Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 267.987
Filter
1.
Hipertens. riesgo vasc ; 41(2): 135-138, abr.-jun2024. ilus
Article in Spanish | IBECS | ID: ibc-232399

ABSTRACT

Presentamos el caso de un paciente con antecedentes de hipertensión arterial vasculorrenal tratada un año antes, que acude a urgencias por emergencia hipertensiva (HTA) y disnea. Descartada primera sospecha de reestenosis de arteria renal con angiografía por tomografía computarizada (angioTC), se completa el estudio confirmándose diagnóstico de cáncer de pulmón mediante prueba de imagen y anatomía patológica. En el estudio de hipertensión se detecta elevación de hormona adrenocorticótropa (ACTH), hipercortisolismo y datos analíticos de hiperaldosteronismo. Con el diagnóstico final de síndrome de Cushing secundario a producción ectópica de ACTH se inicia tratamiento médico, sin llegar a recibir nada más por fallecimiento del paciente a los pocos días.(AU)


We present the case of a patient with a history of renal-vascular hypertension treated with stent one year previously, who attended the emergency room due to hypertensive emergency and dyspnea. Once the first suspicion of renal artery restenosis was ruled out with CT angiography, the study was completed, confirming the diagnosis of lung cancer through imaging and pathological anatomy. In the hormonal study, elevation of ACTH, hypercortisolism and analytical data of hyperaldosteronism were detected. With the final diagnosis of Cushing's syndrome secondary to ectopic production of ACTH, medical treatment was started, without being able to receive anything else due to the death of the patient after a few days.(AU)


Subject(s)
Humans , Male , Middle Aged , Cushing Syndrome , Hypertension , Carcinoma, Small Cell , Lung Neoplasms , Hyperaldosteronism , Alkalosis , Inpatients , Physical Examination , Cardiovascular Diseases , Nephrology
2.
Sci Rep ; 14(1): 12589, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824238

ABSTRACT

In order to study how to use pulmonary functional imaging obtained through 4D-CT fusion for radiotherapy planning, and transform traditional dose volume parameters into functional dose volume parameters, a functional dose volume parameter model that may reduce level 2 and above radiation pneumonia was obtained. 41 pulmonary tumor patients who underwent 4D-CT in our department from 2020 to 2023 were included. MIM Software (MIM 7.0.7; MIM Software Inc., Cleveland, OH, USA) was used to register adjacent phase CT images in the 4D-CT series. The three-dimensional displacement vector of CT pixels was obtained when changing from one respiratory state to another respiratory state, and this three-dimensional vector was quantitatively analyzed. Thus, a color schematic diagram reflecting the degree of changes in lung CT pixels during the breathing process, namely the distribution of ventilation function strength, is obtained. Finally, this diagram is fused with the localization CT image. Select areas with Jacobi > 1.2 as high lung function areas and outline them as fLung. Import the patient's DVH image again, fuse the lung ventilation image with the localization CT image, and obtain the volume of fLung different doses (V60, V55, V50, V45, V40, V35, V30, V25, V20, V15, V10, V5). Analyze the functional dose volume parameters related to the risk of level 2 and above radiation pneumonia using R language and create a predictive model. By using stepwise regression and optimal subset method to screen for independent variables V35, V30, V25, V20, V15, and V10, the prediction formula was obtained as follows: Risk = 0.23656-0.13784 * V35 + 0.37445 * V30-0.38317 * V25 + 0.21341 * V20-0.10209 * V15 + 0.03815 * V10. These six independent variables were analyzed using a column chart, and a calibration curve was drawn using the calibrate function. It was found that the Bias corrected line and the Apparent line were very close to the Ideal line, The consistency between the predicted value and the actual value is very good. By using the ROC function to plot the ROC curve and calculating the area under the curve: 0.8475, 95% CI 0.7237-0.9713, it can also be determined that the accuracy of the model is very high. In addition, we also used Lasso method and random forest method to filter out independent variables with different results, but the calibration curve drawn by the calibration function confirmed poor prediction performance. The function dose volume parameters V35, V30, V25, V20, V15, and V10 obtained through 4D-CT are key factors affecting radiation pneumonia. Establishing a predictive model can provide more accurate lung restriction basis for clinical radiotherapy planning.


Subject(s)
Four-Dimensional Computed Tomography , Lung Neoplasms , Radiation Pneumonitis , Humans , Radiation Pneumonitis/diagnostic imaging , Four-Dimensional Computed Tomography/methods , Female , Lung Neoplasms/radiotherapy , Lung Neoplasms/diagnostic imaging , Male , Middle Aged , Aged , Lung/diagnostic imaging , Lung/radiation effects , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Adult
3.
J Cardiothorac Surg ; 19(1): 311, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822353

ABSTRACT

BACKGROUND: Lung cancer is the second most diagnosed cancer and the leading cause of cancer deaths worldwide. Surgical lung resection is the best treatment modality in the early stages of lung cancer as well as in some locally advanced cases. Postoperative air leak is one of the most common complications after pulmonary resection with incidence ranging between 20 and 33%. The majority of air leaks seal, within 5 days after surgery, on their own by conservative management. However, at least 5% of patients still have prolonged air coming out from the residual lung at discharge. This report describes the management of a thin lady with right lung cancer who underwent a right lower lobectomy and then suffered from a delayed air leak 7 weeks after surgery and required extensive thoracic and general surgery collaboration. CASE PRESENTATION: A 72-year-old heavy smoker female patient diagnosed with stage I lung cancer underwent right robotic-assisted thoracoscopic surgery converted to thoracotomy because of a fused fissure, right lower lobectomy, and mediastinal lymphadenectomy presented with delayed air leak 49 days after surgery. VATS decortication and mechanical pleurodesis were done 2 weeks after unsuccessful conservative treatment. Still, the lung failed to expand four weeks later so the patient was sent to surgery; she is underweight (BMI of 18) with not many options for a big flap to fill the chest cavity empty space. Accordingly; the decision was to use multiple pedicle flaps; omentum, intercostal muscle, and serratus anterior muscle to cover the bronchopleural fistulas and fill the pleural space in addition to mechanical and chemical pleurodesis. Full expansion of the lung was obtained. The patient was discharged on Post-Operative day 5 without remnant pneumothorax. CONCLUSIONS: Air leaks After lobectomy usually presents directly postoperatively; various management options are available ranging from conservative and minimally invasive to major operative treatment. We presented what we believe was unusual delayed bronchopleural fistula post-lobectomy in a thin lady which demonstrates clearly how a delayed air leak was detected and how collaborative efforts were crucial for delivering high-quality, safe, and patient-centered care till treated and complete recovery.


Subject(s)
Bronchial Fistula , Lung Neoplasms , Pleural Diseases , Pneumonectomy , Postoperative Complications , Humans , Female , Aged , Pneumonectomy/adverse effects , Lung Neoplasms/surgery , Bronchial Fistula/etiology , Bronchial Fistula/surgery , Pleural Diseases/etiology , Pleural Diseases/surgery , Postoperative Complications/surgery , Thoracic Surgery, Video-Assisted/methods
4.
J Cardiothorac Surg ; 19(1): 307, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822379

ABSTRACT

BACKGROUND: Accurate prediction of visceral pleural invasion (VPI) in lung adenocarcinoma before operation can provide guidance and help for surgical operation and postoperative treatment. We investigate the value of intratumoral and peritumoral radiomics nomograms for preoperatively predicting the status of VPI in patients diagnosed with clinical stage IA lung adenocarcinoma. METHODS: A total of 404 patients from our hospital were randomly assigned to a training set (n = 283) and an internal validation set (n = 121) using a 7:3 ratio, while 81 patients from two other hospitals constituted the external validation set. We extracted 1218 CT-based radiomics features from the gross tumor volume (GTV) as well as the gross peritumoral tumor volume (GPTV5, 10, 15), respectively, and constructed radiomic models. Additionally, we developed a nomogram based on relevant CT features and the radscore derived from the optimal radiomics model. RESULTS: The GPTV10 radiomics model exhibited superior predictive performance compared to GTV, GPTV5, and GPTV15, with area under the curve (AUC) values of 0.855, 0.842, and 0.842 in the three respective sets. In the clinical model, the solid component size, pleural indentation, solid attachment, and vascular convergence sign were identified as independent risk factors among the CT features. The predictive performance of the nomogram, which incorporated relevant CT features and the GPTV10-radscore, outperformed both the radiomics model and clinical model alone, with AUC values of 0.894, 0.828, and 0.876 in the three respective sets. CONCLUSIONS: The nomogram, integrating radiomics features and CT morphological features, exhibits good performance in predicting VPI status in lung adenocarcinoma.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Neoplasm Invasiveness , Neoplasm Staging , Nomograms , Tomography, X-Ray Computed , Humans , Male , Female , Lung Neoplasms/pathology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/surgery , Middle Aged , Tomography, X-Ray Computed/methods , Adenocarcinoma of Lung/surgery , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/pathology , Neoplasm Staging/methods , Aged , Retrospective Studies , Pleura/diagnostic imaging , Pleura/pathology , Pleural Neoplasms/diagnostic imaging , Pleural Neoplasms/surgery , Pleural Neoplasms/pathology , Radiomics
5.
J Cardiothorac Surg ; 19(1): 308, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822419

ABSTRACT

BACKGROUND: Bronchopleural fistula (BPF) is a rare but fatal complication after pneumonectomy. When a BPF occurs late (weeks to years postoperatively), direct resealing of the bronchial stump through the primary thoracic approach is challenging due to the risks of fibrothorax and injury to the pulmonary artery stump, and the surgical outcome is generally poor. Here, we report a case of late left BPF following left pneumonectomy successfully treated using a right thoracic approach assisted by extracorporeal membrane oxygenation (ECMO). CASE PRESENTATION: We report the case of a 57-year-old male patient who underwent left lower and left upper lobectomy, respectively, for heterochronic double primary lung cancer. A left BPF was diagnosed at the 22nd month postoperatively, and conservative treatment was ineffective. Finally, the left BPF was cured by minimally invasive BPF closure surgery via the right thoracic approach with the support of veno-venous extracorporeal membrane oxygenation (VV-ECMO). CONCLUSIONS: Advanced BPF following left pneumonectomy can be achieved with an individualized treatment plan, and the right thoracic approach assisted by ECMO is a relatively simple and effective method, which could be considered as an additional treatment option for similar patients.


Subject(s)
Bronchial Fistula , Extracorporeal Membrane Oxygenation , Lung Neoplasms , Pleural Diseases , Pneumonectomy , Humans , Male , Pneumonectomy/adverse effects , Extracorporeal Membrane Oxygenation/methods , Middle Aged , Bronchial Fistula/etiology , Bronchial Fistula/surgery , Pleural Diseases/etiology , Pleural Diseases/surgery , Lung Neoplasms/surgery , Postoperative Complications/surgery , Postoperative Complications/therapy , Tomography, X-Ray Computed
6.
J Cell Mol Med ; 28(11): e18406, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38822457

ABSTRACT

Increasing evidence has shown that homologous recombination (HR) and metabolic reprogramming are essential for cellular homeostasis. These two processes are independent as well as closely intertwined. Nevertheless, they have rarely been reported in lung adenocarcinoma (LUAD). We analysed the genomic, immune microenvironment and metabolic microenvironment features under different HR activity states. Using cell cycle, EDU and cell invasion assays, we determined the impacts of si-SHFM1 on the LUAD cell cycle, proliferation and invasion. The levels of isocitrate dehydrogenase (IDH) and α-ketoglutarate dehydrogenase (α-KGDH) were determined by ELISA in the NC and si-SHFM1 groups of A549 cells. Finally, cell samples were used to extract metabolites for HPIC-MS/MS to analyse central carbon metabolism. We found that high HR activity was associated with a poor prognosis in LUAD, and HR was an independent prognostic factor for TCGA-LUAD patients. Moreover, LUAD samples with a high HR activity presented low immune infiltration levels, a high degree of genomic instability, a good response status to immune checkpoint blockade therapy and a high degree of drug sensitivity. The si-SHFM1 group presented a significantly higher proportion of cells in the G0/G1 phase, lower levels of DNA replication, and significantly lower levels of cell migration and both TCA enzymes. Our current results indicated that there is a strong correlation between HR and the TCA cycle in LUAD. The TCA cycle can promote SHFM1-mediated HR in LUAD, raising their activities, which can finally result in a poor prognosis and impair immunotherapeutic efficacy.


Subject(s)
Adenocarcinoma of Lung , Citric Acid Cycle , Homologous Recombination , Lung Neoplasms , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Prognosis , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Cell Proliferation , Tumor Microenvironment , Cell Line, Tumor , Cell Cycle/genetics , Cellular Reprogramming/genetics , Female , A549 Cells , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Cell Movement , Ketoglutarate Dehydrogenase Complex/metabolism , Ketoglutarate Dehydrogenase Complex/genetics , Male , Gene Expression Regulation, Neoplastic , Metabolic Reprogramming
7.
Am J Case Rep ; 25: e943466, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822519

ABSTRACT

BACKGROUND Various resistance mechanisms of the epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) have been reported, and approximately half of the cases show a T790M point mutation as resistance to EGFR-TKI. In addition, 3-14% of cases of non-small cell lung cancer transform into small cell lung carcinoma (SCLC) during treatment. However, there are few reported cases in which 2 mechanisms of resistance have been observed simultaneously. This report describes a 66-year-old man with initial presentation of stage IIA right-sided lung adenocarcinoma with EGFR gene exon 21 L858R mutation and 3 years of stable disease. During treatment with erlotinib, the patient developed SCLC and adenocarcinoma with EGFR exon 21 L858R and exon 20 T790M mutation. CASE REPORT A 66-year-old man underwent right pneumonectomy plus nodal dissection 2a for right hilar lung cancer and was diagnosed with an EGFR exon21 L858R mutated lung adenocarcinoma. Three years later, pleural dissemination was observed in the right chest wall. Although erlotinib was continued for 52 months, new metastases to the right ribs were detected. Chest wall tumor resection was performed. Based on the World Health Organization classification, the patient was diagnosed with combined SCLC, with EGFR exon21 L858R and exon20 T790M mutation. The patient received 4 cycles of carboplatin plus etoposide, 14 cycles of amrubicin, and 2 cycles of irinotecan. Chemotherapy continued for 25 months. CONCLUSIONS Long-term survival was achieved by chemotherapy after transformation. Since EGFR mutation-positive lung cancer shows a variety of acquired resistances, it is important to consider the treatment strategy of performing re-biopsy.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , ErbB Receptors , Erlotinib Hydrochloride , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Male , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Aged , ErbB Receptors/genetics , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/pathology , Erlotinib Hydrochloride/therapeutic use , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Protein Kinase Inhibitors/therapeutic use , Drug Resistance, Neoplasm , Mutation
8.
Mol Biol Rep ; 51(1): 703, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822881

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) is the leading cause of cancer morbidity and mortality worldwide, and new diagnostic markers are urgently needed. We aimed to investigate the mechanism by which hsa_circ_0096157 regulates autophagy and cisplatin (DDP) resistance in NSCLC. METHODS: A549 cells were treated with DDP (0 µg/mL or 3 µg/mL). Then, the autophagy activator rapamycin (200 nm) was applied to the A549/DDP cells. Moreover, hsa_circ_0096157 and Nrf2 were knocked down, and Nrf2 was overexpressed in A549/DDP cells. The expression of Hsa_circ_0096157, the Nrf2/ARE pathway-related factors Nrf2, HO-1, and NQO1, and the autophagy-related factors LC3, Beclin-1, and p62 was evaluated by qRT‒PCR or western blotting. Autophagosomes were detected through TEM. An MTS assay was utilized to measure cell proliferation. The associated miRNA levels were also tested by qRT‒PCR. RESULTS: DDP (3 µg/mL) promoted hsa_circ_0096157, LC3 II/I, and Beclin-1 expression and decreased p62 expression. Knocking down hsa_circ_0096157 resulted in the downregulation of LC3 II/I and Beclin-1 expression, upregulation of p62 expression, and decreased proliferation. Rapamycin reversed the effect of interfering with hsa_circ_0096157. Keap1 expression was lower, and Nrf2, HO-1, and NQO1 expression was greater in the A549/DDP group than in the A549 group. HO-1 expression was repressed after Nrf2 interference. In addition, activation of the Nrf2/ARE pathway promoted autophagy in A549/DDP cells. Moreover, hsa_circ_0096157 activated the Nrf2/ARE pathway. The silencing of hsa_circ_0096157 reduced Nrf2 expression by releasing miR-142-5p or miR-548n. Finally, we found that hsa_circ_0096157 promoted A549/DDP cell autophagy by activating the Nrf2/ARE pathway. CONCLUSION: Knockdown of hsa_circ_0096157 inhibits autophagy and DDP resistance in NSCLC cells by downregulating the Nrf2/ARE signaling pathway.


Subject(s)
Autophagy , Carcinoma, Non-Small-Cell Lung , Cisplatin , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Lung Neoplasms , NF-E2-Related Factor 2 , Signal Transduction , Humans , Cisplatin/pharmacology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Autophagy/drug effects , Autophagy/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , A549 Cells , Gene Expression Regulation, Neoplastic/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Line, Tumor , Antioxidant Response Elements/genetics , Antineoplastic Agents/pharmacology , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism
9.
BMC Cancer ; 24(1): 670, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824514

ABSTRACT

BACKGROUND: An accurate and non-invasive approach is urgently needed to distinguish tuberculosis granulomas from lung adenocarcinomas. This study aimed to develop and validate a nomogram based on contrast enhanced-compute tomography (CE-CT) to preoperatively differentiate tuberculosis granuloma from lung adenocarcinoma appearing as solitary pulmonary solid nodules (SPSN). METHODS: This retrospective study analyzed 143 patients with lung adenocarcinoma (mean age: 62.4 ± 6.5 years; 54.5% female) and 137 patients with tuberculosis granulomas (mean age: 54.7 ± 8.2 years; 29.2% female) from two centers between March 2015 and June 2020. The training and internal validation cohorts included 161 and 69 patients (7:3 ratio) from center No.1, respectively. The external testing cohort included 50 patients from center No.2. Clinical factors and conventional radiological characteristics were analyzed to build independent predictors. Radiomics features were extracted from each CT-volume of interest (VOI). Feature selection was performed using univariate and multivariate logistic regression analysis, as well as the least absolute shrinkage and selection operator (LASSO) method. A clinical model was constructed with clinical factors and radiological findings. Individualized radiomics nomograms incorporating clinical data and radiomics signature were established to validate the clinical usefulness. The diagnostic performance was assessed using the receiver operating characteristic (ROC) curve analysis with the area under the receiver operating characteristic curve (AUC). RESULTS: One clinical factor (CA125), one radiological characteristic (enhanced-CT value) and nine radiomics features were found to be independent predictors, which were used to establish the radiomics nomogram. The nomogram demonstrated better diagnostic efficacy than any single model, with respective AUC, accuracy, sensitivity, and specificity of 0.903, 0.857, 0.901, and 0.807 in the training cohort; 0.933, 0.884, 0.893, and 0.892 in the internal validation cohort; 0.914, 0.800, 0.937, and 0.735 in the external test cohort. The calibration curve showed a good agreement between prediction probability and actual clinical findings. CONCLUSION: The nomogram incorporating clinical factors, radiological characteristics and radiomics signature provides additional value in distinguishing tuberculosis granuloma from lung adenocarcinoma in patients with a SPSN, potentially serving as a robust diagnostic strategy in clinical practice.


Subject(s)
Adenocarcinoma of Lung , Granuloma , Lung Neoplasms , Nomograms , Tomography, X-Ray Computed , Humans , Female , Middle Aged , Male , Tomography, X-Ray Computed/methods , Retrospective Studies , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/pathology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Diagnosis, Differential , Granuloma/diagnostic imaging , Granuloma/pathology , Aged , Tuberculosis, Pulmonary/diagnostic imaging , Preoperative Period , Radiomics
10.
Eur J Med Res ; 29(1): 305, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824558

ABSTRACT

The prevalence of low-dose CT (LDCT) in lung cancer screening has gradually increased, and more and more lung ground glass nodules (GGNs) have been detected. So far, a consensus has been reached on the treatment of single pulmonary ground glass nodules, and there have been many guidelines that can be widely accepted. However, at present, more than half of the patients have more than one nodule when pulmonary ground glass nodules are found, which means that different treatment methods for nodules may have different effects on the prognosis or quality of life of patients. This article reviews the research progress in the diagnosis and treatment strategies of pulmonary multiple lesions manifested as GGNs.


Subject(s)
Lung Neoplasms , Multiple Pulmonary Nodules , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/therapy , Lung Neoplasms/pathology , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/diagnosis , Multiple Pulmonary Nodules/pathology , Multiple Pulmonary Nodules/therapy , Tomography, X-Ray Computed/methods , Lung/diagnostic imaging , Lung/pathology
11.
J Cardiothorac Surg ; 19(1): 317, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824602

ABSTRACT

BACKGROUND: To investigate the risk factors of pneumothorax of using computed tomography (CT) guidance to inject autologous blood to locate isolated lung nodules. METHODS: In the First Hospital of Putian City, 92 cases of single small pulmonary nodules were retrospectively analyzed between November 2019 and March 2023. Before each surgery, autologous blood was injected, and the complications of each case, such as pneumothorax and pulmonary hemorrhage, were recorded. Patient sex, age, position at positioning, and nodule type, size, location, and distance from the visceral pleura were considered. Similarly, the thickness of the chest wall, the depth and duration of the needle-lung contact, the length of the positioning procedure, and complications connected to the patient's positioning were noted. Logistics single-factor and multi-factor variable analyses were used to identify the risk factors for pneumothorax. The multi-factor logistics analysis was incorporated into the final nomogram prediction model for modeling, and a nomogram was established. RESULTS: Logistics analysis suggested that the nodule size and the contact depth between the needle and lung tissue were independent risk factors for pneumothorax. CONCLUSION: The factors associated with pneumothorax after localization are smaller nodules and deeper contact between the needle and lung tissue.


Subject(s)
Lung Neoplasms , Pneumothorax , Solitary Pulmonary Nodule , Tomography, X-Ray Computed , Humans , Male , Retrospective Studies , Pneumothorax/etiology , Pneumothorax/diagnostic imaging , Female , Risk Factors , Tomography, X-Ray Computed/methods , Middle Aged , Lung Neoplasms/surgery , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/surgery , Aged , Adult , Blood Transfusion, Autologous/methods
12.
Proc Natl Acad Sci U S A ; 121(23): e2317790121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38814866

ABSTRACT

The transformation of lung adenocarcinoma to small cell lung cancer (SCLC) is a recognized resistance mechanism and a hindrance to therapies using epidermal growth factor receptor tyrosine kinase inhibitors (TKIs). The paucity of pretranslational/posttranslational clinical samples limits the deeper understanding of resistance mechanisms and the exploration of effective therapeutic strategies. Here, we developed preclinical neuroendocrine (NE) transformation models. Next, we identified a transcriptional reprogramming mechanism that drives resistance to erlotinib in NE transformation cell lines and cell-derived xenograft mice. We observed the enhanced expression of genes involved in the EHMT2 and WNT/ß-catenin pathways. In addition, we demonstrated that EHMT2 increases methylation of the SFRP1 promoter region to reduce SFRP1 expression, followed by activation of the WNT/ß-catenin pathway and TKI-mediated NE transformation. Notably, the similar expression alterations of EHMT2 and SFRP1 were observed in transformed SCLC samples obtained from clinical patients. Importantly, suppression of EHMT2 with selective inhibitors restored the sensitivity of NE transformation cell lines to erlotinib and delayed resistance in cell-derived xenograft mice. We identify a transcriptional reprogramming process in NE transformation and provide a potential therapeutic target for overcoming resistance to erlotinib.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell Transformation, Neoplastic , Erlotinib Hydrochloride , Lung Neoplasms , Humans , Animals , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Mice , Erlotinib Hydrochloride/pharmacology , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic , Drug Resistance, Neoplasm/genetics , Wnt Signaling Pathway/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protein Kinase Inhibitors/pharmacology , Xenograft Model Antitumor Assays , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/metabolism , Small Cell Lung Carcinoma/pathology , Transcription, Genetic , Histocompatibility Antigens , Histone-Lysine N-Methyltransferase
13.
Front Immunol ; 15: 1396719, 2024.
Article in English | MEDLINE | ID: mdl-38799432

ABSTRACT

Background: Tumor-associated macrophages (TAMs) constitute a plastic and heterogeneous cell population of the tumor microenvironment (TME) that can regulate tumor proliferation and support resistance to therapy, constituting promising targets for the development of novel anticancer agents. Our previous results suggest that SHP2 plays a crucial role in reprogramming the phenotype of TAMs. Thus, we hypothesized that SHP2+ TAM may predict the treatment efficacy of non-small cell lung cancer NSCLC patients as a biomarker. Methods: We analyzed cancer tissue samples from 79 NSCLC patients using multiplex fluorescence (mIF) staining to visualize various SHP-2+ TAM subpopulations (CD68+SHP2+, CD68+CD86+, CD68 + 206+, CD68+ CD86+SHP2+, CD68+ CD206+SHP2+) and T cells (CD8+ Granzyme B +) of immune cells. The immune cells proportions were quantified in the tumor regions (Tumor) and stromal regions (Stroma), as well as in the overall tumor microenvironment (Tumor and Stroma, TME). The analysis endpoint was overall survival (OS), correlating them with levels of cell infiltration or effective density. Cox regression was used to evaluate the associations between immune cell subsets infiltration and OS. Correlations between different immune cell subsets were examined by Spearman's tests. Results: In NSCLC, the distribution of different macrophage subsets within the TME, tumor regions, and stroma regions exhibited inconsistency. The proportions of CD68+ SHP2+ TAMs (P < 0.05) were higher in tumor than in stroma. And the high infiltration of CD68+SHP2+ TAMs in tumor areas correlated with poor OS (P < 0.05). We found that the expression level of SHP2 was higher in M2-like macrophages than in M1-like macrophages. The CD68+SHP2+ subset proportion was positively correlated with the CD68+CD206+ subset within TME (P < 0.0001), tumor (P < 0.0001) and stroma (P < 0.0001). Conclusions: The high infiltration of CD68+SHP2+ TAMs predict poor OS in NSCLC. Targeting SHP2 is a potentially effective strategy to inhibit M2-phenotype polarization. And it provides a new thought for SHP2 targeted cancer immunotherapy.


Subject(s)
Antigens, CD , Antigens, Differentiation, Myelomonocytic , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Tumor Microenvironment , Tumor-Associated Macrophages , Humans , Tumor Microenvironment/immunology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Female , Lung Neoplasms/immunology , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Antigens, CD/metabolism , Male , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Middle Aged , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Aged , Biomarkers, Tumor/metabolism , Macrophages/immunology , Macrophages/metabolism , Prognosis , Adult , CD68 Molecule
14.
Pol J Pathol ; 75(1): 25-35, 2024.
Article in English | MEDLINE | ID: mdl-38808606

ABSTRACT

Small cell lung carcinoma (SCLC) is characterized by rapid growth and an aggressive clinical course. Standard therapy regimes have limited effects on disease course; therefore the prognosis of SCLC is poor. In the current study, the frequency of programmed death ligand 1 (PD-L1) expression in SCLC and its correlation with clinico-pathological features were evaluated. The study included 100 cases of SCLC wherein testing for PD-L1 was done with the SP263 clone on the Ventana benchmark XT system. Cases with > 1% PD-L1 expression in tumour cells or immune cells were categorized as positive. PD-L1 expression was identified in 14% of cases using the cut-off of ≥ 1%. The tumour proportion score was 10% and the immune proportion score was 9.78% using a cut-off of ≥ 1%. PD-L1 positive expression was more frequent in the male population with age > 40 years. All the patients with positive PD-L1 expression were smokers. In the PD-L1 positive group, presence of necrosis was identified in 71.4% of cases and when compared with the PD-L1 negative subgroup this finding was statistically significant (p = 0.010). Personalized targeted therapy for cases of SCLC is still under evaluation. The use of immunotherapeutic targets, such as PD-L1, may help to define a new treatment strategy for SCLC. Development of new treatment strategies may improve prognosis and survival.


Subject(s)
B7-H1 Antigen , Biomarkers, Tumor , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , B7-H1 Antigen/metabolism , B7-H1 Antigen/analysis , Male , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/metabolism , Female , Middle Aged , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Adult , Aged , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Aged, 80 and over , Immunohistochemistry , Prognosis
17.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119744, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702016

ABSTRACT

BACKGROUND: Lung squamous cell carcinoma (LUSC) is associated with high mortality and has limited therapeutic treatment options. Plasminogen activator urokinase (PLAU) plays important roles in tumor cell malignancy. However, the oncogenic role of PLAU in the progression of LUSC remains unknown. GATA-binding factor 6 (GATA6), a key regulator of lung development, inhibits LUSC cell proliferation and migration, but the underlying regulatory mechanism remains to be further explored. Moreover, the regulatory effect of GATA6 on PLAU expression has not been reported. The aim of this study was to identify the role of PLAU and the transcriptional inhibition mechanism of GATA6 on PLAU expression in LUSC. METHODS: To identify the potential target genes regulated by GATA6, differentially expressed genes (DEGs) obtained from GEO datasets analysis and RNA-seq experiment were subjected to Venn analysis and correlation heatmap analysis. The transcriptional regulatory effects of GATA6 on PLAU expression were detected by real-time PCR, immunoblotting, and dual-luciferase reporter assays. The oncogenic effects of PLAU on LUSC cell proliferation and migration were evaluated by EdU incorporation, Matrigel 3D culture and Transwell assays. PLAU expression was detected in tissue microarray of LUSC via immunohistochemistry (IHC) assay. To determine prognostic factors for prognosis of LUSC patients, the clinicopathological characteristics and PLAU expression were subjected to univariate Cox regression analysis. RESULTS: PLAU overexpression promoted LUSC cell proliferation and migration. PLAU is overexpressed in LUSC tissues compared with normal tissues. Consistently, high PLAU expression, which acts as an independent risk factor, is associated with poor prognosis of LUSC patients. Furthermore, the expression of PLAU is transcriptionally regulated by GATA6. CONCLUSION: In this work, it was revealed that PLAU is a novel oncogene for LUSC and a new molecular regulatory mechanism of GATA6 in LUSC was unveiled. Targeting the GATA6/PLAU pathway might help in the development of novel therapeutic treatment strategies for LUSC.


Subject(s)
Carcinoma, Squamous Cell , Cell Movement , Cell Proliferation , GATA6 Transcription Factor , Gene Expression Regulation, Neoplastic , Lung Neoplasms , GATA6 Transcription Factor/genetics , GATA6 Transcription Factor/metabolism , Humans , Cell Proliferation/genetics , Cell Movement/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Cell Line, Tumor , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism , Female , Male , Middle Aged , Membrane Proteins
18.
Nat Metab ; 6(5): 914-932, 2024 May.
Article in English | MEDLINE | ID: mdl-38702440

ABSTRACT

Acetate, a precursor of acetyl-CoA, is instrumental in energy production, lipid synthesis and protein acetylation. However, whether acetate reprogrammes tumour metabolism and plays a role in tumour immune evasion remains unclear. Here, we show that acetate is the most abundant short-chain fatty acid in human non-small cell lung cancer tissues, with increased tumour-enriched acetate uptake. Acetate-derived acetyl-CoA induces c-Myc acetylation, which is mediated by the moonlighting function of the metabolic enzyme dihydrolipoamide S-acetyltransferase. Acetylated c-Myc increases its stability and subsequent transcription of the genes encoding programmed death-ligand 1, glycolytic enzymes, monocarboxylate transporter 1 and cell cycle accelerators. Dietary acetate supplementation promotes tumour growth and inhibits CD8+ T cell infiltration, whereas disruption of acetate uptake inhibits immune evasion, which increases the efficacy of anti-PD-1-based therapy. These findings highlight a critical role of acetate promoting tumour growth beyond its metabolic role as a carbon source by reprogramming tumour metabolism and immune evasion, and underscore the potential of controlling acetate metabolism to curb tumour growth and improve the response to immune checkpoint blockade therapy.


Subject(s)
Acetates , B7-H1 Antigen , Proto-Oncogene Proteins c-myc , B7-H1 Antigen/metabolism , Humans , Acetates/metabolism , Acetates/pharmacology , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Animals , Mice , Immune Evasion , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/immunology , Up-Regulation , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Acetylation , Lung Neoplasms/metabolism , Lung Neoplasms/immunology , Acetyl Coenzyme A/metabolism , Tumor Escape
19.
Cell Rep Med ; 5(5): 101549, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38703767

ABSTRACT

There is a compelling need for approaches to predict the efficacy of immunotherapy drugs. Tumor-on-chip technology exploits microfluidics to generate 3D cell co-cultures embedded in hydrogels that recapitulate simplified tumor ecosystems. Here, we present the development and validation of lung tumor-on-chip platforms to quickly and precisely measure ex vivo the effects of immune checkpoint inhibitors on T cell-mediated cancer cell death by exploiting the power of live imaging and advanced image analysis algorithms. The integration of autologous immunosuppressive FAP+ cancer-associated fibroblasts impaired the response to anti-PD-1, indicating that tumors-on-chips are capable of recapitulating stroma-dependent mechanisms of immunotherapy resistance. For a small cohort of non-small cell lung cancer patients, we generated personalized tumors-on-chips with their autologous primary cells isolated from fresh tumor samples, and we measured the responses to anti-PD-1 treatment. These results support the power of tumor-on-chip technology in immuno-oncology research and open a path to future clinical validations.


Subject(s)
Immune Checkpoint Inhibitors , Lung Neoplasms , Precision Medicine , Programmed Cell Death 1 Receptor , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/immunology , Precision Medicine/methods , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/immunology , Lab-On-A-Chip Devices , Immunotherapy/methods , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Cell Line, Tumor
20.
Pathol Oncol Res ; 30: 1611593, 2024.
Article in English | MEDLINE | ID: mdl-38706776

ABSTRACT

RICTOR gene, which encodes the scaffold protein of mTORC2, can be amplified in various tumor types, including squamous cell carcinoma (SCC) of the lung. RICTOR amplification can lead to hyperactivation of mTORC2 and may serve as a targetable genetic alteration, including in lung SCC patients with no PD-L1 expression who are not expected to benefit from immune checkpoint inhibitor therapy. This study aimed to compare RICTOR amplification detected by fluorescence in situ hybridization (FISH) with Rictor and PD-L1 protein expression detected by immunohistochemistry (IHC) in SCC of the lung. The study was complemented by analysis of the publicly available Lung Squamous Cell Carcinoma (TCGA, Firehose legacy) dataset. RICTOR amplification was observed in 20% of our cases and 16% of the lung SCC cases of the TCGA dataset. Rictor and PD-L1 expression was seen in 74% and 44% of the cases, respectively. Rictor IHC showed two staining patterns: membrane staining (16% of the cases) and cytoplasmic staining (58% of the cases). Rictor membrane staining predicted RICTOR amplification as detected by FISH with high specificity (95%) and sensitivity (70%). We did not find any correlation between RICTOR amplification and PD-L1 expression; RICTOR amplification was detected in 18% and 26% of PD-L1 positive and negative cases, respectively. The TCGA dataset analysis showed similar results; RICTOR copy number correlated with Rictor mRNA and protein expression but showed no association with PD-L1 mRNA and protein expression. In conclusion, the correlation between RICTOR amplification and Rictor membrane staining suggests that the latter can potentially be used as a surrogate marker to identify lung SCC cases with RICTOR amplification. Since a significant proportion of PD-L1 negative SCC cases harbor RICTOR amplification, analyzing PD-L1 negative tumors by RICTOR FISH or Rictor IHC can help select patients who may benefit from mTORC2 inhibitor therapy.


Subject(s)
B7-H1 Antigen , Biomarkers, Tumor , Carcinoma, Squamous Cell , Gene Amplification , Lung Neoplasms , Rapamycin-Insensitive Companion of mTOR Protein , Humans , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Female , Male , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Middle Aged , Aged , In Situ Hybridization, Fluorescence/methods , Prognosis , Aged, 80 and over
SELECTION OF CITATIONS
SEARCH DETAIL
...