Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.516
Filter
1.
Stem Cell Res Ther ; 15(1): 147, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773627

ABSTRACT

BACKGROUND: Bleomycin (BLM)-induced lung injury is characterized by mixed histopathologic changes with inflammation and fibrosis, such as observed in human patients with bronchopulmonary dysplasia, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease. Although no curative therapies for these lung diseases exist, stem cell therapy has emerged as a potential therapeutic option. Multilineage-differentiating stress-enduring (Muse) cells are endogenous pluripotent- and macrophage-like stem cells distributed in various adult and fetal tissues as stage-specific embryonic antigen-3-positive cells. They selectively home to damaged tissue by sensing sphingosine-1-phosphate and replace the damaged/apoptotic cells by in vivo differentiation. Clinical trials for some human diseases suggest the safety and therapeutic efficacy of intravenously injected human leukocyte antigen-mismatched allogenic Muse cells from adult bone marrow (BM) without immunosuppressant. Here, we evaluated the therapeutic effects of human Muse cells from preterm and term umbilical cord (UC), and adult BM in a rat BLM-induced lung injury model. METHODS: Rats were endotracheally administered BLM to induce lung injury on day 0. On day 3, human preterm UC-Muse, term UC-Muse, or adult BM-Muse cells were administered intravenously without immunosuppressants, and rats were subjected to histopathologic analysis on day 21. Body weight, serum surfactant protein D (SP-D) levels, and oxygen saturation (SpO2) were monitored. Histopathologic lung injury scoring by the Ashcroft and modified American Thoracic Society document scales, quantitative characterization of engrafted Muse cells, RNA sequencing analysis, and in vitro migration assay of infused Muse cells were performed. RESULTS: Rats administered preterm- and term-UC-Muse cells exhibited a significantly better recovery based on weight loss, serum SP-D levels, SpO2, and histopathologic lung injury scores, and a significantly higher rate of both Muse cell homing to the lung and alveolar marker expression (podoplanin and prosurfactant protein-C) than rats administered BM-Muse cells. Rats receiving preterm-UC-Muse cells showed statistically superior results to those receiving term-UC-Muse cells in many of the measures. These findings are thought to be due to higher expression of genes related to cell migration, lung differentiation, and cell adhesion. CONCLUSION: Preterm UC-Muse cells deliver more efficient therapeutic effects than term UC- and BM-Muse cells for treating BLM-induced lung injury in a rat model.


Subject(s)
Bleomycin , Disease Models, Animal , Lung Injury , Umbilical Cord , Animals , Humans , Rats , Lung Injury/therapy , Lung Injury/chemically induced , Lung Injury/pathology , Umbilical Cord/cytology , Rats, Sprague-Dawley , Male , Cell Differentiation , Female
2.
ACS Nano ; 18(20): 13361-13376, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38728619

ABSTRACT

Oxygen therapy cannot rescue local lung hypoxia in patients with severe respiratory failure. Here, an inhalable platform is reported for overcoming the aberrant hypoxia-induced immune changes and alveolar damage using camouflaged poly(lactic-co-glycolic) acid (PLGA) microparticles with macrophage apoptotic body membrane (cMAB). cMABs are preloaded with mitochondria-targeting superoxide dismutase/catalase nanocomplexes (NCs) and modified with pathology-responsive macrophage growth factor colony-stimulating factor (CSF) chains, which form a core-shell platform called C-cMAB/NC with efficient deposition in deeper alveoli and high affinity to alveolar epithelial cells (AECs) after CSF chains are cleaved by matrix metalloproteinase 9. Therefore, NCs can be effectively transported into mitochondria to inhibit inflammasome-mediated AECs damage in mouse models of hypoxic acute lung injury. Additionally, the at-site CSF release is sufficient to rescue circulating monocytes and macrophages and alter their phenotypes, maximizing synergetic effects of NCs on creating a pro-regenerative microenvironment that enables resolution of lung injury and inflammation. This inhalable platform may have applications to numerous inflammatory lung diseases.


Subject(s)
Macrophages , Polylactic Acid-Polyglycolic Acid Copolymer , Animals , Mice , Macrophages/metabolism , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Mice, Inbred C57BL , Hypoxia , Acute Lung Injury/pathology , Lung Injury/pathology , Lung Injury/therapy , Administration, Inhalation , Apoptosis/drug effects
3.
Sci Prog ; 107(2): 368504241257060, 2024.
Article in English | MEDLINE | ID: mdl-38807538

ABSTRACT

INTRODUCTION: Ischemia-reperfusion (IR) injury is a major concern that frequently occurs during vascular surgeries. Hydrogen-rich saline (HRS) solution exhibits antioxidant and anti-inflammatory properties. This study aimed to examine the effects of HRS applied before ischemia in the lungs of rats using a lower extremity IR model. MATERIAL AND METHODS: After approval was obtained from the ethics committee, 18 male Wistar albino rats weighing 250-280 g were randomly divided into three groups: control (C), IR and IR-HRS. In the IR and IR-HRS groups, an atraumatic microvascular clamp was used to clamp the infrarenal abdominal aorta, and skeletal muscle ischemia was induced. After 120 min, the clamp was removed, and reperfusion was achieved for 120 min. In the IR-HRS group, HRS was administered intraperitoneally 30 min before the procedure. Lung tissue samples were examined under a light microscope and stained with hematoxylin-eosin (H&E). Malondialdehyde (MDA) levels, total sulfhydryl (SH) levels, and histopathological parameters were evaluated in the tissue samples. RESULTS: MDA and total SH levels were significantly higher in the IR group than in the control group (p < 0.0001 and p = 0.001, respectively). MDA and total SH levels were significantly lower in the IR-HRS group than in the IR group (p < 0.0001 and p = 0.013, respectively). A histopathological examination revealed that neutrophil infiltration/aggregation, alveolar wall thickness, and total lung injury score were significantly higher in the IR group than in the control group (p < 0.0001, p = 0.001, and p < 0.0001, respectively). Similarly, alveolar wall thickness and total lung injury scores were significantly higher in the IR-HRS group than in the control group (p = 0.009 and p = 0.004, respectively). A statistically significant decrease was observed in neutrophil infiltration/aggregation and total lung injury scores in the IR-HRS group compared to those in the IR group (p = 0.023 and p = 0.022, respectively). CONCLUSION: HRS at a dose of 20 mg/kg, administered intraperitoneally 30 min before ischemia in rats, reduced lipid peroxidation and oxidative stress, while also reducing IR damage in lung histopathology. We believe that HRS administered to rats prior to IR exerts a lung-protective effect.


Subject(s)
Hydrogen , Lung , Malondialdehyde , Muscle, Skeletal , Rats, Wistar , Reperfusion Injury , Saline Solution , Animals , Reperfusion Injury/pathology , Reperfusion Injury/drug therapy , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscle, Skeletal/blood supply , Muscle, Skeletal/metabolism , Rats , Lung/pathology , Lung/drug effects , Lung/metabolism , Lung/blood supply , Saline Solution/pharmacology , Saline Solution/chemistry , Saline Solution/administration & dosage , Hydrogen/pharmacology , Hydrogen/administration & dosage , Malondialdehyde/metabolism , Lung Injury/pathology , Lung Injury/drug therapy
4.
Nat Commun ; 15(1): 3816, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769293

ABSTRACT

SARS-CoV-2 infection causes severe pulmonary manifestations, with poorly understood mechanisms and limited treatment options. Hyperferritinemia and disrupted lung iron homeostasis in COVID-19 patients imply that ferroptosis, an iron-dependent cell death, may occur. Immunostaining and lipidomic analysis in COVID-19 lung autopsies reveal increases in ferroptosis markers, including transferrin receptor 1 and malondialdehyde accumulation in fatal cases. COVID-19 lungs display dysregulation of lipids involved in metabolism and ferroptosis. We find increased ferritin light chain associated with severe COVID-19 lung pathology. Iron overload promotes ferroptosis in both primary cells and cancerous lung epithelial cells. In addition, ferroptosis markers strongly correlate with lung injury severity in a COVID-19 lung disease model using male Syrian hamsters. These results reveal a role for ferroptosis in COVID-19 pulmonary disease; pharmacological ferroptosis inhibition may serve as an adjuvant therapy to prevent lung damage during SARS-CoV-2 infection.


Subject(s)
COVID-19 , Ferroptosis , Lung , Mesocricetus , SARS-CoV-2 , COVID-19/virology , COVID-19/metabolism , COVID-19/pathology , Animals , Humans , Male , Lung/pathology , Lung/virology , Lung/metabolism , SARS-CoV-2/physiology , Female , Iron/metabolism , Middle Aged , Disease Models, Animal , Aged , Lung Injury/virology , Lung Injury/metabolism , Lung Injury/pathology , Iron Overload/metabolism , Adult , Cricetinae
5.
Mol Med Rep ; 30(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38695251

ABSTRACT

Although exogenous calcitonin gene­related peptide (CGRP) protects against hyperoxia­induced lung injury (HILI), the underlying mechanisms remain unclear. The present study attempted to elucidate the molecular mechanism by which CGRP protects against hyperoxia­induced alveolar cell injury. Human alveolar A549 cells were treated with 95% hyperoxia to establish a hyperoxic cell injury model. ELISA was performed to detect the CGRP secretion. Immunofluorescence, quantitative (q)PCR, and western blotting were used to detect the expression and localization of CGRP receptor (CGRPR) and transient receptor potential vanilloid 1 (TRPV1). Cell counting kit­8 and flow cytometry were used to examine the proliferation and apoptosis of treated cells. Digital calcium imaging and patch clamp were used to analyze the changes in intracellular Ca2+ signaling and membrane currents induced by CGRP in A549 cells. The mRNA and protein expression levels of Cyclin D1, proliferating cell nuclear antigen (PCNA), Bcl­2 and Bax were detected by qPCR and western blotting. The expression levels of CGRPR and TRPV1 in A549 cells were significantly downregulated by hyperoxic treatment, but there was no significant difference in CGRP release between cells cultured under normal air and hyperoxic conditions. CGRP promoted cell proliferation and inhibited apoptosis in hyperoxia, but selective inhibitors of CGRPR and TRPV1 channels could effectively attenuate these effects; TRPV1 knockdown also attenuated this effect. CGRP induced Ca2+ entry via the TRPV1 channels and enhanced the membrane non­selective currents through TRPV1 channels. The CGRP­induced increase in intracellular Ca2+ was reduced by inhibiting the phospholipase C (PLC)/protein kinase C (PKC) pathway. Moreover, PLC and PKC inhibitors attenuated the effects of CGRP in promoting cell proliferation and inhibiting apoptosis. In conclusion, exogenous CGRP acted by inversely regulating the function of TRPV1 channels in alveolar cells. Importantly, CGRP protected alveolar cells from hyperoxia­induced injury via the CGRPR/TRPV1/Ca2+ axis, which may be a potential target for the prevention and treatment of the HILI.


Subject(s)
Alveolar Epithelial Cells , Calcitonin Gene-Related Peptide , Hyperoxia , Lung Injury , Humans , A549 Cells , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Apoptosis/drug effects , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide/pharmacology , Calcium/metabolism , Calcium Signaling/drug effects , Cell Proliferation/drug effects , Hyperoxia/metabolism , Hyperoxia/pathology , Receptors, Calcitonin Gene-Related Peptide/metabolism , Signal Transduction/drug effects , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Lung Injury/metabolism , Lung Injury/pathology
6.
Free Radic Biol Med ; 220: 179-191, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38704053

ABSTRACT

Sepsis is a systemic inflammatory response syndrome caused by the invasion of pathogenic microorganisms. Despite major advances in diagnosis and technology, morbidity and mortality remain high. The level of neutrophil extracellular traps (NETs) is closely associated with the progression and prognosis of sepsis, suggesting the regulation of NET formation as a new strategy in sepsis treatment. Owing to its pleiotropic effects, atorvastatin, a clinical lipid-lowering drug, affects various aspects of sepsis-related inflammation and immune responses. To align closely with clinical practice, we combined it with imipenem for the treatment of sepsis. In this study, we used a cecum ligation and puncture-induced lung injury mouse model and employed techniques including western blot, immunofluorescence, and enzyme-linked immunosorbent assay to measure the levels of NETs and other sepsis-related lung injury indicators. Our findings indicate that atorvastatin effectively inhibited the formation of NETs. When combined with imipenem, it significantly alleviated lung injury, reduced systemic inflammation, and improved the 7-day survival rate of septic mice. Additionally, we explored the inhibitory mechanism of atorvastatin on NET formation in vitro, revealing its potential action through the ERK/NOX2 pathway. Therefore, atorvastatin is a potential immunomodulatory agent that may offer new treatment strategies for patients with sepsis in clinical settings.


Subject(s)
Atorvastatin , Disease Models, Animal , Extracellular Traps , Imipenem , NADPH Oxidase 2 , Sepsis , Animals , Atorvastatin/pharmacology , Extracellular Traps/drug effects , Extracellular Traps/metabolism , Sepsis/drug therapy , Sepsis/metabolism , Sepsis/complications , Sepsis/pathology , Mice , Imipenem/pharmacology , NADPH Oxidase 2/metabolism , NADPH Oxidase 2/genetics , Lung Injury/drug therapy , Lung Injury/pathology , Lung Injury/metabolism , Male , MAP Kinase Signaling System/drug effects , Neutrophils/metabolism , Neutrophils/drug effects , Neutrophils/pathology , Signal Transduction/drug effects , Humans , Mice, Inbred C57BL , Drug Therapy, Combination
7.
Int Immunopharmacol ; 134: 112165, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38692017

ABSTRACT

Particulate matter (PM) is considered the fundamental component of atmospheric pollutants and is associated with the pathogenesis of many respiratory diseases. Fibroblast growth factor 10 (FGF10) mediates mesenchymal-epithelial signaling and has been linked with the repair process of PM-induced lung injury (PMLI). However, the pathogenic mechanism of PMLI and the specific FGF10 protective mechanism against this injury are still undetermined. PM was administered in vivo into murine airways or in vitro to human bronchial epithelial cells (HBECs), and the inflammatory response and ferroptosis-related proteins SLC7A11 and GPX4 were assessed. The present research investigates the FGF10-mediated regulation of ferroptosis in PMLI mice models in vivo and HBECs in vitro. The results showed that FGF10 pretreatment reduced PM-mediated oxidative damage and ferroptosis in vivo and in vitro. Furthermore, FGF10 pretreatment led to reduced oxidative stress, decreased secretion of inflammatory mediators, and activation of the Nrf2-dependent antioxidant signaling. Additionally, silencing of Nrf2 using siRNA in the context of FGF10 treatment attenuated the effect on ferroptosis. Altogether, both in vivo and in vitro assessments confirmed that FGF10 protects against PMLI by inhibiting ferroptosis via the Nrf2 signaling. Thus, FGF10 can be used as a novel ferroptosis suppressor and a potential treatment target in PMLI.


Subject(s)
Ferroptosis , Fibroblast Growth Factor 10 , Lung Injury , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Oxidative Stress , Particulate Matter , Signal Transduction , Ferroptosis/drug effects , NF-E2-Related Factor 2/metabolism , Animals , Particulate Matter/toxicity , Humans , Signal Transduction/drug effects , Fibroblast Growth Factor 10/metabolism , Fibroblast Growth Factor 10/genetics , Mice , Oxidative Stress/drug effects , Lung Injury/chemically induced , Lung Injury/metabolism , Lung Injury/pathology , Lung Injury/prevention & control , Male , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Cell Line , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Disease Models, Animal , Amino Acid Transport System y+
8.
Biomed Pharmacother ; 175: 116674, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703509

ABSTRACT

Numerous cases of lung injury caused by viral infection were reported during the coronavirus disease-19 pandemic. While there have been significant efforts to develop drugs that block viral infection and spread, the development of drugs to reduce or reverse lung injury has been a lower priority. This study aimed to identify compounds from a library of compounds that prevent viral infection that could reduce and prevent lung epithelial cell damage. We investigated the cytotoxicity of the compounds, their activity in inhibiting viral spike protein binding to cells, and their activity in reducing IL-8 production in lung epithelial cells damaged by amodiaquine (AQ). We identified N-(4-(4-methoxyphenoxy)-3-methylphenyl)-N-methylacetamide (MPoMA) as a non-cytotoxic inhibitor against viral infection and AQ-induced cell damage. MPoMA inhibited the expression of IL-8, IL-6, IL-1ß, and fibronectin induced by AQ and protected against AQ-induced morphological changes. However, MPoMA did not affect basal IL-8 expression in lung epithelial cells in the absence of AQ. Further mechanistic analysis confirmed that MPoMA selectively promoted the proteasomal degradation of inflammatory mediator p65, thereby reducing intracellular p65 expression and p65-mediated inflammatory responses. MPoMA exerted potent anti-inflammatory and protective functions in epithelial cells against LPS-induced acute lung injury in vivo. These findings suggest that MPoMA may have beneficial effects in suppressing viral infection and preventing lung epithelial cell damage through the degradation of p65 and inhibition of the production of inflammatory cytokines.


Subject(s)
Epithelial Cells , Animals , Humans , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Mice , Lung/pathology , Lung/drug effects , Lung/metabolism , Transcription Factor RelA/metabolism , COVID-19 Drug Treatment , A549 Cells , SARS-CoV-2/drug effects , COVID-19/prevention & control , Proteolysis/drug effects , Lung Injury/prevention & control , Lung Injury/pathology , Lung Injury/metabolism , Lung Injury/virology , Male , Acute Lung Injury/prevention & control , Acute Lung Injury/pathology , Acute Lung Injury/metabolism , Acetamides/pharmacology
9.
Nat Commun ; 15(1): 4148, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755149

ABSTRACT

Cell plasticity theoretically extends to all possible cell types, but naturally decreases as cells differentiate, whereas injury-repair re-engages the developmental plasticity. Here we show that the lung alveolar type 2 (AT2)-specific transcription factor (TF), CEBPA, restricts AT2 cell plasticity in the mouse lung. AT2 cells undergo transcriptional and epigenetic maturation postnatally. Without CEBPA, both neonatal and mature AT2 cells reduce the AT2 program, but only the former reactivate the SOX9 progenitor program. Sendai virus infection bestows mature AT2 cells with neonatal plasticity where Cebpa mutant, but not wild type, AT2 cells express SOX9, as well as more readily proliferate and form KRT8/CLDN4+ transitional cells. CEBPA promotes the AT2 program by recruiting the lung lineage TF NKX2-1. The temporal change in CEBPA-dependent plasticity reflects AT2 cell developmental history. The ontogeny of AT2 cell plasticity and its transcriptional and epigenetic mechanisms have implications in lung regeneration and cancer.


Subject(s)
Alveolar Epithelial Cells , Cell Plasticity , Thyroid Nuclear Factor 1 , Animals , Mice , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/cytology , Thyroid Nuclear Factor 1/metabolism , Thyroid Nuclear Factor 1/genetics , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , Cell Differentiation , Epigenesis, Genetic , Mice, Inbred C57BL , Lung Injury/pathology , Lung Injury/metabolism , Lung Injury/genetics , Regeneration , Sendai virus/genetics , Sendai virus/physiology , Cell Proliferation , Mice, Knockout , Lung/metabolism
11.
Sci Rep ; 14(1): 11637, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773158

ABSTRACT

Ricin, an extremely potent toxin produced from the seeds of castor plant, Ricinus communis, is ribosome-inactivating protein that blocks cell-protein synthesis. It is considered a biological threat due to worldwide availability of castor beans, massive quantities as a by-product of castor oil production, high stability and ease of production. The consequence of exposure to lethal dose of ricin was extensively described in various animal models. However, it is assumed that in case of aerosolized ricin bioterror attack, the majority of individuals would be exposed to sublethal doses rather than to lethal ones. Therefore, the purpose of current study was to assess short- and long-term effects on physiological parameters and function following sublethal pulmonary exposure. We show that in the short-term, sublethal exposure of mice to ricin resulted in acute lung injury, including interstitial pneumonia, cytokine storm, neutrophil influx, edema and cellular death. This damage was manifested in reduced lung performance and physiological function. Interestingly, although in the long-term, mice recovered from acute lung damage and restored pulmonary and physiological functionality, the reparative process was associated with lasting fibrotic lesions. Therefore, restriction of short-term acute phase of the disease and management of long-term pulmonary fibrosis by medical countermeasures is expected to facilitate the quality of life of exposed survivors.


Subject(s)
Ricin , Animals , Ricin/toxicity , Mice , Lung/drug effects , Lung/pathology , Cytokines/metabolism , Lung Injury/chemically induced , Lung Injury/pathology , Female , Disease Models, Animal
12.
Curr Top Dev Biol ; 159: 59-129, 2024.
Article in English | MEDLINE | ID: mdl-38729684

ABSTRACT

The mammalian lung completes its last step of development, alveologenesis, to generate sufficient surface area for gas exchange. In this process, multiple cell types that include alveolar epithelial cells, endothelial cells, and fibroblasts undergo coordinated cell proliferation, cell migration and/or contraction, cell shape changes, and cell-cell and cell-matrix interactions to produce the gas exchange unit: the alveolus. Full functioning of alveoli also involves immune cells and the lymphatic and autonomic nervous system. With the advent of lineage tracing, conditional gene inactivation, transcriptome analysis, live imaging, and lung organoids, our molecular understanding of alveologenesis has advanced significantly. In this review, we summarize the current knowledge of the constituents of the alveolus and the molecular pathways that control alveolar formation. We also discuss how insight into alveolar formation may inform us of alveolar repair/regeneration mechanisms following lung injury and the pathogenic processes that lead to loss of alveoli or tissue fibrosis.


Subject(s)
Pulmonary Alveoli , Animals , Humans , Pulmonary Alveoli/cytology , Pulmonary Alveoli/metabolism , Pulmonary Gas Exchange/physiology , Regeneration , Lung/cytology , Lung/metabolism , Lung Injury/pathology
13.
Cell Mol Biol Lett ; 29(1): 61, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38671352

ABSTRACT

BACKGROUND: Macrophage proinflammatory activation contributes to the pathology of severe acute pancreatitis (SAP) and, simultaneously, macrophage functional changes, and increased pyroptosis/necrosis can further exacerbate the cellular immune suppression during the process of SAP, where cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) plays an important role. However, the function and mechanism of cGAS-STING in SAP-induced lung injury (LI) remains unknown. METHODS: Lipopolysaccharide (LPS) was combined with caerulein-induced SAP in wild type, cGAS -/- and sting -/- mice. Primary macrophages were extracted via bronchoalveolar lavage and peritoneal lavage. Ana-1 cells were pretreated with LPS and stimulated with nigericin sodium salt to induce pyroptosis in vitro. RESULTS: SAP triggered NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome activation-mediated pyroptosis of alveolar and peritoneal macrophages in mouse model. Knockout of cGAS/STING could ameliorate NLRP3 activation and macrophage pyroptosis. In addition, mitochondrial (mt)DNA released from damaged mitochondria further induced macrophage STING activation in a cGAS- and dose-dependent manner. Upregulated STING signal can promote NLRP3 inflammasome-mediated macrophage pyroptosis and increase serum interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α levels and, thus, exacerbate SAP-associated LI (SAP-ALI). Downstream molecules of STING, IRF7, and IRF3 connect the mtDNA-cGAS-STING axis and the NLRP3-pyroptosis axis. CONCLUSIONS: Negative regulation of any molecule in the mtDNA-cGAS-STING-IRF7/IRF3 pathway can affect the activation of NLRP3 inflammasomes, thereby reducing macrophage pyroptosis and improving SAP-ALI in mouse model.


Subject(s)
DNA, Mitochondrial , Interferon Regulatory Factor-3 , Lung Injury , Macrophages , Membrane Proteins , Nucleotidyltransferases , Pancreatitis , Pyroptosis , Signal Transduction , Animals , Pyroptosis/genetics , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Mice , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Pancreatitis/metabolism , Pancreatitis/genetics , Pancreatitis/pathology , Pancreatitis/chemically induced , Macrophages/metabolism , Lung Injury/pathology , Lung Injury/genetics , Lung Injury/metabolism , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factor-7/genetics , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Inflammasomes/metabolism , Lipopolysaccharides , Male , Disease Models, Animal
14.
Int Immunopharmacol ; 133: 112129, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38652964

ABSTRACT

Lung injury in sepsis is caused by an excessive inflammatory response caused by the entry of pathogenic microorganisms into the body. It is also accompanied by the production of large amounts of ROS. Ferroptosis and mitochondrial dysfunction have also been shown to be related to sepsis. Finding suitable sepsis therapeutic targets is crucial for sepsis research. BTB domain-containing protein 7 (KBTBD7) is involved in regulating inflammatory responses, but its role and mechanism in the treatment of septic lung injury are still unclear. In this study, we evaluated the role and related mechanisms of KBTBD7 in septic lung injury. In in vitro studies, we established an in vitro model by inducing human alveolar epithelial cells with lipopolysaccharide (LPS) and found that KBTBD7 was highly expressed in the in vitro model. KBTBD7 knockdown could reduce the inflammatory response by inhibiting the secretion of pro-inflammatory factors and inhibit the production of ROS, ferroptosis and mitochondrial dysfunction. Mechanistic studies show that KBTBD7 interacts with FOXA1, promotes FOXA1 expression, and indirectly inhibits SLC7A11 transcription. In vivo studies have shown that knocking down KBTBD7 improves lung tissue damage in septic lung injury mice, inhibits inflammatory factors, ROS production and ferroptosis. Taken together, knockdown of KBTBD7 shows an alleviating effect on septic lung injury in vitro and in vivo, providing a potential therapeutic target for the treatment of septic lung injury.


Subject(s)
Amino Acid Transport System y+ , Ferroptosis , Lung Injury , Mice, Inbred C57BL , Mitochondria , Reactive Oxygen Species , Sepsis , Animals , Humans , Mitochondria/metabolism , Mice , Reactive Oxygen Species/metabolism , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Lung Injury/metabolism , Lung Injury/pathology , Lipopolysaccharides , Male , Hepatocyte Nuclear Factor 3-alpha/metabolism , Hepatocyte Nuclear Factor 3-alpha/genetics , Disease Models, Animal , Gene Knockdown Techniques , Acute Lung Injury/pathology , Acute Lung Injury/immunology , Alveolar Epithelial Cells/metabolism
15.
Ecotoxicol Environ Saf ; 277: 116330, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38636406

ABSTRACT

PIWI-interacting RNAs (piRNAs) is an emerging class of small non-coding RNAs that has been recently reported to have functions in infertility, tumorigenesis, and multiple diseases in humans. Previously, 5 toxicity pathways were proposed from hundreds of toxicological studies that underlie BaP-induced lung injuries, and a "Bottom-up" approach was established to identify small non-coding RNAs that drive BaP-induced pulmonary effects by investigating the activation of these pathways in vitro, and the expression of the candidate microRNAs were validated in tissues of patients with lung diseases from publications. Here in this study, we employed the "Bottom-up" approach to identifying the roles of piRNAs and further validated the mechanisms in vivo using mouse acute lung injury model. Specifically, by non-coding RNA profiling in in vitro BaP exposure, a total of 3 suppressed piRNAs that regulate 5 toxicity pathways were proposed, including piR-004153 targeting CYP1A1, FGFR1, ITGA5, IL6R, NGRF, and SDHA, piR-020326 targeting CDK6, and piR-020388 targeting RASD1. Animal experiments demonstrated that tail vein injection of respective formulated agomir-piRNAs prior to BaP exposure could all alleviate acute lung injury that was shown by histopathological and biochemical evidences. Immunohistochemical evaluation focusing on NF-kB and Bcl-2 levels showed that exogenous piRNAs protect against BaP-induced inflammation and apoptosis, which further support that the inhibition of the 3 piRNAs had an important impact on BaP-induced lung injuries. This mechanism-driven, endpoint-supported result once again confirmed the plausibility and efficiency of the approach integrating in silico, in vitro, and in vivo evidences for the purpose of identifying key molecules.


Subject(s)
Benzo(a)pyrene , RNA, Small Interfering , Animals , Mice , Benzo(a)pyrene/toxicity , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , Lung Injury/chemically induced , Lung Injury/pathology , Male , Mice, Inbred C57BL , Humans , Piwi-Interacting RNA
16.
FASEB J ; 38(8): e23612, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38648494

ABSTRACT

Considerable progress has been made in understanding the function of alveolar epithelial cells in a quiescent state and regeneration mechanism after lung injury. Lung injury occurs commonly from severe viral and bacterial infections, inhalation lung injury, and indirect injury sepsis. A series of pathological mechanisms caused by excessive injury, such as apoptosis, autophagy, senescence, and ferroptosis, have been studied. Recovery from lung injury requires the integrity of the alveolar epithelial cell barrier and the realization of gas exchange function. Regeneration mechanisms include the participation of epithelial progenitor cells and various niche cells involving several signaling pathways and proteins. While alveoli are damaged, alveolar type II (AT2) cells proliferate and differentiate into alveolar type I (AT1) cells to repair the damaged alveolar epithelial layer. Alveolar epithelial cells are surrounded by various cells, such as fibroblasts, endothelial cells, and various immune cells, which affect the proliferation and differentiation of AT2 cells through paracrine during alveolar regeneration. Besides, airway epithelial cells also contribute to the repair and regeneration process of alveolar epithelium. In this review, we mainly discuss the participation of epithelial progenitor cells and various niche cells involving several signaling pathways and transcription factors.


Subject(s)
Alveolar Epithelial Cells , Lung Injury , Regeneration , Humans , Regeneration/physiology , Animals , Lung Injury/metabolism , Lung Injury/pathology , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Stem Cells/metabolism , Stem Cells/physiology , Pulmonary Alveoli/pathology , Pulmonary Alveoli/metabolism , Signal Transduction , Cell Differentiation
17.
Eur J Pharmacol ; 974: 176612, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38677537

ABSTRACT

One of the main pathological features of chronic obstructive pulmonary disease (COPD) is the loss of functional alveolar tissue as a consequence of impaired regenerative capacities (emphysema). Recent research suggests that the secretome from mesenchymal cells, particularly extracellular vesicles (EVs), may possess regenerative properties beneficial for lung repair. However, the regenerative potential of the soluble factors (SFs) within the secretome remains largely unexplored in COPD. To this extent, we purified EVs and SFs secreted by lung fibroblasts to generate EV-enriched and SF-enriched fractions, and evaluated their effects on elastase-induced lung injury in both precision-cut lung slices (PCLS) and a mouse model. EV- and SF-enriched fractions were concentrated and purified from the conditioned medium of cultured MRC-5 lung fibroblasts using a combination of ultrafiltration and size exclusion chromatography, and were subsequently characterized according to the MISEV guidelines. Treatment with EV- or SF-enriched concentrates prevented and improved elastase-induced emphysema in PCLS, leading to reduced lung injury and upregulated markers of alveolar epithelial cells (aquaporin 5 and surfactant protein C), indicating potential parenchymal regeneration. Accordingly, prophylactic intratracheal treatment with lung fibroblast-derived EV- and SF-enriched concentrates in vivo attenuated elastase-induced lung tissue destruction, improved lung function, and enhanced gene expression of alveolar epithelial cell markers. Here, alveolar repair not only serves the purpose of facilitating gas exchange, but also by reinstating the essential parenchymal tethering required for optimal airway mechanics. In conclusion, this study highlights the therapeutic potential of both lung fibroblast-derived EV- and SF-enriched concentrates for the treatment of lung injury and emphysema.


Subject(s)
Extracellular Vesicles , Fibroblasts , Lung , Pancreatic Elastase , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Animals , Fibroblasts/drug effects , Fibroblasts/metabolism , Lung/pathology , Lung/drug effects , Mice , Humans , Lung Injury/pathology , Lung Injury/chemically induced , Lung Injury/metabolism , Cell Line , Male , Mice, Inbred C57BL , Disease Models, Animal , Solubility
18.
Cell ; 187(10): 2428-2445.e20, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38579712

ABSTRACT

Alveolar type 2 (AT2) cells are stem cells of the alveolar epithelia. Previous genetic lineage tracing studies reported multiple cellular origins for AT2 cells after injury. However, conventional lineage tracing based on Cre-loxP has the limitation of non-specific labeling. Here, we introduced a dual recombinase-mediated intersectional genetic lineage tracing approach, enabling precise investigation of AT2 cellular origins during lung homeostasis, injury, and repair. We found AT1 cells, being terminally differentiated, did not contribute to AT2 cells after lung injury and repair. Distinctive yet simultaneous labeling of club cells, bronchioalveolar stem cells (BASCs), and existing AT2 cells revealed the exact contribution of each to AT2 cells post-injury. Mechanistically, Notch signaling inhibition promotes BASCs but impairs club cells' ability to generate AT2 cells during lung repair. This intersectional genetic lineage tracing strategy with enhanced precision allowed us to elucidate the physiological role of various epithelial cell types in alveolar regeneration following injury.


Subject(s)
Alveolar Epithelial Cells , Lung , Stem Cells , Animals , Mice , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/cytology , Cell Differentiation , Cell Lineage , Lung/cytology , Lung/metabolism , Lung/physiology , Lung Injury/pathology , Mice, Inbred C57BL , Pulmonary Alveoli/cytology , Pulmonary Alveoli/metabolism , Receptors, Notch/metabolism , Regeneration , Signal Transduction , Stem Cells/metabolism , Stem Cells/cytology
19.
Am J Physiol Cell Physiol ; 326(6): C1637-C1647, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38646782

ABSTRACT

Bleomycin (BLM)-induced lung injury in mice is a valuable model for investigating the molecular mechanisms that drive inflammation and fibrosis and for evaluating potential therapeutic approaches to treat the disease. Given high variability in the BLM model, it is critical to accurately phenotype the animals in the course of an experiment. In the present study, we aimed to demonstrate the utility of microscopic computed tomography (µCT) imaging combined with an artificial intelligence (AI)-convolutional neural network (CNN)-powered lung segmentation for rapid phenotyping of BLM mice. µCT was performed in freely breathing C57BL/6J mice under isoflurane anesthesia on days 7 and 21 after BLM administration. Terminal invasive lung function measurement and histological assessment of the left lung collagen content were conducted as well. µCT image analysis demonstrated gradual and time-dependent development of lung injury as evident by alterations in the lung density, air-to-tissue volume ratio, and lung aeration in mice treated with BLM. The right and left lung were unequally affected. µCT-derived parameters such as lung density, air-to-tissue volume ratio, and nonaerated lung volume correlated well with the invasive lung function measurement and left lung collagen content. Our study demonstrates the utility of AI-CNN-powered µCT image analysis for rapid and accurate phenotyping of BLM mice in the course of disease development and progression.NEW & NOTEWORTHY Microscopic computed tomography (µCT) imaging combined with an artificial intelligence (AI)-convolutional neural network (CNN)-powered lung segmentation is a rapid and powerful tool for noninvasive phenotyping of bleomycin mice over the course of the disease. This, in turn, allows earlier and more reliable identification of therapeutic effects of new drug candidates, ultimately leading to the reduction of unnecessary procedures in animals in pharmacological research.


Subject(s)
Bleomycin , Lung Injury , Lung , Mice, Inbred C57BL , Neural Networks, Computer , Phenotype , Animals , Bleomycin/toxicity , Lung Injury/chemically induced , Lung Injury/diagnostic imaging , Lung Injury/pathology , Lung Injury/metabolism , Lung/diagnostic imaging , Lung/drug effects , Lung/pathology , Lung/metabolism , Mice , X-Ray Microtomography/methods , Disease Models, Animal , Artificial Intelligence , Male , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/diagnostic imaging , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Collagen/metabolism
20.
Nature ; 628(8009): 835-843, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38600381

ABSTRACT

Severe influenza A virus (IAV) infections can result in hyper-inflammation, lung injury and acute respiratory distress syndrome1-5 (ARDS), for which there are no effective pharmacological therapies. Necroptosis is an attractive entry point for therapeutic intervention in ARDS and related inflammatory conditions because it drives pathogenic lung inflammation and lethality during severe IAV infection6-8 and can potentially be targeted by receptor interacting protein kinase 3 (RIPK3) inhibitors. Here we show that a newly developed RIPK3 inhibitor, UH15-38, potently and selectively blocked IAV-triggered necroptosis in alveolar epithelial cells in vivo. UH15-38 ameliorated lung inflammation and prevented mortality following infection with laboratory-adapted and pandemic strains of IAV, without compromising antiviral adaptive immune responses or impeding viral clearance. UH15-38 displayed robust therapeutic efficacy even when administered late in the course of infection, suggesting that RIPK3 blockade may provide clinical benefit in patients with IAV-driven ARDS and other hyper-inflammatory pathologies.


Subject(s)
Lung Injury , Necroptosis , Orthomyxoviridae Infections , Protein Kinase Inhibitors , Receptor-Interacting Protein Serine-Threonine Kinases , Animals , Female , Humans , Male , Mice , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/virology , Alveolar Epithelial Cells/metabolism , Influenza A virus/classification , Influenza A virus/drug effects , Influenza A virus/immunology , Influenza A virus/pathogenicity , Lung Injury/complications , Lung Injury/pathology , Lung Injury/prevention & control , Lung Injury/virology , Mice, Inbred C57BL , Necroptosis/drug effects , Orthomyxoviridae Infections/complications , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/mortality , Orthomyxoviridae Infections/virology , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/prevention & control , Respiratory Distress Syndrome/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...