1.49 (p = 0.0072), HR = 1.55 (p = 0.0018), and HR = 1.38 (p = 0.025), respectively). The RT-qPCR results confirmed the significant differences in expression, with overexpression of >2 for SLC6A3 and SOX10. The immunoexpression analysis indicated positive LRP5 and SLC6A3 expression. The inhibitory drugs bioinformatically obtained for the above three genes were parthenolide and vorinostat. CONCLUSIONS: We identify LRP5, SLC6A3, and SOX10 as potentially important genes related to cell proliferation and invasion in the pathogenesis of ameloblastomas, along with both parthenolide and vorinostat as inhibitory drugs that could be further investigated for the development of novel therapeutic approaches against ameloblastoma.


Subject(s)
Ameloblastoma , Humans , Ameloblastoma/genetics , Vorinostat , Cell Proliferation/genetics , Computational Biology , SOXE Transcription Factors/genetics , Low Density Lipoprotein Receptor-Related Protein-5 , Dopamine Plasma Membrane Transport Proteins
14.
J Clin Invest ; 133(13)2023 07 03.
Article in English | MEDLINE | ID: mdl-37395277

ABSTRACT

Some studies suggest that the trace element selenium protects against colorectal cancer (CRC). However, the contribution of selenoprotein P (SELENOP), a unique selenocysteine-containing protein, to sporadic colorectal carcinogenesis challenges this paradigm. SELENOP is predominately secreted by the liver but is also expressed in various cells of the small intestine and colon in mice and humans. In this issue of the JCI, Pilat et al. demonstrate that increased SELENOP expression promoted the progression of conventional adenomas to carcinoma. SELENOP functioned as a modulator of canonical WNT signaling activity through interactions with WNT3A and its coreceptor LDL receptor-related protein 5/6 (LRP5/6). Secreted SELENOP formed a concentration gradient along the gut crypt axis, which might amplify WNT signaling activity by binding to LRPL5/6. The mechanism for WNT control via SELENOP may affect colorectal tumorigenesis and provide therapeutic targets for CRC.


Subject(s)
Colorectal Neoplasms , Selenium , Humans , Mice , Animals , Selenoprotein P/genetics , Selenoprotein P/metabolism , Carcinogenesis/genetics , Carcinogenesis/metabolism , Liver/metabolism , Cell Transformation, Neoplastic/metabolism , Selenium/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Wnt3A Protein/genetics , Wnt3A Protein/metabolism
15.
Calcif Tissue Int ; 113(2): 186-194, 2023 08.
Article in English | MEDLINE | ID: mdl-37277619

ABSTRACT

Pathogenic variants in the LRP5, PLS3, or WNT1 genes can significantly affect bone mineral density, causing monogenic osteoporosis. Much remains to be discovered about the phenotype and medical care needs of these patients. The purpose of this study was to examine the use of medical care among Dutch individuals identified between 2014 and 2021 with a pathogenic or suspicious rare variant in LRP5, PLS3, or WNT1. In addition, the aim was to compare their medical care utilization to both the overall Dutch population and the Dutch Osteogenesis Imperfecta (OI) population. The Amsterdam UMC Genome Database was used to match 92 patients with the Statistics Netherlands (CBS) cohort. Patients were categorized based on their harbored variants: LRP5, PLS3, or WNT1. Hospital admissions, outpatient visits, medication data, and diagnosis treatment combinations (DTCs) were compared between the variant groups and, when possible, to the total population and OI population. Compared to the total population, patients with an LRP5, PLS3, or WNT1 variant had 1.63 times more hospital admissions, 2.0 times more opened DTCs, and a greater proportion using medication. Compared to OI patients, they had 0.62 times fewer admissions. Dutch patients with an LRP5, PLS3, or WNT1 variant appear to require on average more medical care than the total population. As expected, they made higher use of care at the surgical and orthopedic departments. Additionally, they used more care at the audiological centers and the otorhinolaryngology (ENT) department, suggesting a higher risk of hearing-related problems.


Subject(s)
Osteogenesis Imperfecta , Osteoporosis , Humans , Wnt1 Protein/genetics , Osteoporosis/genetics , Osteogenesis Imperfecta/genetics , Bone Density/genetics , Phenotype , Mutation , Low Density Lipoprotein Receptor-Related Protein-5/genetics
16.
J Periodontal Res ; 58(4): 723-732, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37128744

ABSTRACT

BACKGROUND AND OBJECTIVE: Mutations in low-density lipoprotein receptor-related protein 5 (LRP5) cause various bone diseases. Several mouse models were generated to study the role of LRP5 in bone development. But most of the studies were confined to the appendicular skeleton. The role of LRP5 in the axial skeleton, especially in the craniofacial skeleton, is largely unknown. The aim of this study was to investigate the craniofacial phenotype with the LRP5G171V mutation. METHODS: To understand how LRP5 affects craniofacial bone properties, we analyzed LRP5 high-bone-mass mutant mice carrying the G171V missense mutation (LRP5HBM ). Quantitative microcomputed tomographic imaging and histomorphometric analyses were used to study craniofacial phenotypes and bone density. Histology, immunohistochemistry, and in vivo fluorochrome labeling were used to study molecular mechanisms. RESULTS: LRP5HBM mice showed overall minor changes in the craniofacial bone development but with increased bone mass in the interradicular alveolar bone, edentulous ridge, palatine bone, and premaxillary suture. Elevated osteocyte density was observed in LRP5HBM mice, along with increased Runx2 expression and unmineralized bone surrounding osteocytes. Meanwhile, LRP5HBM mice exhibited increased osteoprogenitors, but no significant changes were observed in osteoclasts. This led to a high-bone-mass phenotype, and an increased osteocyte density in the alveolar bone and edentulous ridge. CONCLUSION: LRP5HBM mice display increased bone mass in the alveolar bone with minor changes in the craniofacial morphology. Collectively, these data elucidated the important role of LRP5 in axial bone development and homeostasis and provided clues into the therapeutical potential of LRP5 signaling in treating alveolar bone loss.


Subject(s)
Bone and Bones , Low Density Lipoprotein Receptor-Related Protein-5 , Mice , Animals , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Bone and Bones/metabolism , Mutation/genetics , Bone Density/genetics , Osteoclasts/metabolism
17.
J Clin Invest ; 133(13)2023 07 03.
Article in English | MEDLINE | ID: mdl-37166989

ABSTRACT

Although selenium deficiency correlates with colorectal cancer (CRC) risk, the roles of the selenium-rich antioxidant selenoprotein P (SELENOP) in CRC remain unclear. In this study, we defined SELENOP's contributions to sporadic CRC. In human single-cell cRNA-Seq (scRNA-Seq) data sets, we discovered that SELENOP expression rose as normal colon stem cells transformed into adenomas that progressed into carcinomas. We next examined the effects of Selenop KO in a mouse adenoma model that involved conditional, intestinal epithelium-specific deletion of the tumor suppressor adenomatous polyposis coli (Apc) and found that Selenop KO decreased colon tumor incidence and size. We mechanistically interrogated SELENOP-driven phenotypes in tumor organoids as well as in CRC and noncancer cell lines. Selenop-KO tumor organoids demonstrated defects in organoid formation and decreases in WNT target gene expression, which could be reversed by SELENOP restoration. Moreover, SELENOP increased canonical WNT signaling activity in noncancer and CRC cell lines. In defining the mechanism of action of SELENOP, we mapped protein-protein interactions between SELENOP and the WNT coreceptors low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6). Last, we confirmed that SELENOP-LRP5/6 interactions contributed to the effects of SELENOP on WNT activity. Overall, our results position SELENOP as a modulator of the WNT signaling pathway in sporadic CRC.


Subject(s)
Adenoma , Colorectal Neoplasms , Selenium , Mice , Animals , Humans , Wnt Signaling Pathway , Selenoprotein P/genetics , Selenoprotein P/metabolism , Colorectal Neoplasms/pathology , Selenium/metabolism , Carcinogenesis/genetics , Adenoma/metabolism , Gene Expression Regulation, Neoplastic , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Low Density Lipoprotein Receptor-Related Protein-5/metabolism
18.
J Orthop Surg Res ; 18(1): 369, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37202775

ABSTRACT

OBJECTIVES: To assess LRP5-/6 gene polymorphisms and its association with risk of abnormal bone mass (ABM) in postmenopausal women. METHODS: The study recruited 166 patients with ABM (case group) and 106 patients with normal bone mass (control group) based on bone mineral density (BMD) results. Multi-factor dimensionality reduction (MDR) was used to analyze the interaction between the Low-density lipoprotein receptor-related protein 5 (LRP5) gene (rs41494349, rs2306862) and the Low-density lipoprotein receptor-related protein 6 (LRP6) gene (rs10743980, rs2302685) and the subjects' clinical characteristics of age and menopausal years. RESULTS: (1) Logistic regression analysis showed that the subjects with the CT or TT genotype at rs2306862 had a higher risk of ABM than those with the CC genotype (OR = 2.353, 95%CI = 1.039-6.186; OR = 2.434, 95%CI = 1.071, 5.531; P < 0.05). The subjects with the TC genotype at rs2302685 had a higher risk of ABM than those with the TT genotype (OR = 2.951, 95%CI = 1.030-8.457, P < 0.05). (2) When taking the three Single-nucleotide polymorphisms (SNPs) together, the accuracy was the highest with the cross-validation consistency of 10/10 (OR = 1.504, 95%CI:1.092-2.073, P < 0.05), indicating that the LRP5 rs41494349 and LRP6 rs10743980, rs2302685 were interactively associated with the risk of ABM. (3) Linkage disequilibrium (LD) results revealed that the LRP5 (rs41494349,rs2306862) were in strong LD (D' > 0.9, r2 > 0.3). AC and AT haplotypes were significantly more frequently distributed in the ABM group than in the control group, indicating that subjects carrying the AC and AT haplotypes were associated with an increased risk of ABM (P < 0.01). (4) MDR showed that rs41494349 & rs2302685 & rs10743980 & age were the best model for ABM prediction. The risk of ABM in "high-risk combination" was 1.00 times that of "low-risk combination"(OR = 1.005, 95%CI: 1.002-1.008, P < 0.05). (5) MDR showed that there was no significant association between any of the SNPs and menopausal years and ABM susceptibility. CONCLUSION: These findings indicate that LRP5-rs2306862 and LRP6-rs2302685 polymorphisms and gene-gene and gene-age interactions may increase the risk of ABM in postmenopausal women. There was no significant association between any of the SNPs and menopausal years and ABM susceptibility.


Subject(s)
Bone Density , Low Density Lipoprotein Receptor-Related Protein-5 , Female , Humans , Bone Density/genetics , Genotype , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Polymorphism, Single Nucleotide/genetics , Postmenopause/genetics
19.
Curr Top Dev Biol ; 153: 327-346, 2023.
Article in English | MEDLINE | ID: mdl-36967199

ABSTRACT

WNT signaling, essential for many aspects of development, is among the most commonly altered pathways associated with human disease. While initially studied in cancer, dysregulation of WNT signaling has been determined to be essential for skeletal development and the maintenance of bone health throughout life. In this review, we discuss the role of Wnt signaling in bone development and disease with a particular focus on two areas. First, we discuss the roles of WNT signaling pathways in skeletal development, with an emphasis on congenital and idiopathic skeletal syndromes and diseases that are associated with genetic variations in WNT signaling components. Next, we cover a topic that has long been an interest of our laboratory, how high and low levels of WNT signaling affects the establishment and maintenance of healthy bone mass. We conclude with a discussion of the status of WNT-based therapeutics in the treatment of skeletal disease.


Subject(s)
Bone Density , Low Density Lipoprotein Receptor-Related Protein-5 , Humans , Bone Density/genetics , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Bone and Bones/metabolism , Wnt Signaling Pathway , Bone Development
20.
Mol Genet Genomics ; 298(3): 683-692, 2023 May.
Article in English | MEDLINE | ID: mdl-36971833

ABSTRACT

To study the effects of low-density lipoprotein receptor-related protein 5 (LRP5) gene mutations on bone, and to open up our view of LRP5 and Wnt pathways on bone mass regulation. Three patients with increased bone mineral density or thickened bone cortex were included, who were 30-year-old, 22-year-old and 50-year-old men, respectively. The latter two patients were son and father of a same family. The characteristics of bone X-rays were evaluated in detail. Bone turnover markers were detected, such as procollagen type 1 amino-terminal peptide (P1NP), alkaline phosphatase (ALP), and type 1 collagen carboxyl terminal peptide (ß-CTX). Dual energy X-ray absorptiometry (DXA) was used to measure the bone mineral density (BMD) at lumbar spine and proximal femur of the patients. The targeted next-generation sequencing (NGS) technology was used to detect pathogenic gene mutations, which were further verified by Sanger sequencing. Moreover, the gene mutation spectrum and phenotypic characteristics of reported patients with LRP5 gain-of-function mutations were summarized by reviewing the literature. The main characteristics of the first patient were headache, facial paralysis, high BMD (lumbar vertebrae 1-4: 1.877 g/cm2, Z-score: 5.8; total hip: 1.705 g/cm2, Z-score: 5.7), slightly increased P1NP (87.0 ng/mL) and ß-CTX (0.761 ng/mL) level, and with thickened bone cortex, especially the cranial vault. The latter two patients showed enlargement of the mandible and enlarged osseous prominence of the tours palatinus. X-rays showed that the bone cortex of skull and long bones were thickened. The bone turnover markers and BMD were normal. All three cases carried novel missense mutations in LRP5 gene, which were mutation in exon 3 (c.586 T > G, p.Trp196Gly) of the first patient, and mutation in exon 20 (c.4240C > A, p.Arg1414Ser) of the latter two patients. Combined with the reported literature, a total of 19 gain-of-function mutations in LRP5 were detected in 113 patients from 33 families. Hotspot mutations included c.724G > A, c.512G > T and c.758C > T. Furthermore, mutations in the exon 3 of LRP5 may cause severe phenotypes. LRP5 gain-of-function mutations can lead to rare autosomal dominant osteosclerosis type Ι (ADO Ι), which was characterized by increased bone mass and thickened bone cortex. In-depth research on the Wnt pathway will be benefit for discovering important mechanisms of bone mass regulation.


Subject(s)
Low Density Lipoprotein Receptor-Related Protein-5 , Osteosclerosis , Humans , Bone and Bones , Bone Density/genetics , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Mutation , Osteosclerosis/diagnostic imaging , Osteosclerosis/genetics , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...