Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.466
Filter
2.
J Cardiothorac Surg ; 19(1): 445, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39004745

ABSTRACT

BACKGROUND: Penetrating thoracic injuries have a significant risk of morbi-mortality. Despite the advancements in damage control methods, a subset of patients with severe pulmonary vascular lesions and bronchial injuries persists. In some of these cases, post-traumatic pneumonectomy is required, and perioperative extracorporeal membrane oxygenation (ECMO) support may be required due to right ventricular failure and respiratory failure. CASE DESCRIPTION: A male was brought to the emergency department (ED) with a penetrating thoracic injury, presenting with massive right hemothorax and active bleeding that required ligation of the right pulmonary hilum to control the bleeding. Subsequently, he developed right ventricular dysfunction and ARDS, necessitating a dynamic hybrid ECMO configuration to support his condition and facilitate recovery. CONCLUSIONS: Penetrating thoracic injuries with severe pulmonary vascular lesions may need pneumonectomy to control bleeding. ECMO support reduces the associated mortality by decreasing the complications rate. A multidisciplinary team is essential to achieve good outcomes in severe compromised patients.


Subject(s)
Extracorporeal Membrane Oxygenation , Pneumonectomy , Humans , Extracorporeal Membrane Oxygenation/methods , Male , Lung Injury/surgery , Lung Injury/etiology , Adult , Thoracic Injuries/surgery , Thoracic Injuries/complications , Wounds, Penetrating/surgery , Hemothorax/etiology , Hemothorax/surgery , Postoperative Care/methods
3.
Sci Rep ; 14(1): 15437, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965293

ABSTRACT

We aimed to determine the clinical characteristics of patient self-inflicted lung injury (P-SILI)-associated pneumothorax/pneumomediastinum, to reveal its risk factors, and to assess its impact on severe COVID-19 cases. In total, 229 patients were included in this case-control study. They were randomly divided into either the case group or the control group as per the inclusion and exclusion criteria. The two groups were further analyzed to reveal the risk factors of spontaneous pneumothorax/pneumomediastinum (SP/P). Finally, risk factors for death were analyzed in the case group and the relationship between death and SP/P was also analyzed among all patients. The mean age of patients was 59.69 ± 17.01 years, most of them were male (74.2%), and 62.0% of them had comorbidities upon admission. A respiratory rate higher than 30 BPM was a risk factor for SP/P (OR 7.186, 95% CI 2.414-21.391, P < 0.001). Patients with delayed intubation due to early application of HFNC or NIV had a higher mortality rate when they developed SP/P (P < 0.05). Additionally, advanced age increased the risk of death (P < 0.05). Finally, SP/P may be a risk factor for death among patients with severe COVID-19 (OR 2.047). P-SILI occurs in severe COVID-19 with acute respiratory failure. It is necessary to identify the risk factors of P-SILI, the indicators of severe P-SILI, and the preventive measures.


Subject(s)
COVID-19 , Mediastinal Emphysema , Pneumothorax , Humans , COVID-19/complications , COVID-19/mortality , Male , Middle Aged , Female , Case-Control Studies , Risk Factors , Mediastinal Emphysema/etiology , Pneumothorax/etiology , Aged , Adult , Lung Injury/etiology , Self-Injurious Behavior/complications , SARS-CoV-2
4.
Allergol Immunopathol (Madr) ; 52(4): 53-59, 2024.
Article in English | MEDLINE | ID: mdl-38970265

ABSTRACT

BACKGROUND: Pulmonary fibrosis is a pathological hallmark of lung injury. It is an aggressive disease that replaces normal lung parenchyma by fibrotic tissue. The transforming growth factor-beta-mothers against decapentaplegic homolog 3 (TGF-ß1-Smad3) signaling pathway plays a key role in regulating lung fibrosis. Decorin (DCN), a small leucine-rich proteoglycan, has a modulatory effect on the immune system by reversibly binding with TGF-ß and reducing its bioavailability. Mesenchymal stem cell (MSC) therapy is a new strategy that has an immune-modulatory capacity. OBJECTIVE: The aim of this study was to introduce a new therapeutic approach to harness remodeling in injured lung. MATERIAL AND METHODS: Bone marrow MSCs were isolated and transduced by decorin gene. Lung injury was induced by bleomycin and mice were treated with MSCs, MSCs-decorin, and decorin. Then, oxidative stress biomarkers, remodeling biomarkers, bronchoalveolar lavage cells, and histopathology study were conducted. RESULTS: Reduced catalase and superoxide dismutase increased due to treatments. Elevated malondialdehyde, hydroxyproline, TGF-ß levels, and polymorphonuclear cells count decreased in the treated groups. Additionally, the histopathology of lung tissues showed controlled inflammation and fibrosis. CONCLUSION: Transfected decorin gene to MSCs and used cell therapy could control remodeling and bleomycin-induced lung injury.


Subject(s)
Bleomycin , Decorin , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Pulmonary Fibrosis , Decorin/genetics , Decorin/metabolism , Animals , Mice , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/therapy , Lung Injury/chemically induced , Lung Injury/therapy , Lung Injury/immunology , Lung Injury/genetics , Transduction, Genetic , Oxidative Stress , Cells, Cultured , Disease Models, Animal , Male , Humans
5.
Drug Res (Stuttg) ; 74(5): 241-249, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38830372

ABSTRACT

Pentoxifylline (PTX), a non-selective phosphodiesterase inhibitor, has demonstrated protective effects against lung injury in animal models. Given the significance of pulmonary toxicity resulting from paraquat (PQ) exposure, the present investigation was designed to explore the impact of PTX on PQ-induced pulmonary oxidative impairment in male mice.Following preliminary studies, thirty-six mice were divided into six groups. Group 1 received normal saline, group 2 received a single dose of PQ (20 mg/kg; i.p.), and group 3 received PTX (100 mg/kg/day; i.p.). Additionally, treatment groups 4-6 were received various doses of PTX (25, 50, and 100 mg/kg/day; respectively) one hour after a single dose of PQ. After 72 hours, the animals were sacrificed, and lung tissue was collected.PQ administration caused a significant decrease in hematocrit and an increase in blood potassium levels. Moreover, a notable increase was found in the lipid peroxidation (LPO), nitric oxide (NO), and myeloperoxidase (MPO) levels, along with a notable decrease in total thiol (TTM) and total antioxidant capacity (TAC) contents, catalase (CAT) and superoxide dismutase (SOD) enzymes activity in lung tissue. PTX demonstrated the ability to improve hematocrit levels; enhance SOD activity and TTM content; and decrease MPO activity, LPO and NO levels in PQ-induced pulmonary toxicity. Furthermore, these findings were well-correlated with the observed lung histopathological changes.In conclusion, our results suggest that the high dose of PTX may ameliorate lung injury by improving the oxidant/antioxidant balance in animals exposed to PQ.


Subject(s)
Antioxidants , Lipid Peroxidation , Lung , Paraquat , Pentoxifylline , Superoxide Dismutase , Animals , Pentoxifylline/pharmacology , Pentoxifylline/therapeutic use , Paraquat/toxicity , Mice , Male , Lung/drug effects , Lung/pathology , Lung/metabolism , Lipid Peroxidation/drug effects , Antioxidants/pharmacology , Superoxide Dismutase/metabolism , Oxidative Stress/drug effects , Catalase/metabolism , Phosphodiesterase Inhibitors/pharmacology , Phosphodiesterase Inhibitors/therapeutic use , Nitric Oxide/metabolism , Peroxidase/metabolism , Lung Injury/chemically induced , Lung Injury/drug therapy , Phosphoric Diester Hydrolases/metabolism
6.
Elife ; 122024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836551

ABSTRACT

Tuft cells are a group of rare epithelial cells that can detect pathogenic microbes and parasites. Many of these cells express signaling proteins initially found in taste buds. It is, however, not well understood how these taste signaling proteins contribute to the response to the invading pathogens or to the recovery of injured tissues. In this study, we conditionally nullified the signaling G protein subunit Gγ13 and found that the number of ectopic tuft cells in the injured lung was reduced following the infection of the influenza virus H1N1. Furthermore, the infected mutant mice exhibited significantly larger areas of lung injury, increased macrophage infiltration, severer pulmonary epithelial leakage, augmented pyroptosis and cell death, greater bodyweight loss, slower recovery, worsened fibrosis and increased fatality. Our data demonstrate that the Gγ13-mediated signal transduction pathway is critical to tuft cells-mediated inflammation resolution and functional repair of the damaged lungs.To our best knowledge, it is the first report indicating subtype-specific contributions of tuft cells to the resolution and recovery.


Subject(s)
Influenza A Virus, H1N1 Subtype , Signal Transduction , Animals , Mice , Influenza A Virus, H1N1 Subtype/physiology , Orthomyxoviridae Infections , Lung Injury/metabolism , Lung/pathology , Inflammation , Epithelial Cells/metabolism , Mice, Knockout , Disease Models, Animal
7.
Sci Total Environ ; 944: 173760, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38857800

ABSTRACT

Ferrate (Fe(VI)) is an environmentally friendly disinfectant that is widely used to eradicate microbes in reclaimed water. However, the potential health risks associated with inhalation of Fe(VI)-treated bacteria-laden reclaimed water remains uncertain. We aimed to explore the inhalation hazards and potential mechanisms of K2FeO4-treated Escherichia coli (E. coli, ATCC 25922). Our findings indicated that Fe(VI) disinfection induced a dose- and time-dependent E. coli inactivation, accompanied by a rapid release of the bacterial endotoxin, lipopolysaccharide (LPS). Scanning electron microscopy (SEM) observations indicate that Fe(VI)-induced endotoxin production consists of at least two stages: initial binding of endotoxin to bacteria and subsequent dissociation to release free endotoxin. Furthermore, Fe(VI) disinfection was not able to effectively eliminate pure or E. coli-derived endotoxins. The E. coli strain used in this study lacks lung infection capability, thus the inhalation of bacteria alone failed to induce severe lung injury. However, mice inhaled exposure to Fe(VI)-treated E. coli showed severe impairment of lung structure and function. Moreover, we observed an accumulation of neutrophil/macrophage recruitment, cell apoptosis, and ROS generation in the lung tissue of mice subjected to Fe(VI)-treated E. coli. RNA sequencing (RNA-seq) and PCR results revealed that genes involved with endotoxin stimuli, cell apoptosis, antioxidant defence, inflammation response, chemokines and their receptors were upregulated in response to Fe(VI)-treated E. coli. In conclusion, Fe(VI) is ineffective in eliminating endotoxins and can trigger secondary hazards owing to endotoxin release from inactivated bacteria. Aerosol exposure to Fe(VI)-treated E. coli causes considerable damage to lung tissue by inducing oxidative stress and inflammatory responses.


Subject(s)
Endotoxins , Escherichia coli , Inflammation , Lung Injury , Oxidative Stress , Escherichia coli/drug effects , Mice , Animals , Lung Injury/chemically induced , Lung Injury/microbiology , Iron/metabolism , Disinfection/methods , Disinfectants/toxicity
8.
Proc Natl Acad Sci U S A ; 121(26): e2319322121, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38900789

ABSTRACT

Thymocyte selection-associated high-mobility group box (TOX) is a transcription factor that is crucial for T cell exhaustion during chronic antigenic stimulation, but its role in inflammation is poorly understood. Here, we report that TOX extracellularly mediates drastic inflammation upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection by binding to the cell surface receptor for advanced glycation end-products (RAGE). In various diseases, including COVID-19, TOX release was highly detectable in association with disease severity, contributing to lung fibroproliferative acute respiratory distress syndrome (ARDS). Recombinant TOX-induced blood vessel rupture, similar to a clinical signature in patients experiencing a cytokine storm, further exacerbating respiratory function impairment. In contrast, disruption of TOX function by a neutralizing antibody and genetic removal of RAGE diminished TOX-mediated deleterious effects. Altogether, our results suggest an insight into TOX function as an inflammatory mediator and propose the TOX-RAGE axis as a potential target for treating severe patients with pulmonary infection and mitigating lung fibroproliferative ARDS.


Subject(s)
COVID-19 , Receptor for Advanced Glycation End Products , SARS-CoV-2 , Humans , Receptor for Advanced Glycation End Products/metabolism , COVID-19/immunology , COVID-19/metabolism , COVID-19/pathology , COVID-19/complications , COVID-19/virology , Animals , Mice , Inflammation/metabolism , Inflammation/pathology , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , Lung Injury/immunology , Lung Injury/metabolism , Lung Injury/pathology , High Mobility Group Proteins/metabolism , High Mobility Group Proteins/genetics , Male , Lung/pathology , Lung/metabolism , Lung/immunology , Female
9.
Nat Commun ; 15(1): 5449, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937456

ABSTRACT

Progressive lung fibrosis is associated with poorly understood aging-related endothelial cell dysfunction. To gain insight into endothelial cell alterations in lung fibrosis we performed single cell RNA-sequencing of bleomycin-injured lungs from young and aged mice. Analysis reveals activated cell states enriched for hypoxia, glycolysis and YAP/TAZ activity in ACKR1+ venous and TrkB+ capillary endothelial cells. Endothelial cell activation is prevalent in lungs of aged mice and can also be detected in human fibrotic lungs. Longitudinal single cell RNA-sequencing combined with lineage tracing demonstrate that endothelial activation resolves in young mouse lungs but persists in aged ones, indicating a failure of the aged vasculature to return to quiescence. Genes associated with activated lung endothelial cells states in vivo can be induced in vitro by activating YAP/TAZ. YAP/TAZ also cooperate with BDNF, a TrkB ligand that is reduced in fibrotic lungs, to promote capillary morphogenesis. These findings offer insights into aging-related lung endothelial cell dysfunction that may contribute to defective lung injury repair and persistent fibrosis.


Subject(s)
Aging , Bleomycin , Endothelial Cells , Lung Injury , Lung , Pulmonary Fibrosis , Animals , Endothelial Cells/metabolism , Endothelial Cells/pathology , Aging/pathology , Bleomycin/toxicity , Humans , Mice , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/genetics , Lung/pathology , Lung/metabolism , Lung Injury/pathology , Lung Injury/metabolism , Lung Injury/etiology , Receptor, trkB/metabolism , Receptor, trkB/genetics , Mice, Inbred C57BL , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , YAP-Signaling Proteins/metabolism , Male , Single-Cell Analysis , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Female , Disease Models, Animal
10.
J Ethnopharmacol ; 333: 118404, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38824977

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Sepsis presents complex pathophysiological challenges. Taohe Chengqi Decoction (THCQ), a traditional Chinese medicine, offers potential in managing sepsis-related complications, though its exact mechanisms are not fully understood. AIM OF THE STUDY: This research aimed to assess the therapeutic efficacy and underlying mechanisms of THCQ on sepsis-induced lung injury. MATERIALS AND METHODS: The study began with validating THCQ's anti-inflammatory effects through in vitro and in vivo experiments. Network pharmacology was employed for mechanistic exploration, incorporating GO, KEGG, and PPI analyses of targets. Hub gene-immune cell correlations were assessed using CIBERSORT, with further scrutiny at clinical and single-cell levels. Molecular docking explored THCQ's drug-gene interactions, culminating in qPCR and WB validations of hub gene expressions in sepsis and post-THCQ treatment scenarios. RESULTS: THCQ demonstrated efficacy in modulating inflammatory responses in sepsis, identified through network pharmacology. Key genes like MAPK14, MAPK3, MMP9, STAT3, LYN, AKT1, PTPN11, and HSP90AA1 emerged as central targets. Molecular docking revealed interactions between these genes and THCQ components. qPCR results showed significant modulation of these genes, indicating THCQ's potential in reducing inflammation and regulating immune responses in sepsis. CONCLUSION: This study sheds light on THCQ's anti-inflammatory and immune regulatory mechanisms in sepsis, providing a foundation for further research and potential clinical application.


Subject(s)
Anti-Inflammatory Agents , Drugs, Chinese Herbal , Molecular Docking Simulation , Sepsis , Sepsis/drug therapy , Sepsis/complications , Sepsis/immunology , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Male , Mice , Mice, Inbred C57BL , Humans , Lung Injury/drug therapy , Network Pharmacology , Disease Models, Animal
11.
J Immunol ; 213(3): 268-282, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38856585

ABSTRACT

Recruitment of immune cells to the injury site plays a pivotal role in the pathology of radiation-associated diseases. In this study, we investigated the impact of the chemokine CCL22 released from alveolar type II epithelial (AT2) cells after irradiation on the recruitment and functional changes of dendritic cells (DCs) in the development of radiation-induced lung injury (RILI). By examining changes in CCL22 protein levels in lung tissue of C57BL/6N mice with RILI, we discovered that ionizing radiation increased CCL22 expression in irradiated alveolar AT2 cells, as did MLE-12 cells after irradiation. A transwell migration assay revealed that CCL22 promoted the migration of CCR4-positive DCs to the injury site, which explained the migration of pulmonary CCR4-positive DCs in RILI mice in vivo. Coculture experiments demonstrated that, consistent with the response of regulatory T cells in the lung tissue of RILI mice, exogenous CCL22-induced DCs promoted regulatory T cell proliferation. Mechanistically, we demonstrated that Dectin2 and Nr4a2 are key targets in the CCL22 signaling pathway, which was confirmed in pulmonary DCs of RILI mice. As a result, CCL22 upregulated the expression of PD-L1, IL-6, and IL-10 in DCs. Consequently, we identified a mechanism in which CCL22 induced DC tolerance through the CCR4-Dectin2-PLC-γ2-NFATC2-Nr4a2-PD-L1 pathway. Collectively, these findings demonstrated that ionizing radiation stimulates the expression of CCL22 in AT2 cells to recruit DCs to the injury site and further polarizes them into a tolerant subgroup of CCL22 DCs to regulate lung immunity, ultimately providing potential therapeutic targets for DC-mediated RILI.


Subject(s)
B7-H1 Antigen , Chemokine CCL22 , Dendritic Cells , Lung Injury , Mice, Inbred C57BL , NFATC Transcription Factors , Receptors, CCR4 , Signal Transduction , Animals , Mice , Dendritic Cells/immunology , Signal Transduction/immunology , Lung Injury/immunology , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/immunology , B7-H1 Antigen/immunology , Immune Tolerance , Alveolar Epithelial Cells/immunology , Alveolar Epithelial Cells/metabolism , T-Lymphocytes, Regulatory/immunology
12.
Redox Biol ; 74: 103194, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852200

ABSTRACT

Elevated lactate levels are a significant biomarker of sepsis and are positively associated with sepsis-related mortality. Sepsis-associated lung injury (ALI) is a leading cause of poor prognosis in clinical patients. However, the underlying mechanisms of lactate's involvement in sepsis-associated ALI remain unclear. In this study, we demonstrate that lactate regulates N6-methyladenosine (m6A) modification levels by facilitating p300-mediated H3K18la binding to the METTL3 promoter site. The METTL3-mediated m6A modification is enriched in ACSL4, and its mRNA stability is regulated through a YTHDC1-dependent pathway. Furthermore, short-term lactate stimulation upregulates ACSL4, which promotes mitochondria-associated ferroptosis. Inhibition of METTL3 through knockdown or targeted inhibition effectively suppresses septic hyper-lactate-induced ferroptosis in alveolar epithelial cells and mitigates lung injury in septic mice. Our findings suggest that lactate induces ferroptosis via the GPR81/H3K18la/METTL3/ACSL4 axis in alveolar epithelial cells during sepsis-associated ALI. These results reveal a histone lactylation-driven mechanism inducing ferroptosis through METTL3-mediated m6A modification. Targeting METTL3 represents a promising therapeutic strategy for patients with sepsis-associated ALI.


Subject(s)
Coenzyme A Ligases , Ferroptosis , Methyltransferases , Sepsis , Methyltransferases/metabolism , Methyltransferases/genetics , Animals , Sepsis/metabolism , Sepsis/complications , Mice , Humans , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , Lung Injury/metabolism , Lung Injury/etiology , Lung Injury/pathology , Lung Injury/genetics , Acute Lung Injury/metabolism , Acute Lung Injury/etiology , Acute Lung Injury/pathology , Acute Lung Injury/genetics , Male , Disease Models, Animal , Lactic Acid/metabolism
13.
Int Immunopharmacol ; 137: 112450, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38906007

ABSTRACT

Inflammation, apoptosis and oxidative stress play crucial roles in the deterioration of severe acute pancreatitis-associated acute respiratory distress syndrome (SAP-ARDS). Unfortunately, despite a high mortality rate of 45 %[1], there are limited treatment options available for ARDS outside of last resort options such as mechanical ventilation and extracorporeal support strategies[2]. This study investigated the potential therapeutic role and mechanisms of AQP9 inhibitor RG100204 in two animal models of severe acute pancreatitis, inducing acute respiratory distress syndrome: 1) a sodium-taurocholate induced rat model, and 2) and Cerulein and lipopolysaccharide induced mouse model. RG100204 treatment led to a profound reduction in inflammatory cytokine expression in pancreatic, and lung tissue, in both models. In addition, infiltration of CD68 + and CD11b + cells into these tissues were reduced in RG100204 treated SAP animals, and edema and SAP associated tissue damage were improved. Moreover, we demonstrate that RG100204 reduced apoptosis in the lungs of rat SAP animals, and reduces NF-κB signaling, NLRP3, expression, while profoundly increasing the Nrf2-dependent anti oxidative stress response. We conclude that AQP9 inhibition is a promising strategy for the treatment of pancreatitis and its systemic complications, such as ARDS.


Subject(s)
NF-E2-Related Factor 2 , NLR Family, Pyrin Domain-Containing 3 Protein , Pancreatitis , Respiratory Distress Syndrome , Signal Transduction , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Pancreatitis/drug therapy , NF-E2-Related Factor 2/metabolism , Male , Signal Transduction/drug effects , Mice , Rats , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/metabolism , Aquaporins/metabolism , Aquaporins/antagonists & inhibitors , Disease Models, Animal , Rats, Sprague-Dawley , Lung/pathology , Lung/drug effects , Lung/metabolism , Lipopolysaccharides , Mice, Inbred C57BL , Taurocholic Acid , Lung Injury/drug therapy , Lung Injury/metabolism , Lung Injury/pathology , Pancreas/pathology , Pancreas/drug effects , Pancreas/metabolism , Oxidative Stress/drug effects , Apoptosis/drug effects , Ceruletide , Humans , Heme Oxygenase (Decyclizing)/metabolism
14.
Animal Model Exp Med ; 7(3): 367-376, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38860566

ABSTRACT

BACKGROUND: Severe trauma is associated with systemic inflammation and organ dysfunction. Preclinical rodent trauma models are the mainstay of postinjury research but have been criticized for not fully replicating severe human trauma. The aim of this study was to create a rat model of multicompartmental injury which recreates profound traumatic injury. METHODS: Male Sprague-Dawley rats were subjected to unilateral lung contusion and hemorrhagic shock (LCHS), multicompartmental polytrauma (PT) (unilateral lung contusion, hemorrhagic shock, cecectomy, bifemoral pseudofracture), or naïve controls. Weight, plasma toll-like receptor 4 (TLR4), hemoglobin, spleen to body weight ratio, bone marrow (BM) erythroid progenitor (CFU-GEMM, BFU-E, and CFU-E) growth, plasma granulocyte colony-stimulating factor (G-CSF) and right lung histologic injury were assessed on day 7, with significance defined as p values <0.05 (*). RESULTS: Polytrauma resulted in markedly more profound inhibition of weight gain compared to LCHS (p = 0.0002) along with elevated plasma TLR4 (p < 0.0001), lower hemoglobin (p < 0.0001), and enlarged spleen to body weight ratios (p = 0.004). Both LCHS and PT demonstrated suppression of CFU-E and BFU-E growth compared to naïve (p < 0.03, p < 0.01). Plasma G-CSF was elevated in PT compared to both naïve and LCHS (p < 0.0001, p = 0.02). LCHS and PT demonstrated significant histologic right lung injury with poor alveolar wall integrity and interstitial edema. CONCLUSIONS: Multicompartmental injury as described here establishes a reproducible model of multicompartmental injury with worsened anemia, splenic tissue enlargement, weight loss, and increased inflammatory activity compared to a less severe model. This may serve as a more effective model to recreate profound traumatic injury to replicate the human inflammatory response postinjury.


Subject(s)
Anemia , Disease Models, Animal , Multiple Trauma , Rats, Sprague-Dawley , Shock, Hemorrhagic , Animals , Shock, Hemorrhagic/complications , Male , Anemia/etiology , Anemia/pathology , Multiple Trauma/complications , Multiple Trauma/pathology , Rats , Bone Marrow/pathology , Toll-Like Receptor 4/metabolism , Lung Injury/etiology , Lung Injury/pathology , Granulocyte Colony-Stimulating Factor/blood , Hemoglobins
15.
Anal Chem ; 96(26): 10488-10495, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38901019

ABSTRACT

Hydrogen peroxide (H2O2) overexpressed in mitochondria has been regarded as a key biomarker in the pathological processes of various diseases. However, there is currently a lack of suitable mitochondria-targetable near-infrared (NIR) probes for the visualization of H2O2 in multiple diseases, such as PM2.5 exposure-induced lung injury, hepatic ischemia-reperfusion injury (HIRI), nonalcoholic fatty liver (NAFL), hepatic fibrosis (HF), and malignant tumor tissues containing clinical cancer patient samples. Herein, we conceived a novel NIR fluorescent probe (HCy-H2O2) by introducing pentafluorobenzenesulfonyl as a H2O2 sensing unit into the NIR hemicyanine platform. HCy-H2O2 exhibits good sensitivity and selectivity toward H2O2, accompanied by a remarkable "turn-on" fluorescence signal at 720 nm. Meanwhile, HCy-H2O2 has stable mitochondria-targetable ability and permits monitoring of the up-generated H2O2 level during mitophagy. Furthermore, using HCy-H2O2, we have successfully observed an overproduced mitochondrial H2O2 in ambient PM2.5 exposure-induced lung injury, HIRI, NAFL, and HF models through NIR fluorescence imaging. Significantly, the visualization of H2O2 has been achieved in both tumor-bear mice as well as surgical specimens of cancer patients, making HCy-H2O2 a promising tool for cancer diagnosis and imaging-guided surgery.


Subject(s)
Fluorescent Dyes , Hydrogen Peroxide , Mitochondria , Optical Imaging , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Hydrogen Peroxide/metabolism , Animals , Mitochondria/metabolism , Mitochondria/chemistry , Mice , Humans , Lung Injury/diagnostic imaging , Lung Injury/chemically induced , Lung Injury/metabolism , Infrared Rays
16.
Am J Nurs ; 124(7): 28-34, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38837249

ABSTRACT

ABSTRACT: Using a blind insertion technique to insert small-bore feeding tubes can result in inadvertent placement in the lungs, leading to lung perforation and even mortality. In a Magnet-designated, 500-bed, level 2 trauma center, two serious patient safety events occurred in a four-week period due to nurses blindly inserting a small-bore feeding tube. A patient safety event review team convened and conducted an assessment of reported small-bore feeding tube insertion events that occurred between March 2019 and July 2021. The review revealed six lung perforations over this two-year period. These events prompted the creation of a multidisciplinary team to evaluate alternative small-bore feeding tube insertion practices. The team reviewed the literature and evaluated several evidence-based small-bore feeding tube placement methods, including placement with fluoroscopy, a two-step X-ray, electromagnetic visualization, and capnography. After the evaluation, capnography was selected as the most effective method to mitigate the complications of blind insertion. In this article, the authors describe a quality improvement project involving the implementation of capnography-guided small-bore feeding tube placement to reduce complications and the incidence of lung perforation. Since the completion of the project, which took place from December 13, 2021, through April 18, 2022, no lung injuries or perforations have been reported. Capnography is a relatively simple, noninvasive, and cost-effective technology that provides nurses with a means to safely and effectively insert small-bore feeding tubes, decrease the incidence of adverse events, and improve patient care.


Subject(s)
Lung Injury , Humans , Lung Injury/prevention & control , Lung Injury/etiology , Enteral Nutrition/instrumentation , Enteral Nutrition/methods , Enteral Nutrition/nursing , Capnography , Intubation, Gastrointestinal/adverse effects , Intubation, Gastrointestinal/methods , Intubation, Gastrointestinal/nursing , Quality Improvement , Patient Safety , Trauma Centers
17.
Ann Med ; 56(1): 2362871, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38902986

ABSTRACT

The lung is an important site of extramedullary platelet formation, and megakaryocytes in the lung participate in immune responses in addition to platelet production. In acute lung injury and chronic lung injury, megakaryocytes and platelets play a promoting or protective role through different mechanisms. The authors reviewed the role of megakaryocytes and platelets in common clinical lung injuries with different course of disease and different pathogenic factors in order to provide new thinking for the diagnosis and treatment of lung injuries.


What is the context?Platelets are specialized non-nucleated blood cells produced by cytoplasmic lysis of megakaryocytes.HSCs differentiate into granular mature megakaryocytes and produce platelets.Lung is a reservoir of megakaryocytes and a site where platelets are produced in addition to bone marrow and spleen.Lung injury can be divided into acute lung injury and chronic lung injury, and characterized by different pathogenesis.Platelets and megakaryocytes are involved in hemostasis and regulation of the body 's inflammatory response.The disease state of the lung affects the functions of megakaryocytes and platelets.The role of megakaryocytes and platelets in acute and chronic lung injury is poorly studied.What is new?Platelets in the lung are derived not only from the spleen and bone marrow, but also from megakaryocytes in the pulmonary circulation. In this study, we demonstrated that pulmonary megakaryocytes not only produce platelets to play a hemostatic role in lung injury, but also participate in inflammation and immune response with platelets to promote the process of lung injury or play a protective role.Therefore, it was suggested in our analysis that targeting lung megakaryocytes and platelets is currently a new direction for the treatment of a variety of lung injuries.What is the impact?This review intends to explain the relationship between megakaryocytes, platelets and many types of lung injury from the mechanism of platelet production in the lung, and make a prospect in the new progress in the diagnosis and treatment of lung injury.


Subject(s)
Acute Lung Injury , Blood Platelets , Megakaryocytes , Humans , Acute Lung Injury/pathology , Lung Injury , Lung/pathology , Animals , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/immunology
18.
Sci Rep ; 14(1): 14231, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38902260

ABSTRACT

Butorphanol is widely used as an anesthetic drug, whether butorphanol could reduce organ injury and protecting lung tissue is unknown. This study explored the effects of butorphanol on ALI and investigated its underlying mechanisms. We established a "two-hit" rat model and "two-hit" cell model to prove our hypothesis. Rats were divided into four groups [control, "two-hit" (OA + LPS), "two-hit" + butorphanol (4 mg/kg and 8 mg/kg) (OA + LPS + B1 and OA + LPS + B2)]. RPMVE cells were divided into four groups [control, "two-hit" (OA + LPS), "two-hit" + butorphanol (4 µM and 8 µM) (OA + LPS + 4 µM and OA + LPS + 8 µM)]. Inflammatory injury was assessed by the histopathology and W/D ratio, inflammatory cytokines, and arterial blood gas analysis. Apoptosis was assessed by Western blotting and flow cytometry. The effect of NF-κB p65 was detected by ELISA. Butorphanol could relieve the "two-hit" induced lung injury, the expression of TNF, IL-1ß, IL-6, and improve lung ventilation. In addition, butorphanol decreased Bax and cleaved caspase-3, increased an antiapoptotic protein (Bcl-2), and inhibited the "two-hit" cell apoptosis ratio. Moreover, butorphanol suppressed NF-κB p65 activity in rat lung injury. Our research showed that butorphanol may attenuate "two-hit"-induced lung injury by regulating the activity of NF-κB p65, which may supply more evidence for ALI treatment.


Subject(s)
Acute Lung Injury , Apoptosis , Butorphanol , Inflammation , Animals , Butorphanol/pharmacology , Apoptosis/drug effects , Rats , Male , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/drug therapy , Acute Lung Injury/prevention & control , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Transcription Factor RelA/metabolism , Lipopolysaccharides , Rats, Sprague-Dawley , Lung Injury/chemically induced , Lung Injury/drug therapy , Lung Injury/metabolism , Lung Injury/pathology , Lung Injury/prevention & control , Disease Models, Animal , Cytokines/metabolism , Lung/pathology , Lung/drug effects , Lung/metabolism
19.
J Transl Med ; 22(1): 570, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879538

ABSTRACT

BACKGROUND: Gut microbiota (GM) have been implicated as important regulators of gastrointestinal symptom which is commonly occurred along with respiratory influenza A virus (IAV) infection, suggesting the involvement of the gut-to-lung axis in a host's response to IAV. IAV primarily destroys airway epithelium tight junctions (TJs) and consequently causes acute respiratory disease syndrome. It is known that GM and their metabolism produce an anti-influenza effect, but their role in IAV-induced airway epithelial integrity remains unknown. METHODS: A mouse model of IAV infection was established. GM were analyzed using 16S rRNA gene sequencing, and short-chain fatty acids (SCFAs) levels were measured. GM depletion and fecal microbiota transplantation (FMT) were conducted to validate the role of GM in IAV infection. A pair-feeding experiment was conducted to reveal whether IAV-induced GM dysbiosis is attributed to impaired food intake. Furthermore, human bronchial epithelial (HBE) cells were cocultured with IAV in the presence or absence of acetate. TJs function was analyzed by paracellular permeability and transepithelial electronic resistance (TEER). The mechanism of how acetate affects TJs integrity was evaluated in HBE cells transfected with G protein-coupled receptor 43 (GPR43) short hairpin RNA (shRNA). RESULTS: IAV-infected mice exhibited lower relative abundance of acetate-producing bacteria (Bacteroides, Bifidobacterium, and Akkermansia) and decreased acetate levels in gut and serum. These changes were partly caused by a decrease in food consumption (due to anorexia). GM depletion exacerbated and FMT restored IAV-induced lung inflammatory injury. IAV infection suppressed expressions of TJs (occludin, ZO-1) leading to disrupted airway epithelial barrier function as evidenced by decreased TEER and increased permeability. Acetate pretreatment activated GPR43, partially restored IAV-induced airway epithelial barrier function, and reduced inflammatory cytokines levels (TNF-α, IL-6, and IL-1ß). Such protective effects of acetate were absent in HBE cells transfected with GPR43 shRNA. Acetate and GPR43 improved TJs in an AMP-activated protein kinase (AMPK)-dependent manner. CONCLUSION: Collectively, our results demonstrated that GM protected airway TJs by modulating GPR43-AMPK signaling in IAV-induced lung injury. Therefore, improving GM dysbiosis may be a potential therapeutic target for patients with IAV infection.


Subject(s)
Acetates , Gastrointestinal Microbiome , Lung Injury , Orthomyxoviridae Infections , Tight Junctions , Animals , Tight Junctions/metabolism , Gastrointestinal Microbiome/drug effects , Acetates/metabolism , Humans , Orthomyxoviridae Infections/complications , Mice, Inbred C57BL , Influenza A virus , Fecal Microbiota Transplantation , Receptors, G-Protein-Coupled/metabolism , Mice , Epithelial Cells/metabolism , Dysbiosis , Fatty Acids, Volatile/metabolism
20.
J Forensic Sci ; 69(4): 1495-1500, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38853355

ABSTRACT

Multiple gunshot suicides are relatively rare and present significant challenges for investigators and forensic pathologists. In such cases, assessing the possibility of more than one shot being fired can be crucial in distinguishing homicide from suicide. We present a rare case of multiple self-inflicted gunshot wounds to the chest with severe injury to the heart and left lung. Both the sudden, unexpected death of the man, the unknown source of the firearm, and the number and nature of the injuries sustained seemed quite unusual. The investigation revealed that the wounds were self-inflicted at close range, and the interval between successive shots (estimated by witnesses at up to 2 min) suggests that even multiple gunshot wounds perforating the heart and lungs may not necessarily cause immediate incapacitation. Forensic investigations in such cases should be multi-faceted and include full autopsy and ballistics expertise, as well as witness testimony and medical history.


Subject(s)
Lung Injury , Suicide, Completed , Wounds, Gunshot , Humans , Wounds, Gunshot/pathology , Male , Lung Injury/pathology , Thoracic Injuries/pathology , Heart Injuries/pathology , Adult , Forensic Ballistics , Poland
SELECTION OF CITATIONS
SEARCH DETAIL
...