Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 192
Filter
1.
Int J Mol Sci ; 22(23)2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34884694

ABSTRACT

Genetically encoded red fluorescent proteins with a large Stokes shift (LSSRFPs) can be efficiently co-excited with common green FPs both under single- and two-photon microscopy, thus enabling dual-color imaging using a single laser. Recent progress in protein development resulted in a great variety of novel LSSRFPs; however, the selection of the right LSSRFP for a given application is hampered by the lack of a side-by-side comparison of the LSSRFPs' performance. In this study, we employed rational design and random mutagenesis to convert conventional bright RFP mScarlet into LSSRFP, called LSSmScarlet, characterized by excitation/emission maxima at 470/598 nm. In addition, we utilized the previously reported LSSRFPs mCyRFP1, CyOFP1, and mCRISPRed as templates for directed molecular evolution to develop their optimized versions, called dCyRFP2s, dCyOFP2s and CRISPRed2s. We performed a quantitative assessment of the developed LSSRFPs and their precursors in vitro on purified proteins and compared their brightness at 488 nm excitation in the mammalian cells. The monomeric LSSmScarlet protein was successfully utilized for the confocal imaging of the structural proteins in live mammalian cells and multicolor confocal imaging in conjugation with other FPs. LSSmScarlet was successfully applied for dual-color two-photon imaging in live mammalian cells. We also solved the X-ray structure of the LSSmScarlet protein at the resolution of 1.4 Å that revealed a hydrogen bond network supporting excited-state proton transfer (ESPT). Quantum mechanics/molecular mechanics molecular dynamic simulations confirmed the ESPT mechanism of a large Stokes shift. Structure-guided mutagenesis revealed the role of R198 residue in ESPT that allowed us to generate a variant with improved pH stability. Finally, we showed that LSSmScarlet protein is not appropriate for STED microscopy as a consequence of LSSRed-to-Red photoconversion with high-power 775 nm depletion light.


Subject(s)
Luminescent Agents/chemistry , Luminescent Proteins/chemistry , Cloning, Molecular , HeLa Cells , Humans , Luminescent Agents/isolation & purification , Luminescent Proteins/biosynthesis , Luminescent Proteins/genetics , Luminescent Proteins/isolation & purification , Molecular Dynamics Simulation , Molecular Structure , Red Fluorescent Protein
2.
J Chem Phys ; 155(12): 124304, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34598549

ABSTRACT

Incorporation of fluorescent proteins into biochemical systems has revolutionized the field of bioimaging. In a bottom-up approach, understanding the photophysics of fluorescent proteins requires detailed investigations of the light-absorbing chromophore, which can be achieved by studying the chromophore in isolation. This paper reports a photodissociation action spectroscopy study on the deprotonated anion of the red Kaede fluorescent protein chromophore, demonstrating that at least three isomers-assigned to deprotomers-are generated in the gas phase. Deprotomer-selected action spectra are recorded over the S1 ← S0 band using an instrument with differential mobility spectrometry coupled with photodissociation spectroscopy. The spectrum for the principal phenoxide deprotomer spans the 480-660 nm range with a maximum response at ≈610 nm. The imidazolate deprotomer has a blue-shifted action spectrum with a maximum response at ≈545 nm. The action spectra are consistent with excited state coupled-cluster calculations of excitation wavelengths for the deprotomers. A third gas-phase species with a distinct action spectrum is tentatively assigned to an imidazole tautomer of the principal phenoxide deprotomer. This study highlights the need for isomer-selective methods when studying the photophysics of biochromophores possessing several deprotonation sites.


Subject(s)
Luminescent Proteins/chemistry , Luminescent Proteins/isolation & purification , Spectrum Analysis , Anions/analysis , Anions/chemistry , Anions/isolation & purification , Isomerism , Luminescent Proteins/analysis , Red Fluorescent Protein
3.
Anal Biochem ; 608: 113875, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32739350

ABSTRACT

mWasabi is a bright monomeric green fluorescent protein. It can be used as a fusion tag to monitor various biological events, e.g. protein localization. Here we report the selection of camelid-derived single-domain antibody fragments (nanobodies) against mWasabi. In this work, phage-display approach was employed to select the high affinity mWasabi-specific Nb (nanobodies). These nanobodies were able to recognize mWasabi or in a fused fashion with PD1. The interesting binding characteristics of these two mWasabi-specific nanobodies could be valuable for design new tools for cellular tracing or targeting based on the mWasabi-fusing protein in many different biological research fields.


Subject(s)
Cell Surface Display Techniques/methods , Luminescent Proteins/chemistry , Single-Domain Antibodies/immunology , Single-Domain Antibodies/isolation & purification , Amino Acid Sequence , Animals , Camelidae/blood , Camelidae/immunology , HEK293 Cells , Humans , Immunoglobulin G/blood , Luminescent Proteins/immunology , Luminescent Proteins/isolation & purification , Programmed Cell Death 1 Receptor/analysis , Programmed Cell Death 1 Receptor/metabolism , Protein Binding , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Alignment
4.
Biotechniques ; 69(4): 302-306, 2020 10.
Article in English | MEDLINE | ID: mdl-32639163

ABSTRACT

We established a quantitative detection method for immunohistochemistry based on a reference standard light-emitting diode, protein microarray and antibody-fused bioluminescent protein. In this procedure, we calibrated the bioluminescence imaging system and prepared the calibration curve between antigen and antibody-fused bioluminescent protein using a protein microarray. Then we converted the detecting light signal to antigen count via absolute photon number in the bioluminescent images; there was a resulting threefold difference in the target antigen number between normal and cancerous tissues. Our technique can easily compare immunohistological images and evaluate tumor progression in quantitative pathological diagnosis.


Subject(s)
Antibodies/chemistry , Immunohistochemistry , Luminescent Proteins/isolation & purification , Protein Array Analysis , Antibodies/genetics , Antibodies/immunology , Humans , Luminescent Proteins/chemistry , Luminescent Proteins/immunology
5.
J Phys Chem B ; 124(8): 1383-1391, 2020 02 27.
Article in English | MEDLINE | ID: mdl-32011884

ABSTRACT

The fluorescence quantum yield of four representative red fluorescent proteins mCherry, mKate2, mRuby2, and the recently introduced mScarlet was investigated. The excited state lifetimes were measured as a function of the distance to a gold mirror in order to control the local density of optical states (LDOS). By analyzing the total emission rates as a function of the LDOS, we obtain separately the emission rate and the nonradiative rate of the bright states. We thus obtain for the first time the bright state quantum yield of the proteins without interference from dark, nonemitting states. The bright state quantum yields are considerably higher than previously reported quantum yields that average over both bright and dark states. We determine that mCherry, mKate2, and mRuby2 have a considerable fraction of dark chromophores up to 45%, which explains both the low measured quantum yields of red emitting proteins reported in the literature and the difficulties in developing high quantum yield variants of such proteins. For the recently developed bright mScarlet, we find a much smaller dark fraction of 14%, accompanied by a very high quantum yield of the bright state of 81%. The presence of a considerable fraction of dark chromophores has implications for numerous applications of fluorescent proteins, ranging from quantitative fluorescence microscopy to FRET studies to monitoring protein expression levels. We recommend that future optimization of red fluorescent proteins should pay more attention to minimizing the fraction of dark proteins.


Subject(s)
Luminescent Proteins/analysis , Fluorescence , Luminescent Proteins/isolation & purification , Microscopy, Fluorescence , Particle Size , Red Fluorescent Protein
6.
Int J Mol Sci ; 20(23)2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31810174

ABSTRACT

Biomarkers engineered on the basis of bacterial phytochromes with biliverdin IXα (BV) cofactor as a chromophore are increasingly used in cell biology and biomedicine, since their absorption and fluorescence spectra lie within the so-called optical "transparency window" of biological tissues. However, the quantum yield of BV fluorescence in these biomarkers does not exceed 0.145. The task of generating biomarkers with a higher fluorescence quantum yield remains relevant. To address the problem, we proposed the use of phycocyanobilin (PCB) as a chromophore of biomarkers derived from bacterial phytochromes. In this work, we characterized the complexes of iRFP713 evolved from RpBphP2 and its mutant variants with different location of cysteine residues capable of covalent tetrapyrrole attachment with the PCB cofactor. All analyzed proteins assembled with PCB were shown to have a higher fluorescence quantum yield than the proteins assembled with BV. The iRFP713/V256C and iRFP713/C15S/V256C assembled with PCB have a particularly high quantum yield of 0.5 and 0.45, which exceeds the quantum yield of all currently available near-infrared biomarkers. Moreover, PCB has 4 times greater affinity for iRFP713/V256C and iRFP713/C15S/V256C proteins compared to BV. These data establish iRFP713/V256C and iRFP713/C15S/V256C assembled with the PCB chromophore as promising biomarkers for application in vivo. The analysis of the spectral properties of the tested biomarkers allowed for suggesting that the high-fluorescence quantum yield of the PCB chromophore can be attributed to the lower mobility of the D-ring of PCB compared to BV.


Subject(s)
Biomarkers/chemistry , Luminescent Proteins/chemistry , Phycobilins/chemistry , Phycocyanin/chemistry , Phytochrome/chemistry , Bacteria/chemistry , Bacterial Proteins/chemistry , Biliverdine/chemistry , Cysteine/chemistry , Fluorescence , Luminescent Proteins/isolation & purification , Protein Binding , Tetrapyrroles/chemistry
7.
BMC Cancer ; 19(1): 934, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31590660

ABSTRACT

BACKGROUND: Leukemia is a cancer of blood and bone marrow cells, causing about 300,000 deaths worldwide. Photodynamic therapy (PDT) is a promising alternative for the treatment of malignant tumors. KillerRed is a genetically encoded red fluorescent protein photosensitizer (PS). In this study, we aimed to investigate the effects of KillerRed-mediated PDT on chronic myelogenous leukemia K562 cells, acute monocytic leukemia NB4 cells, and acute monocytic leukemia THP1 cells. METHODS: KillerRed was expressed in Escherichia coli cells, purified by Q-Sepharose column, and confirmed by western-blotting. The PDT effect on cell proliferation was evaluated by Cell Counting Kit-8 (CCK-8). Cell apoptosis was determined by PE Annexin V/7-AAD staining and flow cytometry. The distribution of KillerRed in leukemia cells was detected by confocal laser scanning microscopy (CLSM) and western-blotting. The ROS generation was measured by flow cytometry. RESULTS: Pure KillerRed was obtained with a yield of about 37 mg per liter of bacterial cells. KillerRed photodynamic inactivated the leukemia cells in a concentration-dependent manner, but exhibited no obvious dark toxicity. PDT mediated by KillerRed could also induce apoptotic response (mainly early apoptosis) in the three cell lines. The CLSM imaging indicated that KillerRed was distributed within the cytoplasm and nuclei of leukemia cells, causing damages to the cytoplasm and leaving the nuclear envelope intact during light irradiation. KillerRed distributed both in the cytosol and nuclei was confirmed by western blotting, and ROS significantly increased in PDT treated cells compared to the cells treated with KillerRed alone. CONCLUSIONS: Our studies demonstrated that KillerRed-mediated PDT could effectively inactivate K562, NB4, and THP1 leukemia cells and trigger cell apoptosis, and it has potential to be used individually or complementally, in the treatment of leukemia.


Subject(s)
Leukemia/drug therapy , Luminescent Proteins , Photochemotherapy , Photosensitizing Agents , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Leukemia/metabolism , Luminescent Proteins/isolation & purification , Luminescent Proteins/metabolism , Photosensitizing Agents/isolation & purification , Photosensitizing Agents/metabolism , Reactive Oxygen Species/metabolism , Red Fluorescent Protein
8.
Sci Rep ; 9(1): 11334, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31383876

ABSTRACT

It is routine to genetically modify cells to express fluorescent or bioluminescent reporter proteins to enable tracking or quantification of cells in vitro and in vivo. Herein, we characterized the stability of luciferase reporter systems in C4-2B prostate cancer cells in mono-culture and in co-culture with bone marrow-derived mesenchymal stem/stromal cells (BMSC). An assumption made when employing the luciferase reporter is that the luciferase expressing cell number and bioluminescence signal are linearly proportional. We observed instances where luciferase expression was significantly upregulated in C4-2B cell populations when co-cultured with BMSC, resulting in a significant disconnect between bioluminescence signal and cell number. We subsequently characterized luciferase reporter stability in a second C4-2B reporter cell line, and six other cancer cell lines. All but the single C4-2B reporter cell population had stable luciferase reporter expression in mono-culture and BMSC co-culture. Whole-genome sequencing revealed that relative number of luciferase gene insertions per genome in the unstable C4-2B reporter cell population was lesser than stable C4-2B, PC3 and MD-MBA-231 luciferase reporter cell lines. We reasoned that the low luciferase gene copy number and genome insertion locations likely contributed to the reporter gene expression being exquisitely sensitive BMSC paracrine signals. In this study, we show that it is possible to generate a range of stable and reliable luciferase reporter prostate- and breast- cancer cell populations but advise not to assume stability across different culture conditions. Reporter stability should be validated, on a case-by-case basis, for each cell line and culture condition.


Subject(s)
Luciferases/isolation & purification , Luminescent Measurements/methods , Luminescent Proteins/isolation & purification , Mesenchymal Stem Cells/metabolism , Cell Line, Tumor , Coculture Techniques , Gene Expression Regulation, Neoplastic/genetics , Genes, Reporter/genetics , Humans , Luciferases/chemistry , Luminescent Proteins/chemistry , Male , Mesenchymal Stem Cells/pathology , Promoter Regions, Genetic/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Transgenes/genetics
9.
Int J Biol Macromol ; 130: 675-684, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30836182

ABSTRACT

Chromoproteins are a good source of engineered biological tools. We previously reported the development of a blue fluorescent protein, termed shBFP, which was derived from a purple chromoprotein shCP found in the sea anemone Stichodacyla haddoni. shBFP contains a Leu63-Leu64-Gly65 tri-peptide chromophore, and shows maximum excitation and emission wavelengths at 401 nm and 458 nm, along with a high quantum yield. How this chromophore endows shBFP with the unique fluorescence property in the absence of a hydroxyphenyl ring remained unclear. Here, we present the crystal structures of shCP and shBFP at 1.9- and 2.05-Šresolution, respectively. Both proteins crystallized as similar tetramers, but they are more likely to function as dimers in solution. The chromophore in shCP shows a trans-conformation and its non-planarity is similar to most other homologues. The shBFP chromophore also contains an imidazolidone moiety in its structure, but there are a smaller number of conjugated double bonds compared to shCP. Consequently, the chromophore may prefer absorbing shorter wavelength lights in the UV region, followed by the emission of blue fluorescence. These observations provide new insights into the molecular basis that correlates chromophore conformation with light absorption and fluorescence emission for the development of improved biomarkers.


Subject(s)
Luminescent Proteins/chemistry , Models, Molecular , Peptides/chemistry , Protein Conformation , Sea Anemones/chemistry , Amino Acid Sequence , Animals , Crystallography, X-Ray , Luminescent Proteins/genetics , Luminescent Proteins/isolation & purification , Molecular Structure , Sea Anemones/genetics , Spectrum Analysis , Structure-Activity Relationship
10.
Anal Chem ; 91(6): 4100-4106, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30786715

ABSTRACT

Epitope tagging is widely used to fuse a known epitope to proteins for which no affinity receptor is available by using recombinant DNA technology. One example is FLAG epitope (DYKDDDDK), which provides better purity and recoveries than the favorite poly histidine tag. However, purification requires using anti-FLAG antibody resins, the high cost and nonreusability of which restrict widespread use. One cost-effective solution is provided by the use of bioinspired anti-FLAG molecularly imprinted polymers (MIPs). This work describes the development of MIPs, based on the epitope approach, synthesized from the tetrapeptide DYKD as template that affords purification of FLAG-derived recombinant proteins. Polymer was optimized by using a combinatorial approach to select the functional monomer(s) and cross-linker(s), resulting in the best specific affinity toward FLAG and the peptide DYKD. The imprinted resin obtained was used to purify mCherry proteins tagged with either FLAG or DYKD epitopes from crude cell lysates. Both mCherry variants were highly efficiently purified ( R ≥ 95%, RSD ≤ 15%, n = 3) and impurities were removed. Unlike existing antibody-based resins, the proposed tag-imprinting strategy provides a general method for meeting the growing demand for efficient, inexpensive, and versatile materials for tagged proteins purification.


Subject(s)
Chromatography, Affinity/methods , Molecular Imprinting/methods , Oligopeptides/chemistry , Polymers/chemistry , Recombinant Fusion Proteins/isolation & purification , Luminescent Proteins/chemistry , Luminescent Proteins/isolation & purification , Luminescent Proteins/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Red Fluorescent Protein
11.
Nat Commun ; 10(1): 279, 2019 01 17.
Article in English | MEDLINE | ID: mdl-30655515

ABSTRACT

From a single domain of cyanobacteriochrome (CBCR) we developed a near-infrared (NIR) fluorescent protein (FP), termed miRFP670nano, with excitation at 645 nm and emission at 670 nm. This is the first CBCR-derived NIR FP evolved to efficiently bind endogenous biliverdin chromophore and brightly fluoresce in mammalian cells. miRFP670nano is a monomer with molecular weight of 17 kDa that is 2-fold smaller than bacterial phytochrome (BphP)-based NIR FPs and 1.6-fold smaller than GFP-like FPs. Crystal structure of the CBCR-based NIR FP with biliverdin reveals a molecular basis of its spectral and biochemical properties. Unlike BphP-derived NIR FPs, miRFP670nano is highly stable to denaturation and degradation and can be used as an internal protein tag. miRFP670nano is an effective FRET donor for red-shifted NIR FPs, enabling engineering NIR FRET biosensors spectrally compatible with GFP-like FPs and blue-green optogenetic tools. miRFP670nano unlocks a new source of diverse CBCR templates for NIR FPs.


Subject(s)
Bacterial Proteins/chemistry , Biosensing Techniques/methods , Cyanobacteria/chemistry , Luminescent Proteins/chemistry , Photoreceptors, Microbial/chemistry , 3T3 Cells , Animals , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Biliverdine/metabolism , Cyanobacteria/genetics , Cyanobacteria/metabolism , Directed Molecular Evolution/methods , Female , Fluorescence , HeLa Cells , Humans , Intravital Microscopy/methods , Luminescent Proteins/genetics , Luminescent Proteins/isolation & purification , Luminescent Proteins/metabolism , Mice , Microscopy, Fluorescence/methods , Mutagenesis , Neurons , Optogenetics/methods , Photoreceptors, Microbial/genetics , Photoreceptors, Microbial/isolation & purification , Photoreceptors, Microbial/metabolism , Primary Cell Culture , Protein Domains/genetics , Protein Engineering , Rats , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Spectroscopy, Near-Infrared/methods
12.
Protein Pept Lett ; 25(3): 302-313, 2018.
Article in English | MEDLINE | ID: mdl-29336243

ABSTRACT

BACKGROUND: The midgut of silkworm (Bombyx mori L.) plays an important role as a natural barrier and source of innate immunity. We had purified the novel red fluorescent protein (RFP) from the midgut of the silkworm Bombyx mori L. and bioassay studies confirmed RFPs possess antiviral, antifungal and antibacterial properties. N-terminal sequence of RFP analysis predicted chbp gene and it belongs to lipocalin gene family and is known to involve in anti-pathogenic activities. OBJECTIVE: The main objective of this study was to purify RFP from the midgut of Kolar Gold silkworm and confirm its antimicrobial activity. METHODS: For isolation of RFP, midgut juice was collected by brief exposure to chloroform vapours to fifth instar Kolar Gold silkworm larvae. Juice was purified by 40 % ammonium sulfate precipitation and purified by gel filtration chromatography (GFC) and fractions with fluorescence red under Ultra violet (UV) were collected. Molecular weight and purity of RFP was identified using PAGE, MALDI-TOF and HPLC. Antimicrobial property of purified RFP against BmNPV, Escherichia coli, Klebsiella pneumonia, Bacillus subtilis and Phytophthora meadii was performed. N-terminal sequencing of RFP was performed using Edman degradation method. Using ten amino acid sequence, using default parameter BLAST search was performerd. From the fifth day old fifth instar silkworm midgut mRNA was isolated and cDNA was synthesized using oligo-dt primer and amplification of ChBP gene was carried out by using cDNA as the template and ChBP gene specific primers. chbp protein sequence as a input built the homology model by using SWISS-MODEL. RESULTS: RFP was purified by 40 % ammonium sulfate precipitation and gel filtration chromatography (GFC) and fractions with fluorescence red under Ultra violet (UV) were collected and SDS - PAGE revealed a size of 40 kDa. RFP purified by GFC was further reconfirmed by HPLC with a single peak with a retention time of 8.755 min. MALDI-TOF produced a peak at a molecular mass of 40 kDa. RFP from the midgut juice showed antiviral activity against the silkworm virus BmNPV, antibacterial activity against Escherichia coli, Klebsiella pneumonia, Bacillus subtilis and Phytophthora meadii. N-terminal sequencing of RFP by Edman degradation method sequenced TQTIETDYWV amino acids and BLAST analysis predicted the Chlorophyllide-a Binding Protein (chbp) with B. mori. PCR product was sequenced and obtained 911bp nucleotides encoding 302 amino acid residues and deposited with the accession number KX186723 in NCBI. Sequence analysis revealed Chbp belongs to lipocalin gene family and known to involve in antiviral, antifungal and anti-bacterial properties. Chbp gene homology model was predicted using crystal structure of insecticyanin A from the tobacco hornworm as a template. CONCLUSION: Our results indicated RFP present in midgut juice of 5th instar larvae of kolar gold silkworm. We have purified novel RFP with molecular mass of 40 kDa and showed its antipathogenic activities. Chbp gene synthesises RFP and further it could be utilized for agriculture and pharmaceutical industry.


Subject(s)
Anti-Bacterial Agents/chemistry , Antifungal Agents/chemistry , Antiviral Agents/chemistry , Bombyx/chemistry , Digestive System/chemistry , Luminescent Proteins/chemistry , Animals , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Antiviral Agents/isolation & purification , Bombyx/metabolism , Computer Simulation , Digestive System/metabolism , Larva/chemistry , Larva/metabolism , Light , Luminescent Proteins/isolation & purification , Luminescent Proteins/pharmacology , Protein Conformation , Sequence Homology, Amino Acid , Red Fluorescent Protein
13.
FEBS Lett ; 591(12): 1761-1769, 2017 06.
Article in English | MEDLINE | ID: mdl-28504316

ABSTRACT

The emission spectrum of widely used CyPet is pH-sensitive. In order to synthesize a pH-insensitive cyan fluorescent protein by rational design, we solved the crystal structures of CyPet under different pH conditions. The indole group of the CyPet chromophore adopts a cis-coplanar conformation in acidic and neutral conditions, while it converts to trans-coplanar under basic conditions. His148 and Glu222 play a vital role in this isomerization. The pH-sensitive chromophore isomerization and change in the emission spectrum can be explained by the coexistence of several different fluorescent states. We trap the chromophore in the trans conformation by A167I mutation (CyPet2), which also prevents the multiconformation of the seventh ß-strand. CyPet2 exhibits an unchanged emission spectral shape as a function of pH.


Subject(s)
Fluorescent Dyes/chemistry , Luminescent Proteins/chemistry , Models, Molecular , Protein Engineering , Amino Acid Substitution , Crystallography, X-Ray , Fluorescent Dyes/isolation & purification , Fluorescent Dyes/metabolism , Glutamic Acid/chemistry , Histidine/chemistry , Hydrogen Bonding , Hydrogen-Ion Concentration , Luminescent Proteins/genetics , Luminescent Proteins/isolation & purification , Luminescent Proteins/metabolism , Mutagenesis, Site-Directed , Mutation , Protein Conformation , Protein Conformation, beta-Strand , Protein Stability , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Spectrometry, Fluorescence , Stereoisomerism
14.
Stem Cells Dev ; 26(13): 986-1002, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28340549

ABSTRACT

Adult-derived human liver stem/progenitor cells (ADHLSCs) have the potential to alleviate liver injury. However, the optimal delivery route and long-term biodistribution of ADHLSCs remain unclear. In this article, we used a triple fusion reporter system to determine the kinetic differences in the biodistribution of ADHLSCs following intrasplenic (IS) and intrahepatic (IH) administration in severe combined immunodeficiency/beige mice. ADHLSCs were transduced with a lentiviral vector expressing a triple fusion reporter comprising renilla luciferase, monomeric red fluorescent protein, and truncated HSV-1 thymidine kinase. The stability and duration of the transgenes, and the effects of transduction on the cell properties were evaluated in vitro. The acute retention and long-term engraftment in vivo were revealed by positron emission tomography and bioluminescence imaging (BLI), respectively, followed by histochemical analysis. We showed that ADHLSCs can be safely transduced with the triple fusion reporter. Radiolabeled ADHLSCs showed acute cell retention at the sites of injection. The IH group showed a confined BLI signal at the injection site, while the IS group displayed a dispersed distribution at the upper abdominal liver area, and a more intense signal. In conclusion, ADHLSCs could be monitored by BLI for up to 4 weeks with a spread out biodistribution following IS injection.


Subject(s)
Cell Tracking/methods , Liver/ultrastructure , Stem Cells/ultrastructure , Adult , Animals , Contrast Media/pharmacology , Humans , Luminescent Measurements/methods , Luminescent Proteins/chemistry , Luminescent Proteins/isolation & purification , Mice , Positron-Emission Tomography , Tissue Distribution , Red Fluorescent Protein
15.
Angew Chem Int Ed Engl ; 56(9): 2296-2301, 2017 02 20.
Article in English | MEDLINE | ID: mdl-28133915

ABSTRACT

Nature applies enzymatic assembly lines to synthesize bioactive compounds. Inspired by such capabilities, we have developed a facile method for spatially segregating attached enzymes in a continuous-flow, vortex fluidic device (VFD). Fused Hisn -tags at the protein termini allow rapid bioconjugation and consequent purification through complexation with immobilized metal affinity chromatography (IMAC) resin. Six proteins were purified from complex cell lysates to average homogeneities of 76 %. The most challenging to purify, tobacco epi-aristolochene synthase, was purified in only ten minutes from cell lysate to near homogeneity (>90 %). Furthermore, this "reaction-ready" system demonstrated excellent stability during five days of continuous-flow processing. Towards multi-step transformations in continuous flow, proteins were arrayed as ordered zones on the reactor surface allowing segregation of catalysts. Ordering enzymes into zones opens up new opportunities for continuous-flow biosynthesis.


Subject(s)
Chromatography, Affinity/methods , Proteins/isolation & purification , Biocatalysis , Chromatography, Affinity/economics , Chromatography, Affinity/instrumentation , Equipment Design , Escherichia coli/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/isolation & purification , Immobilized Proteins/chemistry , Immobilized Proteins/isolation & purification , Isomerases/chemistry , Isomerases/isolation & purification , Luminescent Proteins/chemistry , Luminescent Proteins/isolation & purification , Metals/chemistry , Models, Molecular , Proteins/chemistry , Time Factors , Nicotiana/enzymology , Red Fluorescent Protein
16.
Sci Rep ; 6: 36854, 2016 11 10.
Article in English | MEDLINE | ID: mdl-27830745

ABSTRACT

The blue glow of the mucus from Chaetopterus involves a photoprotein, iron and flavins. Identity and respective role of these components remain, however, largely unresolved today, likely because of viscosity issues and inhibition of this system by oxidizers conventionally used to track bioluminescence activity. Here, we used gentle centrifugation to obtain a mucus supernatant showing no inhibition to oxidizers, allowing for further analysis. We applied conventional chromatographic techniques to isolate major proteins associated with light emission. Luminescence ability of elutriate fractions was tested with hydrogen peroxide to track photoprotein and/or protein-bound chromophore. Fractions producing light contained few major proteins, one with similarity to ferritin. Addition to the mucus of elements with inhibitory/potentiary effect on ferritin ferroxidase activity induced corresponding changes in light production, emphasizing the possible role of ferritin in the worm bioluminescence. DNA of the protein was cloned, sequenced, and expressed, confirming its identity to a Chaetopterus Ferritin (ChF). Both ferric and ferrous iron were found in the mucus, indicating the occurrence of both oxidase and reductase activity. Biochemical analysis showed ChF has strong ferroxidase activity, which could be a source of biological iron and catalytic energy for the worm bioluminescence when coupled to a reduction process with flavins.


Subject(s)
Ferritins/chemistry , Luminescent Proteins/chemistry , Mucus/chemistry , Polychaeta , Animals , Centrifugation , Ceruloplasmin/chemistry , Ceruloplasmin/genetics , Ceruloplasmin/isolation & purification , Cloning, Molecular , Ferritins/genetics , Ferritins/isolation & purification , Hydrogen Peroxide/pharmacology , Iron/analysis , Luminescence , Luminescent Proteins/genetics , Luminescent Proteins/isolation & purification
17.
Protein Sci ; 25(12): 2196-2208, 2016 12.
Article in English | MEDLINE | ID: mdl-27643892

ABSTRACT

Protein:protein interactions play key functional roles in the molecular machinery of the cell. A major challenge for structural biology is to gain high-resolution structural insight into how membrane protein function is regulated by protein:protein interactions. To this end we present a method to express, detect, and purify stable membrane protein complexes that are suitable for further structural characterization. Our approach utilizes bimolecular fluorescence complementation (BiFC), whereby each protein of an interaction pair is fused to nonfluorescent fragments of yellow fluorescent protein (YFP) that combine and mature as the complex is formed. YFP thus facilitates the visualization of protein:protein interactions in vivo, stabilizes the assembled complex, and provides a fluorescent marker during purification. This technique is validated by observing the formation of stable homotetramers of human aquaporin 0 (AQP0). The method's broader applicability is demonstrated by visualizing the interactions of AQP0 and human aquaporin 1 (AQP1) with the cytoplasmic regulatory protein calmodulin (CaM). The dependence of the AQP0-CaM complex on the AQP0 C-terminus is also demonstrated since the C-terminal truncated construct provides a negative control. This screening approach may therefore facilitate the production and purification of membrane protein:protein complexes for later structural studies by X-ray crystallography or single particle electron microscopy.


Subject(s)
Aquaporin 1 , Aquaporins , Bacterial Proteins , Calmodulin , Eye Proteins , Genetic Complementation Test , Luminescent Proteins , Saccharomyces cerevisiae/metabolism , Aquaporin 1/biosynthesis , Aquaporin 1/chemistry , Aquaporin 1/genetics , Aquaporin 1/isolation & purification , Aquaporins/biosynthesis , Aquaporins/chemistry , Aquaporins/genetics , Aquaporins/isolation & purification , Bacterial Proteins/biosynthesis , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Calmodulin/biosynthesis , Calmodulin/chemistry , Calmodulin/genetics , Calmodulin/isolation & purification , Eye Proteins/biosynthesis , Eye Proteins/chemistry , Eye Proteins/genetics , Eye Proteins/isolation & purification , Humans , Luminescent Proteins/biosynthesis , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Luminescent Proteins/isolation & purification , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Saccharomyces cerevisiae/genetics
18.
Nat Methods ; 13(9): 763-9, 2016 09.
Article in English | MEDLINE | ID: mdl-27479328

ABSTRACT

Far-red fluorescent proteins (FPs) are desirable for in vivo imaging because with these molecules less light is scattered, absorbed, or re-emitted by endogenous biomolecules compared with cyan, green, yellow, and orange FPs. We developed a new class of FP from an allophycocyanin α-subunit (APCα). Native APC requires a lyase to incorporate phycocyanobilin. The evolved FP, which we named small ultra-red FP (smURFP), covalently attaches a biliverdin (BV) chromophore without a lyase, and has 642/670-nm excitation-emission peaks, a large extinction coefficient (180,000 M(-1)cm(-1)) and quantum yield (18%), and photostability comparable to that of eGFP. smURFP has significantly greater BV incorporation rate and protein stability than the bacteriophytochrome (BPH) FPs. Moreover, BV supply is limited by membrane permeability, and smURFPs (but not BPH FPs) can incorporate a more membrane-permeant BV analog, making smURFP fluorescence comparable to that of FPs from jellyfish or coral. A far-red and near-infrared fluorescent cell cycle indicator was created with smURFP and a BPH FP.


Subject(s)
Biosensing Techniques , Luminescent Proteins/isolation & purification , Phycocyanin/chemistry , Trichodesmium/metabolism , Biliverdine/chemistry , Cell Cycle/physiology , Escherichia coli/genetics , HEK293 Cells , Humans , Luminescent Proteins/genetics , Luminescent Proteins/radiation effects , Mutation , Phycocyanin/metabolism , Protein Conformation , Protein Stability , Protein Subunits , Red Fluorescent Protein
19.
In Vitro Cell Dev Biol Anim ; 52(8): 812-22, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27287919

ABSTRACT

Somatic cell nuclear transfer (SCNT) has been widely used as an efficient tool in biomedical research for the generation of transgenic animals from somatic cells with genetic modifications. Although remarkable advances in SCNT techniques have been reported in a variety of mammals, the cloning efficiency in domestic animals is still low due to the developmental defects of SCNT embryos. In particular, recent evidence has revealed that mitochondrial dysfunction is detected during the early development of SCNT embryos. However, there have been relatively few or no studies regarding the development of a system for evaluating mitochondrial behavior or dynamics. For the first time, in mitochondria of bovine SCNT embryos, we developed a method for the visualization of mitochondria and expression of fluorescence proteins. To express red fluorescence in mitochondria of cloned embryos, bovine ear skin fibroblasts, nuclear donor, were stably transfected with a vector carrying mitochondria-targeting DsRed2 gene tagged with V5 epitope (mito-DsRed2-V5 tag) using lentivirus-mediated gene transfer because of its ability to integrate in the cell genome and the potential for long-term transgene expression in the transduced cells and their dividing cells. From western blotting analysis of V5 tag protein using mitochondrial fraction and confocal microscopy of red fluorescence using SCNT embryos, we found that the mitochondrial expression of the mito-DsRed2 protein was detected until the blastocyst stage. In addition, according to image analysis, it may be suggested possible use of the system for visualization of mitochondrial localization and evaluation of mitochondrial behaviors or dynamics in early development of bovine SCNT embryos.


Subject(s)
Luminescent Proteins/biosynthesis , Mitochondria/genetics , Nuclear Transfer Techniques , Animals , Animals, Genetically Modified , Cattle , Embryo, Mammalian/diagnostic imaging , Embryonic Development , Fertilization in Vitro , Fibroblasts/metabolism , Luminescent Proteins/isolation & purification , Mitochondria/metabolism
20.
Anal Chem ; 88(8): 4525-32, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-27018236

ABSTRACT

Antibody detection is of fundamental importance in many diagnostic and bioanalytical assays, yet current detection techniques tend to be laborious and/or expensive. We present a new sensor platform (LUMABS) based on bioluminescence resonance energy transfer (BRET) that allows detection of antibodies directly in solution using a smartphone as the sole piece of equipment. LUMABS are single-protein sensors that consist of the blue-light emitting luciferase NanoLuc connected via a semiflexible linker to the green fluorescent acceptor protein mNeonGreen, which are kept close together using helper domains. Binding of an antibody to epitope sequences flanking the linker disrupts the interaction between the helper domains, resulting in a large decrease in BRET efficiency. The resulting change in color of the emitted light from green-blue to blue can be detected directly in blood plasma, even at picomolar concentrations of antibody. Moreover, the modular architecture of LUMABS allows changing of target specificity by simple exchange of epitope sequences, as demonstrated here for antibodies against HIV1-p17, hemagglutinin (HA), and dengue virus type I. The combination of sensitive ratiometric bioluminescent detection and the intrinsic modularity of the LUMABS design provides an attractive generic platform for point-of-care antibody detection that avoids the complex liquid handling steps associated with conventional immunoassays.


Subject(s)
Antibodies/blood , Luminescent Proteins/analysis , Luminescent Proteins/chemistry , Smartphone , Fluorescence Resonance Energy Transfer , Humans , Luminescent Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...