Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30.553
Filter
1.
Luminescence ; 39(5): e4757, 2024 May.
Article in English | MEDLINE | ID: mdl-38712382

ABSTRACT

The orange luminescence of α-Al2O3 under UV excitation is characterized by a 2.07-eV orange broadband emission that has not yet been elucidated. This emission is present in natural and synthetic crystals and powders, as well as in Be-treated samples. All orange-luminescent materials have low Fe concentration (mostly <1000 ppm) with traces of divalent cations, mostly Mg, or Be in Be-diffused material (dozens of ppm). Mg2+, Mn2+, and Be2+ cations substitute for trivalent Al. To accommodate the charge deficit, several defects are created, including oxygen vacancies also called F centers. Indeed, our excitation spectra revealed the presence of several different F centers (F, F+, and clustered F2, F2 +, F2 2+) in those samples. However, the thermal stability and the measured luminescence lifetimes do not match with previously reported characteristics of isolated F centers. Based on our experiments, we suggest that a complex aggregate of two F centers (F2 2+) trapped at divalent cations is a major cause of this uncommon microsecond lifetime emission, even if a variety of other defects, including Cr3+, V3+, or interstitial Al3+, are present.


Subject(s)
Aluminum Oxide , Luminescence , Aluminum Oxide/chemistry , Cations, Divalent/chemistry , Luminescent Measurements
2.
Anal Chim Acta ; 1309: 342677, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38772666

ABSTRACT

BACKGROUND: Rapid and sensitive detection for acetamiprid, a kind of widely used neonicotinoid insecticide, is very meaningful for the development of modern agriculture and the protection of human health. Highly stable electrochemiluminescence (ECL) materials are one of the key factors in ECL sensing technology. ECL materials prepared by porous materials (e.g., MOFs) coated with chromophores have been used for ECL sensing detection, but these materials have poor stability because the chromophores escape when they are in aqueous solution. Therefore, the development of highly stable ECL materials is of great significance to improve the sensitivity of ECL sensing technology. RESULTS: In this work, by combining etched metal-organic frameworks (E-UIO-66-NH2) as carrier with Tris(4,4'-dicarboxylic acid-2,2'-bipyridine)Ru(II) chloride (Ru(dcbpy)32+) as signal probe via amide bonds, highly stable nanocomposites (E-UIO-66-NH2-Ru) with excellent ECL performance were firstly prepared. Then, using MoS2 loaded with AuNPs as substrate material and co-reactant promoter, a signal off-on-off ECL aptamer sensor was prepared for sensitive detection of acetamiprid. Due to the excellent catalytic activity of E-UIO-66-NH2-Ru and MoS2@Au towards K2S2O8, the ECL signals can be enhanced by multiple signal enhancement pathways, the prepared ECL aptamer sensor could achieve sensitive detection of acetamiprid in the linear range of 10-13 to10-7 mol L-1, with the limit of detection (LOD) of 2.78ⅹ10-15 mol L-1 (S/N = 3). After the evaluation of actual sample testing, this sensing platform was proven to be an effective method for the detection of acetamiprid in food and agricultural products. SIGNIFICANCE AND NOVELTY: The E-UIO-66-NH2-Ru prepared by linking Ru(dcbpy)32+ to E-UIO-66-NH2 via amide bonding has very high stability. The synergistic catalytic effect of MoS2 and AuNPs enhanced the ECL signal. By exploring the sensing mechanism and evaluating the actual sample tests, the proposed signal "on-off" ECL sensing strategy was proved to be an effective and excellent ECL sensing method for sensitive and stable detection of acetamiprid.


Subject(s)
Aptamers, Nucleotide , Electrochemical Techniques , Luminescent Measurements , Metal-Organic Frameworks , Neonicotinoids , Neonicotinoids/analysis , Electrochemical Techniques/methods , Aptamers, Nucleotide/chemistry , Luminescent Measurements/methods , Metal-Organic Frameworks/chemistry , Ruthenium/chemistry , Biosensing Techniques/methods , Limit of Detection , Coordination Complexes/chemistry , Insecticides/analysis
3.
Anal Chim Acta ; 1306: 342585, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38692786

ABSTRACT

Herein, we developed a convenient and versatile dual-mode electrochemiluminescence (ECL) and photoelectrochemistry (PEC) sensing radar for the detection of Prostate-specific antigen (PSA), which has important implications for detection of low-abundance disease-associated proteins. Cerium-based metal-organic framework (Ce-MOFs) were firstly modified on the electrode, showing well ECL and PEC property. In particular, a unique multifunctional Au@CdS quantum dots (QDs) probe loaded numerous QDs and antibody was fabricated, not only displaying strong ECL and PEC signals, but also having specific recognition to PSA. After the signal probe was linked to the electrode by immune reaction, much amplified signals of ECL and PEC were generated for double-mode detection of PSA. Therefore, this work proposed a multifunctional Au@CdS QDs signal probe with excellent ECL and PEC performance, and developed an ultrasensitive photoelectric biosensing platform for dual-mode detection, which provides an effective method for health monitoring of cancer patients.


Subject(s)
Cadmium Compounds , Electrochemical Techniques , Metal-Organic Frameworks , Prostate-Specific Antigen , Quantum Dots , Sulfides , Quantum Dots/chemistry , Cadmium Compounds/chemistry , Sulfides/chemistry , Humans , Prostate-Specific Antigen/analysis , Prostate-Specific Antigen/blood , Metal-Organic Frameworks/chemistry , Gold/chemistry , Cerium/chemistry , Biosensing Techniques , Photochemical Processes , Limit of Detection , Electrodes , Luminescent Measurements
4.
Luminescence ; 39(5): e4759, 2024 May.
Article in English | MEDLINE | ID: mdl-38693721

ABSTRACT

Colloidal semiconductor quantum dots have many potential optical applications, including quantum dot light-emitting diodes, single-photon sources, or biological luminescent markers. The optical properties of colloidal quantum dots can be affected by their dielectric environment. This study investigated the photoluminescence (PL) decay of thick-shell gradient-alloyed colloidal semiconductor quantum dots as a function of solvent refractive index. These measurements were conducted in a wide range of delay times to account for both the initial spontaneous decay of excitons and the delayed emission of excitons that has the form of a power law. It is shown that whereas the initial spontaneous PL decay is very sensitive to the refractive index of the solvent, the power-law delayed emission of excitons is not. Our results seem to exclude the possibility of carrier self-trapping in the considered solvents and suggest the existence of trap states inside the quantum dots. Finally, our data show that the average exciton lifetime significantly decreases as a function of the solvent refractive index. The change in exciton lifetime is qualitatively modeled and discussed.


Subject(s)
Colloids , Luminescence , Quantum Dots , Solvents , Quantum Dots/chemistry , Solvents/chemistry , Colloids/chemistry , Refractometry , Luminescent Measurements , Semiconductors , Time Factors
5.
Luminescence ; 39(5): e4755, 2024 May.
Article in English | MEDLINE | ID: mdl-38689564

ABSTRACT

The ultimate goal of this work is the study of the effect of luminescence stimulations and signals reading modes combinations on the thermoluminescence intensity and glow curve behaviour for the same X-ray irradiation dose. Three interesting stimulating and reading modes are considered, namely, infrared stimulated luminescence (IRSL), blue light-emitting diode stimulated luminescence (BLSL) and thermally stimulated luminescence (TSL). The studied stimulation and reading modes combination protocols are (Protocol 1) IRSL-TSL, (Protocol 2) IRSL-BLSL-TSL and (Protocol 3) BLSL-IRSL-TSL. Experiments are performed on beryllium oxide (BeO) dosimeter. Results demonstrate well that the combination of reading modes have direct impact on the TL signal in terms of intensity and glow curve shape. It was also found that when reading modes are correctly combined, particularly when IRSL is applied first, then BLSL and TL, it is possible to collect two or more exploitable signals of different stimulation types for the same irradiation that can be used for different purposes and final applications.


Subject(s)
Beryllium , Thermoluminescent Dosimetry , Beryllium/chemistry , Luminescence , Infrared Rays , Luminescent Measurements , Temperature
6.
Anal Chim Acta ; 1307: 342641, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38719418

ABSTRACT

The article details a groundbreaking platform for detecting microRNAs (miRNAs), crucial biomolecules involved in gene regulation and linked to various diseases. This innovative platform combines the CRISPR-Cas13a system's precise ability to specifically target and cleave RNA molecules with the amplification capabilities of the hybridization chain reaction (HCR). HCR aids in signal enhancement by creating branched DNA structures. Additionally, the platform employs electrochemiluminescence (ECL) for detection, noted for its high sensitivity and low background noise, making it particularly effective. A key application of this technology is in the detection of miR-17, a biomarker associated with multiple cancer types. It exhibits remarkable detection capabilities, characterized by low detection limits (14.38 aM) and high specificity. Furthermore, the platform's ability to distinguish between similar miRNA sequences and accurately quantify miR-17 in cell lysates underscores its significant potential in clinical and biomedical fields. This combination of precise targeting, signal amplification, and sensitive detection positions the platform as a powerful tool for miRNA analysis in medical diagnostics and research.


Subject(s)
CRISPR-Cas Systems , Electrochemical Techniques , Luminescent Measurements , MicroRNAs , Nucleic Acid Hybridization , MicroRNAs/analysis , MicroRNAs/genetics , Humans , CRISPR-Cas Systems/genetics , Electrochemical Techniques/methods , Biosensing Techniques/methods , Limit of Detection
7.
J Am Chem Soc ; 146(19): 13406-13416, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38698549

ABSTRACT

Bioluminescent indicators are power tools for studying dynamic biological processes. In this study, we present the generation of novel bioluminescent indicators by modifying the luciferin molecule with an analyte-binding moiety. Specifically, we have successfully developed the first bioluminescent indicator for potassium ions (K+), which are critical electrolytes in biological systems. Our approach involved the design and synthesis of a K+-binding luciferin named potassiorin. Additionally, we engineered a luciferase enzyme called BRIPO (bioluminescent red indicator for potassium) to work synergistically with potassiorin, resulting in optimized K+-dependent bioluminescence responses. Through extensive validation in cell lines, primary neurons, and live mice, we demonstrated the efficacy of this new tool for detecting K+. Our research demonstrates an innovative concept of incorporating sensory moieties into luciferins to modulate luciferase activity. This approach has great potential for developing a wide range of bioluminescent indicators, advancing bioluminescence imaging (BLI), and enabling the study of various analytes in biological systems.


Subject(s)
Luciferases , Luminescent Measurements , Potassium , Potassium/metabolism , Potassium/chemistry , Animals , Luminescent Measurements/methods , Mice , Luciferases/chemistry , Luciferases/metabolism , Humans , Protein Engineering , Luminescent Agents/chemistry , Firefly Luciferin/chemistry , Firefly Luciferin/metabolism
8.
Anal Chem ; 96(19): 7763-7771, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38699865

ABSTRACT

Given its pivotal role in modulating various pathological processes, precise measurement of nitric oxide (●NO) levels in physiological solutions is imperative. The key techniques include the ozone-based chemiluminescence (CL) reactions, amperometric ●NO sensing, and Griess assay, each with its advantages and drawbacks. In this study, a hemin/H2O2/luminol CL reaction was employed for accurately detecting ●NO in diverse solutions. We investigated how the luminescence kinetics was influenced by ●NO from two donors, nitrite and peroxynitrite, while also assessing the impact of culture medium components and reactive species quenchers. Furthermore, we experimentally and theoretically explored the mechanism of hemin oxidation responsible for the initiation of light generation. Although both hemin and ●NO enhanced the H2O2/luminol-based luminescence reactions with distinct kinetics, hemin's interference with ●NO/peroxynitrite- modulated their individual effects. Leveraging the propagated signal due to hemin, the ●NO levels in solution were estimated, observing parallel changes to those detected via amperometric detection in response to varying concentrations of the ●NO-donor. The examined reactions aid in comprehending the mechanism of ●NO/hemin/H2O2/luminol interactions and how these can be used for detecting ●NO in solution with minimal sample size demands. Moreover, the selectivity across different solutions can be improved by incorporating certain quenchers for reactive species into the reaction.


Subject(s)
Hemin , Hydrogen Peroxide , Nitric Oxide , Hemin/chemistry , Nitric Oxide/analysis , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Molecular Probes/chemistry , Luminol/chemistry , Solutions , Luminescent Measurements , Peroxynitrous Acid/analysis , Peroxynitrous Acid/chemistry , Kinetics , Oxidation-Reduction
9.
Anal Chem ; 96(19): 7643-7650, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38708712

ABSTRACT

Chemiluminescence (CL), especially commercialized CL immunoassay (CLIA), is normally performed within the eye-visible region of the spectrum by exploiting the electronic-transition-related emission of the molecule luminophore. Herein, dual-stabilizers-capped CdTe nanocrystals (NCs) is employed as a model of nanoparticulated luminophore to finely tune the CL color with superior color purity. Initialized by oxidizing the CdTe NCs with potassium periodate (KIO4), intermediates of the reactive oxygen species (ROS) tend to charge CdTe NCs in both series-connection and parallel-connection routes and dominate the charge-transfer CL of CdTe NCs. The CdTe NCs/KIO4 system can exhibit color-tunable CL with the maximum emission wavelength shifted from 694 nm to 801 nm, and the red-shift span is over 100 nm. Both PL and CL of each of the CdTe NCs are bandgap-engineered; the change in the NCs surface state via CL reaction enables CL of each of the CdTe NCs to be red-shifted for ∼20 nm to PL, while the change in the NCs surface state via labeling CdTe NCs to secondary-antibody (Ab2) enables CL of the CdTe NCs-Ab2 conjugates to be red-shifted for another ∼20 nm to bare CdTe NCs. The CL of CdTe753-Ab2/KIO4 is ∼791 nm, which can perform near-infrared CL immunoassay and semi-automatically determined procalcitonin (PCT) on commercialized in vitro diagnosis (IVD) instruments.


Subject(s)
Cadmium Compounds , Luminescent Measurements , Nanoparticles , Tellurium , Tellurium/chemistry , Immunoassay/methods , Cadmium Compounds/chemistry , Nanoparticles/chemistry , Color , Luminescence , Automation , Humans
10.
Luminescence ; 39(5): e4750, 2024 May.
Article in English | MEDLINE | ID: mdl-38733198

ABSTRACT

Ultra-high thermally stable Ca2MgWO6:xSm3+ (x = 0.5, 0.75, 1, 1.25, and 1.5 mol%) double perovskite phosphors were synthesized through solid-state reaction method. Product formation was confirmed by comparing the X-ray diffraction (XRD) patterns of the phosphors with the standard reference file. The structural, morphological, thermal, and optical properties of the prepared phosphor were examined in detail using XRD, Fourier transform infrared spectra, scanning electron microscopy, diffused reflectance spectra, thermogravimetric analysis (TGA), photoluminescence emission, and temperature-dependent PLE (TDPL). It was seen that the phosphor exhibited emission in the reddish region for the near-ultraviolet excitation with moderate Colour Rendering Index values and high colour purity. The optimized phosphor (x = 1.25 mol%) was found to possess a direct optical band gap of 3.31 eV. TGA studies showed the astonishing thermal stability of the optimized phosphor. Additionally, near-zero thermal quenching was seen in TDPL due to elevated phonon-assisted radiative transition. Furthermore, the anti-Stokes and Stokes emission peaks were found to be sensitive toward the temperature change and followed a Boltzmann-type distribution. All these marked properties will make the prepared phosphors a suitable candidate for multifield applications and a fascinating material for further development.


Subject(s)
Luminescence , Luminescent Agents , Samarium , Temperature , Tungsten Compounds , Tungsten Compounds/chemistry , Luminescent Agents/chemistry , Luminescent Agents/chemical synthesis , Samarium/chemistry , Luminescent Measurements , X-Ray Diffraction , Calcium Compounds/chemistry , Oxides/chemistry , Thermogravimetry
11.
BMC Biotechnol ; 24(1): 30, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720310

ABSTRACT

BACKGROUND: Venous thromboembolism (VTE), is a noteworthy complication in individuals with gastric cancer, but the current diagnosis and treatment methods lack accuracy. In this study, we developed a t-PAIC chemiluminescence kit and employed chemiluminescence to detect the tissue plasminogen activator inhibitor complex (t-PAIC), thrombin-antithrombin III complex (TAT), plasmin-α2-plasmin inhibitor complex (PIC) and thrombomodulin (TM), combined with D-dimer and fibrin degradation products (FDP), to investigate their diagnostic potential for venous thrombosis in gastric cancer patients. The study assessed variations in six indicators among gastric cancer patients at different stages. RESULTS: The t-PAIC reagent showed LOD is 1.2 ng/mL and a linear factor R greater than 0.99. The reagents demonstrated accurate results, with all accuracy deviations being within 5%. The intra-batch and inter-batch CVs for the t-PAIC reagent were both within 8%. The correlation coefficient R between this method and Sysmex was 0.979. Gastric cancer patients exhibited elevated levels of TAT, PIC, TM, D-D, FDP compared to the healthy population, while no significant difference was observed in t-PAIC. In the staging of gastric cancer, patients in III-IV stages exhibit higher levels of the six markers compared to those in I-II stages. The ROC curve indicates an enhancement in sensitivity and specificity of the combined diagnosis of four or six indicators. CONCLUSION: Our chemiluminescence assay performs comparably to Sysmex's method and at a reduced cost. The use of multiple markers, including t-PAIC, TM, TAT, PIC, D-D, and FDP, is superior to the use of single markers for diagnosing VTE in patients with malignant tumors. Gastric cancer patients should be screened for the six markers to facilitate proactive prophylaxis, determine the most appropriate treatment timing, ameliorate their prognosis, decrease the occurrence of venous thrombosis and mortality, and extend their survival.


Subject(s)
Luminescent Measurements , Stomach Neoplasms , Humans , Stomach Neoplasms/diagnosis , Male , Middle Aged , Luminescent Measurements/methods , Female , Aged , Antithrombin III/metabolism , Antithrombin III/analysis , Thrombomodulin/blood , Fibrin Fibrinogen Degradation Products/analysis , Fibrin Fibrinogen Degradation Products/metabolism , alpha-2-Antiplasmin/metabolism , alpha-2-Antiplasmin/analysis , Adult , Fibrinolysin/metabolism , Fibrinolysin/analysis , Venous Thromboembolism/diagnosis , Venous Thromboembolism/blood , Peptide Hydrolases
12.
Biosens Bioelectron ; 258: 116351, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38705074

ABSTRACT

Multifunctional single-atom catalysts (SACs) have been extensively investigated as outstanding signal amplifiers in bioanalysis field. Herein, a type of Fe single-atom catalysts with Fe-nitrogen coordination sites in nitrogen-doped carbon (Fe-N/C SACs) was synthesized and demonstrated to possess both catalase and peroxidase-like activity. Utilizing Fe-N/C SACs as dual signal amplifier, an efficient bipolar electrode (BPE)-based electrochemiluminescence (ECL) immunoassay was presented for determination of prostate-specific antigen (PSA). The cathode pole of the BPE-ECL platform modified with Fe-N/C SACs is served as the sensing side and luminol at the anode as signal output side. Fe-N/C SACs could catalyze decomposition of H2O2 via their high catalase-like activity and then increase the Faraday current, which can boost the ECL of luminol due to the electroneutrality in a closed BPE system. Meanwhile, in the presence of the target, glucose oxidase (GOx)-Au NPs-Ab2 was introduced through specific immunoreaction, which catalyzes the formation of H2O2. Subsequently, Fe-N/C SACs with peroxidase-like activity catalyze the reaction of H2O2 and 4-chloro-1-naphthol (4-CN) to generate insoluble precipitates, which hinders electron transfer and then inhibits the ECL at the anode. Thus, dual signal amplification of Fe-N/C SACs was achieved by increasing the initial ECL and inhibiting the ECL in the presence of target. The assay exhibits sensitive detection of PSA linearly from 1.0 pg/mL to 100 ng/mL with a detection limit of 0.62 pg/mL. The work demonstrated a new ECL enhancement strategy of SACs via BPE system and expands the application of SACs in bioanalysis field.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Electrodes , Hydrogen Peroxide , Iron , Limit of Detection , Luminescent Measurements , Luminol , Prostate-Specific Antigen , Catalysis , Luminescent Measurements/methods , Electrochemical Techniques/methods , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Humans , Luminol/chemistry , Prostate-Specific Antigen/analysis , Prostate-Specific Antigen/blood , Iron/chemistry , Glucose Oxidase/chemistry , Immunoassay/methods , Gold/chemistry , Peroxidase/chemistry , Metal Nanoparticles/chemistry , Nitrogen/chemistry , Carbon/chemistry , Naphthols
13.
ACS Chem Biol ; 19(5): 1035-1039, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38717306

ABSTRACT

Red-shifted bioluminescence is highly desirable for diagnostic and imaging applications. Herein, we report a semisynthetic NanoLuc (sNLuc) based on complementation of a split NLuc (LgBiT) with a synthetic peptide (SmBiT) functionalized with a fluorophore for BRET emission. We observed exceptional BRET ratios with diverse fluorophores, notably in the red (I674/I450 > 14), with a brightness that is sufficient for naked eye detection in blood or through tissues. To exemplify its utility, LgBiT was fused to a miniprotein that binds HER2 (affibody, ZHER2), and the selective detection of HER2+ SK-BR-3 cells over HER2- HeLa cells was demonstrated.


Subject(s)
Luminescent Measurements , Humans , HeLa Cells , Luminescent Measurements/methods , Luciferases/genetics , Luciferases/metabolism , Receptor, ErbB-2/metabolism , Cell Line, Tumor , Fluorescent Dyes/chemistry
14.
Anal Methods ; 16(20): 3271-3277, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38738547

ABSTRACT

The quantification of microalgae cells is crucial for the treatment of ships' ballast water. However, achieving rapid detection of microalgae cells remains a substantial challenge. Here, we develop a new method for rapid and effective detection of microalgae concentration by utilizing upconversion nanoprobes (UCNPs) of NaYF4:Er3+,Tm3+. Three ligands, carboxylated methoxypolyethylene glycols with 5000 and 2000 molecular weights (mPEG-COOH-5, mPEG-COOH-2) and D-gluconic acid sodium salt (DGAS), were used to convert hydrophobic UCNPs into a hydrophilic state through modification. The results show that the mPEG-COOH-5 modified UCNPs present the highest stability in an aqueous solution. Fourier Transform Infrared Spectroscopy (FTIR) measurements reveal the presence of a significant number of -COOH functional groups on UCNPs after the mPEG-COOH-5 modification. These -COOH groups enhance the hydrophilicity and biocompatibility of UCNPs. The soluble UCNPs were directly mixed with microalgae, and the upconversion luminescence (UCL) spectra of the UCNPs were recorded immediately after thorough shaking. This greatly reduces the measurement time and could realize rapid onboard detection. In this sensing procedure, the UCNPs with red UCL functioned as energy donors, while microalgae with red absorption served as an energy acceptor. The UCL gradually diminishes with an increase in microalgae concentration based on the inner filter effect, thus establishing a relationship between UCL and microalgae concentration. The accuracy of the detection is further validated through the traditional microscope counting method. These findings pave the way for a novel rapid strategy to assess microalgae concentration using UCNPs.


Subject(s)
Microalgae , Microalgae/chemistry , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Yttrium/chemistry , Luminescent Measurements/methods , Fluorides/chemistry , Erbium/chemistry , Hydrophobic and Hydrophilic Interactions
15.
Int J Mol Sci ; 25(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38791162

ABSTRACT

Early detection of drug-induced kidney injury is essential for drug development. In this study, multiple low-dose aristolochic acid (AA) and cisplatin (Cis) injections increased renal mRNA levels of inflammation, fibrosis, and renal tubule injury markers. We applied a serum amyloid A3 (Saa3) promoter-driven luciferase reporter (Saa3 promoter-luc mice) to these two tubulointerstitial nephritis models and performed in vivo bioluminescence imaging to monitor early renal pathologies. The bioluminescent signals from renal tissues with AA or CIS injections were stronger than those from normal kidney tissues obtained from normal mice. To verify whether the visualized bioluminescence signal was specifically generated by the injured kidney, we performed in vivo bioluminescence analysis after opening the stomachs of Saa3 promoter-luc mice, and the Saa3-mediated bioluminescent signal was specifically detected in the injured kidney. This study showed that Saa3 promoter activity is a potent non-invasive indicator for the early detection of drug-induced nephrotoxicity.


Subject(s)
Aristolochic Acids , Luciferases , Promoter Regions, Genetic , Serum Amyloid A Protein , Animals , Serum Amyloid A Protein/genetics , Serum Amyloid A Protein/metabolism , Mice , Luciferases/metabolism , Luciferases/genetics , Aristolochic Acids/toxicity , Genes, Reporter , Cisplatin/toxicity , Cisplatin/adverse effects , Luminescent Measurements/methods , Male , Kidney Diseases/chemically induced , Kidney Diseases/genetics , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney/metabolism , Kidney/drug effects , Kidney/pathology , Disease Models, Animal , Mice, Inbred C57BL
16.
Food Chem ; 451: 139461, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38701733

ABSTRACT

Copper as a widely applied element in food supply chain can cause serious contamination issues that threats food safety. In this research, we present a quick and visible method for trace copper ion (Cu2+) quantification in practical food samples. Polymer dots (Pdots) were firstly conjugated with a copper-specific DNA aptamer and then tailored with rhodamine B (RhB) to extinguish the electrochemiluminescence (ECL) signal through a resonance energy transfer process. The selective release of RhB leads to signal restoration when exposed to trace Cu2+ levels, achieving remarkable linearity with the logarithm of Cu2+ concentration within the range of 1 ng/L to 10 µg/L with an impressively low limit of detection at 11.8 pg/L. Most notably, our device was also applicable on visualizing and quantifying trace Cu2+ (∼0.2 µg/g) in practical Glycyrrhiza uralensis Fisch. samples, underscoring its potential as a tool for the early prevention of potential copper contamination in food samples.


Subject(s)
Copper , Electrochemical Techniques , Food Contamination , Luminescent Measurements , Copper/analysis , Copper/chemistry , Food Contamination/analysis , Luminescent Measurements/instrumentation , Luminescent Measurements/methods , Electrochemical Techniques/instrumentation , Limit of Detection , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Food Analysis/methods , Aptamers, Nucleotide/chemistry , Quantum Dots/chemistry
17.
Viruses ; 16(5)2024 05 16.
Article in English | MEDLINE | ID: mdl-38793672

ABSTRACT

Until recently, the diagnosis of feline infectious peritonitis (FIP) in cats usually led to euthanasia, but recent research has revealed that antiviral drugs, including the nucleoside analog GS-441524, have the potential to effectively cure FIP. Alpha-1-acid glycoprotein (AGP) has been suggested as a diagnostic marker for FIP. However, AGP quantification methods are not easily accessible. This study aimed to establish a Spatial Proximity Analyte Reagent Capture Luminescence (SPARCLTM) assay on the VetBio-1 analyzer to determine the AGP concentrations in feline serum and effusion samples. Linearity was found in serial dilutions between 1:2000 and 1:32,000; the intra-run and inter-run precision was <5% and <15%, respectively; and AGP was stable in serum stored for at least 8 days at room temperature, at 4 °C and at -20 °C. Cats with confirmed FIP had significantly higher serum AGP concentrations (median: 2954 µg/mL (range: 200-5861 µg/mL)) than those with other inflammatory diseases (median: 1734 µg/mL (305-3449 µg/mL)) and clinically healthy cats (median 235 µg/mL (range: 78-616 µg/mL); pKW < 0.0001). The AGP concentrations were significantly higher in the effusions from cats with FIP than in those from diseased cats without FIP (pMWU < 0.0001). The AGP concentrations in the serum of cats with FIP undergoing GS-441524 treatment showed a significant drop within the first seven days of treatment and reached normal levels after ~14 days. In conclusion, the VetBio-1 SPARCLTM assay offers a precise, fast and cost-effective method to measure the AGP concentrations in serum and effusion samples of feline patients. The monitoring of the AGP concentration throughout FIP treatment provides a valuable marker to evaluate the treatment's effectiveness and identify potential relapses at an early stage.


Subject(s)
Biomarkers , Feline Infectious Peritonitis , Luminescent Measurements , Orosomucoid , Cats , Animals , Feline Infectious Peritonitis/diagnosis , Feline Infectious Peritonitis/drug therapy , Feline Infectious Peritonitis/virology , Feline Infectious Peritonitis/blood , Biomarkers/blood , Orosomucoid/analysis , Orosomucoid/metabolism , Luminescent Measurements/methods , Prognosis , Antiviral Agents/therapeutic use , Female , Male , Coronavirus, Feline/isolation & purification
18.
Talanta ; 275: 126156, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38692048

ABSTRACT

The development of simple methods for the isolation and quantification of exosomes in biological samples is important. By using the typical two-dimensional (2D) nanomaterials, graphene oxide (GO), the present work first studied the interaction of liposomes with the nanocomposites formed by adsorbing HRP on the GO surface and found the presence of liposomes led to the release of HRP from the GO surface to the solution phase triggering the luminol-H2O2 chemiluminescence (CL) reaction to emit light. Benefiting from the similarity of exosomes to liposomes in both composition and morphology aspects, the GO-HRP nanocomposites with a mass ratio of 120:1 and 160:1 were employed for the quantitative detection of exosomes in 100-fold diluted serum samples. The whole detection process took about 15 min and as low as 3.2 × 102 particles µL-1 of exosomes could be sensitively detected. In addition to GO-HRP nanocomposites, the CL responses of other nanocomposites obtained from adsorbing HRP on other 2D nanomaterials such as layered MoS2 for exosomes were also tested. MoS2-HRP exhibited similar behavior and the LODs for the detection of exosomes were 5.8 × 102 particles µL-1. The proposed assays were a biomarker-independent quantitative method that achieved the quantification of exosomes in serum samples directly without an isolation process.


Subject(s)
Exosomes , Graphite , Horseradish Peroxidase , Luminescent Measurements , Nanostructures , Exosomes/chemistry , Graphite/chemistry , Horseradish Peroxidase/chemistry , Luminescent Measurements/methods , Adsorption , Humans , Nanostructures/chemistry , Luminol/chemistry , Molybdenum/chemistry , Disulfides/chemistry , Hydrogen Peroxide/chemistry , Limit of Detection , Liposomes/chemistry , Nanocomposites/chemistry
19.
Int J Biol Macromol ; 269(Pt 1): 131864, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692549

ABSTRACT

NanoLuc (NLuc) luciferase has found extensive application in designing a range of biological assays, including gene expression analysis, protein-protein interaction, and protein conformational changes due to its enhanced brightness and small size. However, questions related to its mechanism of interaction with the substrate, furimazine, as well as bioluminescence activity remain elusive. Here, we combined molecular dynamics (MD) simulation and mutational analysis to show that the R162A mutation results in a decreased but stable bioluminescence activity of NLuc in living cells and in vitro. Specifically, we performed multiple, all-atom, explicit solvent MD simulations of the apo and furimazine-docked (holo) NLuc structures revealing differential dynamics of the protein in the absence and presence of the ligand. Further, analysis of trajectories for hydrogen bonds (H-bonds) formed between NLuc and furimazine revealed substantial H-bond interaction between R162 and Q32 residues. Mutation of the two residues in NLuc revealed a decreased but stable activity of the R162A, but not Q32A, mutant NLuc in live cell and in vitro assays performed using lysates prepared from cells expressing the proteins and with the furimazine substrate. In addition to highlighting the role of the R162 residue in NLuc activity, we believe that the mutant NLuc will find wide application in designing in vitro assays requiring extended monitoring of NLuc bioluminescence activity. SIGNIFICANCE: Bioluminescence has been extensively utilized in developing a variety of biological and biomedical assays. In this regard, engineering of brighter bioluminescent proteins, i.e. luciferases, has played a significant role. This is acutely exemplified by the engineering of the NLuc luciferase, which is small in size and displays much enhanced bioluminescence and thermal stability compared to previously available luciferases. While enhanced bioluminescent activity is desirable in a multitude of biological and biomedical assays, it would also be useful to develop variants of the protein that display a prolonged bioluminescence activity. This is specifically relevant in designing assays that require bioluminescence for extended periods, such as in the case of biosensors designed for monitoring slow enzymatic or cellular signaling reactions, without necessitating multiple rounds of luciferase substrate addition or any specialized reagents that result in increased assay costs. In the current manuscript, we report a mutant NLuc that possesses a stable and prolonged bioluminescence activity, albeit lower than the wild-type NLuc, and envisage a wider application of the mutant NLuc in designing biosensors for monitoring slower biological and biomedical events.


Subject(s)
Luciferases , Molecular Dynamics Simulation , Mutation , Luciferases/metabolism , Luciferases/genetics , Luciferases/chemistry , Humans , Hydrogen Bonding , Luminescent Measurements , Protein Conformation
20.
Mikrochim Acta ; 191(6): 344, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802523

ABSTRACT

A molecularly imprinted electrochemiluminescent sensor is developed for the sensitive detection of tetracycline in environmental and food samples. The sensor uses an ionic liquid (i.e. [APMIM]Br) modified graphene-carbon nanotube composite (GMI) material as substrate, a double-layered core-shell metal-organic framework NH2-UiO-66@ZIF-8 (NUZ) loaded bipyridyl ruthenium (NUZ@Ru) as luminescent material, and a molecularly imprinted copolymer of o-phenylenediamine and hydroquinone as recognition element. The ionic liquid-modified graphene-carbon nanotube composite has a favorable three-dimensional structure, high specific surface area, and good hydrophilicity; the core-shell structured metal-organic framework has high stability and plentiful reaction sites for loading; the molecularly imprinted copolymer film has enhanced stability and recognition effect. Hence, the resulting sensor combines the merits of several materials and presents improved performance. Under the optimum detection conditions, it shows a wide linear range of 0.05 µM - 1 mM, a low detection limit of 20 nM, high selectivity, and excellent stability. It has been successfully applied to the detection of tetracycline in different samples.


Subject(s)
Electrochemical Techniques , Limit of Detection , Luminescent Measurements , Metal-Organic Frameworks , Molecularly Imprinted Polymers , Tetracycline , Tetracycline/analysis , Tetracycline/chemistry , Molecularly Imprinted Polymers/chemistry , Metal-Organic Frameworks/chemistry , Luminescent Measurements/methods , Electrochemical Techniques/methods , Graphite/chemistry , Nanotubes, Carbon/chemistry , Food Contamination/analysis , Ionic Liquids/chemistry , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Water Pollutants, Chemical/analysis , Molecular Imprinting
SELECTION OF CITATIONS
SEARCH DETAIL
...