Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.516
Filter
1.
Clin Nucl Med ; 49(7): e334-e337, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38831513

ABSTRACT

ABSTRACT: Fibroblast activation protein (FAP) is a new promising molecular target for theragnostic approach. FAP inhibitors (FAPIs) labeled with 177Lu could be potentially a therapeutic radiopharmaceutical. Here, we presented the experience of 4 cycles of 177Lu-FAPI in a 67-year-old man with an unresectable mediastinal sarcoma.


Subject(s)
Mediastinal Neoplasms , Sarcoma , Humans , Male , Mediastinal Neoplasms/radiotherapy , Mediastinal Neoplasms/diagnostic imaging , Aged , Sarcoma/radiotherapy , Sarcoma/diagnostic imaging , Neoplasm Metastasis , Lutetium
2.
Signal Transduct Target Ther ; 9(1): 142, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825657

ABSTRACT

Radiotherapy combined with immune checkpoint blockade holds great promise for synergistic antitumor efficacy. Targeted radionuclide therapy delivers radiation directly to tumor sites. LNC1004 is a fibroblast activation protein (FAP)-targeting radiopharmaceutical, conjugated with the albumin binder Evans Blue, which has demonstrated enhanced tumor uptake and retention in previous preclinical and clinical studies. Herein, we demonstrate that 68Ga/177Lu-labeled LNC1004 exhibits increased uptake and prolonged retention in MC38/NIH3T3-FAP and CT26/NIH3T3-FAP tumor xenografts. Radionuclide therapy with 177Lu-LNC1004 induced a transient upregulation of PD-L1 expression in tumor cells. The combination of 177Lu-LNC1004 and anti-PD-L1 immunotherapy led to complete eradication of all tumors in MC38/NIH3T3-FAP tumor-bearing mice, with mice showing 100% tumor rejection upon rechallenge. Immunohistochemistry, single-cell RNA sequencing (scRNA-seq), and TCR sequencing revealed that combination therapy reprogrammed the tumor microenvironment in mice to foster antitumor immunity by suppressing malignant progression and increasing cell-to-cell communication, CD8+ T-cell activation and expansion, M1 macrophage counts, antitumor activity of neutrophils, and T-cell receptor diversity. A preliminary clinical study demonstrated that 177Lu-LNC1004 was well-tolerated and effective in patients with refractory cancers. Further, scRNA-seq of peripheral blood mononuclear cells underscored the importance of addressing immune evasion through immune checkpoint blockade treatment. This was emphasized by the observed increase in antigen processing and presentation juxtaposed with T cell inactivation. In conclusion, our data supported the efficacy of immunotherapy combined with 177Lu-LNC1004 for cancer patients with FAP-positive tumors.


Subject(s)
Immune Checkpoint Inhibitors , Animals , Mice , Immune Checkpoint Inhibitors/pharmacology , Humans , Membrane Proteins/genetics , Membrane Proteins/immunology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Endopeptidases/genetics , NIH 3T3 Cells , Radiopharmaceuticals/therapeutic use , Serine Endopeptidases/genetics , Serine Endopeptidases/immunology , Xenograft Model Antitumor Assays , Immunotherapy , Gelatinases/genetics , Gelatinases/immunology , Lutetium/pharmacology , Cell Line, Tumor
3.
Clin Nucl Med ; 49(7): 621-629, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38769643

ABSTRACT

PURPOSE: This pilot study investigates the efficacy and safety profile as well as predictive biomarkers of 225 Ac-PSMA-617-augmented 177 Lu-PSMA-617 radioligand therapy (RLT) in a cohort of high-risk patients with metastatic castration-resistant prostate cancer (mCRPC), enrolled in a prospective registry (NCT04833517). PATIENTS AND METHODS: A group of n = 33 high-risk mCRPC patients received 177 Lu-PSMA-617 RLT, augmented by 1 or more cycles of 225 Ac-PSMA-617. Response was assessed by prostate-specific antigen (PSA) serum value after 2 cycles of treatment. Overall survival (OS) and PSA-based progression-free survival were evaluated using Kaplan-Meier analysis. To assess the side effect profile, Common Terminology Criteria for Adverse Events were applied. In total, 12 potential pretherapeutic biomarkers were tested for association with OS. RESULTS: The median decrease in serum PSA value was -49.1%, and 16/33 (48.5%) patients experienced a partial response after 2 cycles RLT. The median PSA-based progression-free survival and median OS was 7.2 and 14.8 months, respectively. Alkaline phosphatase ( P < 0.001), lactate dehydrogenase ( P = 0.035), Eastern European Oncology Group Performance Score ( P = 0.037), and the presence of visceral metastases ( P = 0.029) revealed significant association with OS in Kaplan-Meier analysis (log-rank test). Most of the recorded adverse events were rated as mild or moderate. Higher-grade adverse events were very limited with only 1 case (3.0%) of grade 3 anemia. Treatment-related mild xerostomia was recorded in 6/33 (18.2%) patients. CONCLUSIONS: 225 Ac-PSMA-617 augmentation in high-risk mCRPC undergoing 177 Lu-PSMA-617 RLT appears to be an effective treatment option with a favorable safety profile. The pretherapeutic values of alkaline phosphatase, lactate dehydrogenase, the Eastern European Oncology Group Performance Score, and the presence of visceral metastases may be appropriate biomarkers predicting survival outcome of this treatment regimen.


Subject(s)
Heterocyclic Compounds, 1-Ring , Lutetium , Prostatic Neoplasms, Castration-Resistant , Registries , Humans , Male , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Prostatic Neoplasms, Castration-Resistant/pathology , Aged , Pilot Projects , Heterocyclic Compounds, 1-Ring/therapeutic use , Heterocyclic Compounds, 1-Ring/adverse effects , Middle Aged , Prospective Studies , Prostate-Specific Antigen/blood , Dipeptides/therapeutic use , Dipeptides/adverse effects , Aged, 80 and over , Ligands , Treatment Outcome , Risk , Actinium , Radioisotopes
4.
Anticancer Res ; 44(6): 2297-2305, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821587

ABSTRACT

BACKGROUND/AIM: The current systematic review aimed to collect and analyze all available published and unpublished cases in which prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (177Lu-PSMA) was used to treat non-prostatic cancer. MATERIALS AND METHODS: Literature search and evidence acquisition through contacts with organizations that use 177Lu-PSMA were employed. PubMed/Medline, SCOPUS, and ScienceDirect searches were performed following PRISMA recommendations. The search strategy was to screen all articles describing 177Lu-PSMA radioligand therapy published to date with the key word "177Lu-PSMA". These articles were collected and screened for non-prostatic cancer cases. Quality assessment was performed using the GRADE criteria. RESULTS: A total of 713 articles were screened, and the search revealed 15 eligible records. Forty patients with a mean age of 51.2±18.5 years were treated with 177Lu-PSMA for non-prostatic cancer. Of them, 30 cases were published, and 10 were found in medical institution records. Cancers of the salivary glands were most often targeted (13/40), followed by various brain cancer types (8/40), and osteosarcoma (6/40). The authors used previously established protocols for castration-resistant prostate cancer with the dose per cycle as 6.0-7.4 GBq and the number of cycles between one and four. Toxicity was estimated as low, and 21 out of 28 patients with reported outcomes survived to the time of the publication. CONCLUSION: PSMA-targeted radioligand therapy was infrequently used to treat different non-prostatic cancer types in various target organs. These pioneering efforts indicate that 177Lu-PSMA can be used to treat non-prostatic cancer with PSMA expression. The toxicity of such treatment was low, and the outcome was relatively good.


Subject(s)
Lutetium , Humans , Lutetium/therapeutic use , Middle Aged , Radiopharmaceuticals/therapeutic use , Radiopharmaceuticals/adverse effects , Male , Neoplasms/radiotherapy , Neoplasms/therapy , Dipeptides/therapeutic use , Female , Glutamate Carboxypeptidase II/metabolism , Aged , Radioisotopes/therapeutic use , Radioisotopes/adverse effects , Antigens, Surface/metabolism , Adult , Heterocyclic Compounds, 1-Ring/therapeutic use , Prostate-Specific Antigen
5.
Biomed Phys Eng Express ; 10(4)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38779912

ABSTRACT

Introduction. The positioning ofγray interactions in positron emission tomography (PET) detectors is commonly made through the evaluation of the Anger logic flood histograms. machine learning techniques, leveraging features extracted from signal waveform, have demonstrated successful applications in addressing various challenges in PET instrumentation.Aim. This paper evaluates the use of artificial neural networks (NN) forγray interaction positioning in pixelated scintillators coupled to a multiplexed array of silicon photomultipliers (SiPM).Methods. An array of 16 Cerium doped Lutetium-based (LYSO) crystal pixels (cross-section 2 × 2 mm2) coupled to 16 SiPM (S13360-1350) were used for the experimental setup. Data from each of the 16 LYSO pixels was recorded, a total of 160000 events. The detectors were irradiated by 511 keV annihilationγrays from a Sodium-22 (22Na) source. Another LYSO crystal was used for electronic collimation. Features extracted from the signal waveform were used to train the model. Two models were tested: i) single multiple-class neural network (mcNN), with 16 possible outputs followed by a softmax and ii) 16 binary classification neural networks (bNN), each one specialized in identifying events occurred in each position.Results. Both NN models showed a mean positioning accuracy above 85% on the evaluation dataset, although the mcNN is faster to train.DiscussionThe method's accuracy is affected by the introduction of misclassified events that interacted in the neighbour's crystals and were misclassified during the dataset acquisition. Electronic collimation reduces this effect, however results could be improved using a more complex acquisition setup, such as a light-sharing configuration.ConclusionsThe methods comparison showed that mcNN and bNN can surpass the Anger logic, showing the feasibility of using these models in positioning procedures of future multiplexed detector systems in a linear configuration.


Subject(s)
Gamma Rays , Neural Networks, Computer , Positron-Emission Tomography , Positron-Emission Tomography/methods , Scintillation Counting/instrumentation , Scintillation Counting/methods , Lutetium/chemistry , Cerium/chemistry , Silicon/chemistry , Algorithms , Equipment Design
6.
J Nucl Med ; 65(6): 909-916, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38697669

ABSTRACT

Prospective results have demonstrated favorable safety and efficacy of [177Lu]Lu-PSMA radiopharmaceutical therapy for up to 6 cycles in men with metastatic castration-resistant prostate cancer. However, no systematic data are available outlining the feasibility of extended therapy beyond 6 cycles. We aim to evaluate the safety and efficacy of extended [177Lu]Lu-PSMA radiopharmaceutical therapy in patients who have received more than 6 cycles. Methods: In total, 111 patients were included in this multicenter retrospective analysis. Based on individual decisions, patients underwent uninterrupted continuation of therapy (continuous treatment) or reexposure after a therapy break (rechallenge treatment) between 2014 and 2023. Overall survival, 50% prostate-specific antigen (PSA) decline (measured 8-12 wk after treatment initiation or rechallenge), PSMA PET response, and grades per Common Terminology Criteria for Adverse Events were assessed. χ2 tests, multivariable Cox regression analysis, and log-rank tests were applied for statistical analyses. Results: Patients received extended treatment with [177Lu]Lu-PSMA, either as a continuous treatment (43/111, 38.7%) or as a rechallenge (68/111, 61.3%) treatment, with median cumulative doses of 57.4 or 60.8 GBq, respectively. Overall survival from the initiation of [177Lu]Lu-PSMA was 31.3, 23.2, and 40.2 mo for the entire cohort, the continuous treatment group, and the rechallenge treatment group, respectively. The initial 50% PSA decline was significantly higher in the retreated group than in the continuous group (57/63 [90.4%] vs. 26/42 [61.9%]; P = 0.006). A 50% PSA decline was observed in 23 of 62 patients (37.1%) after the first rechallenge. The rate of grades 3-4 toxicity was comparable between continuous and rechallenge treatments (anemia, 7/43 [16.3%] vs. 13/68 [19.1%)], P = 0.6; leukocytopenia, 1/43 [2.3%] vs. 2/67 [3.0%], P = 0.3; thrombocytopenia, 3/43 [7.0%] vs. 3/68 [4.4%], P = 0.3; renal, 2/43 [4.7%] vs. 5/68 [7.4%], P = 0.2). Conclusion: Extended therapy with [177Lu]Lu-PSMA is safe and has not been associated with increased grades 3-4 toxicity. Patient candidates for extended treatment experienced a favorable median survival of 31.3 mo from the first administration. Response under [177Lu]Lu-PSMA rechallenge demonstrated preserved efficacy of [177Lu]Lu-PSMA after a treatment break.


Subject(s)
Lutetium , Humans , Male , Aged , Lutetium/therapeutic use , Retrospective Studies , Middle Aged , Treatment Outcome , Germany , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Prostatic Neoplasms, Castration-Resistant/pathology , Aged, 80 and over , Safety , Radiopharmaceuticals/therapeutic use , Radiopharmaceuticals/adverse effects , Prostate-Specific Antigen , Radioisotopes
7.
Appl Radiat Isot ; 210: 111378, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38820867

ABSTRACT

Despite being time-consuming, SPECT/CT data is necessary for accurate dosimetry in patient-specific radiopharmaceutical therapy. We investigated how reducing the frame duration (FD) during SPECT acquisition can simplify the dosimetry workflow for [177Lu]Lu-PSMA radioligand therapy (RLT). We aimed to determine the impact of shortened acquisition times on dosimetric precision. Three SPECT scans with FD of 20, 10, and 5 second/frame (sec/fr) were obtained 48 h post-RLT from one metastatic castration-resistant prostate cancer (mCRPC) patient's pelvis. Planar images at 4, 48, and 72 h post-therapy were used to calculate time-integrated activities (TIAs). Using accurate activity calibrations and GATE Monte Carlo (MC) dosimetry, absorbed doses in tumor lesions and kidneys were estimated. Dosimetry precision was assessed by comparing shorter FD results to the 20 sec/fr reference using relative percentage difference (RPD). We observed consistent calibration factors (CFs) across different FDs. Using the same CF, we obtained marginal RPD deviations less than 4% for the right kidney and tumor lesions and less than 7% for the left kidney. By reducing FD, simulation time was slightly decreased. This study shows we can shorten SPECT acquisition time in RLT dosimetry by reducing FD without sacrificing dosimetry accuracy. These findings pave the way for streamlined personalized internal dosimetry workflows.


Subject(s)
Monte Carlo Method , Prostatic Neoplasms, Castration-Resistant , Radiometry , Radiopharmaceuticals , Tomography, Emission-Computed, Single-Photon , Humans , Radiopharmaceuticals/therapeutic use , Male , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Prostatic Neoplasms, Castration-Resistant/diagnostic imaging , Tomography, Emission-Computed, Single-Photon/methods , Radiometry/methods , Lutetium/therapeutic use , Calibration , Radiotherapy Dosage , Radioisotopes
8.
Sci Rep ; 14(1): 11271, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760451

ABSTRACT

Candidates for prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT) of metastatic castration-resistant prostate cancer (mCRPC) frequently have "mismatch" lesions with pronounced 18-fluorodeoxyglucose ([18F]FDG) but attenuated PSMA ligand uptake on positron emission tomography (PET). However, no quantitative criteria yet exist to identify mismatch lesions and predict their response to RLT. To define such criteria, we retrospectively analyzed 267 randomly-selected glucometabolic mCRPC metastases from 22 patients. On baseline PET, we determined [18F]FDG and [68Ga]Ga-PSMA-11 maximum standardized uptake value (SUVmax), and calculated the [18F]FDG SUVmax/[68Ga]Ga-PSMA-11 SUVmax quotient (FPQ). From follow-up [18F]FDG PET after two lutetium-177-PSMA-617 RLT cycles, we evaluated the treatment response and categorized the lesions into three subgroups (partial remission, stable disease, progression) based on change in [18F]FDG SUVmax. Lastly, we compared the baseline PET variables in progressing versus non-progressing lesions. Variables differing significantly, and a score incorporating them, were assessed via receiver operator characteristic (ROC) curve analysis, regarding ability to predict lesional progression, with area under the curve (AUC) as metric. Cut-offs with optimal sensitivity and specificity were determined using the maximum value of Youden's index. Fifty-one of 267 lesions (19.1%) progressed, 102/267 (38.2%) manifested stable disease, and 114/267 (42.7%) partially responded after two RLT cycles. At baseline, median [68Ga]Ga-PSMA-11 SUVmax was significantly lower (p < 0.001), median FPQ significantly higher (p < 0.001), and median [18F]FDG SUVmax similar in progressing versus non-progressing lesions. [68Ga]Ga-PSMA-11 SUVmax and FPQ showed predictive power regarding progression (AUCs: 0.89, 0.90). An introduced clinical score combining both further improved predictive performance (AUC: 0.94). Optimal cut-offs to foretell progression were: [68Ga]Ga-PSMA-11 SUVmax < 11.09 (88.2% sensitivity, 81.9% specificity), FPQ ≥ 0.92 (90.2% sensitivity, 78.7% specificity), clinical score ≥ 6/9 points (88.2% sensitivity, 87.5% specificity). At baseline, a low [68 Ga]Ga-PSMA-11 SUVmax and a high FPQ predict early lesional progression under RLT; [18F]FDG SUVmax does not. A score combining [68 Ga]Ga-PSMA-11 SUVmax and FPQ predicts early lesional progression even more effectively and might therefore be useful to quantitatively identify mismatch lesions.


Subject(s)
Disease Progression , Fluorodeoxyglucose F18 , Positron-Emission Tomography , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Prostatic Neoplasms, Castration-Resistant/diagnostic imaging , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Aged , Positron-Emission Tomography/methods , Middle Aged , Retrospective Studies , Gallium Radioisotopes , Radiopharmaceuticals , Antigens, Surface/metabolism , Glutamate Carboxypeptidase II/metabolism , Aged, 80 and over , Lutetium
9.
Cancer Treat Rev ; 127: 102748, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703593

ABSTRACT

Clinical trials of prostate-specific membrane antigen (PSMA) targeted radiopharmaceuticals have shown encouraging results. Some agents, like lutetium-177 [177Lu]Lu-PSMA-617 ([177Lu]Lu-PSMA-617), are already approved for late line treatment of metastatic castration-resistant prostate cancer (mCRPC). Projections are for continued growth of this treatment modality; [177Lu]Lu-PSMA-617 is being studied both in earlier stages of disease and in combination with other anti-cancer therapies. Further, the drug development pipeline is deep with variations of PSMA-targeting radionuclides, including higher energy alpha particles conjugated to PSMA-honing vectors. It is safe to assume that an increasing number of patients will be exposed to PSMA-targeted radiopharmaceuticals during the course of their cancer treatment. In this setting, it is important to better understand and mitigate the most commonly encountered toxicities. One particularly vexing side effect is xerostomia. In this review, we discuss the scope of the problem, inventories to better characterize and monitor this troublesome side effect, and approaches to preserve salivary function and effectively palliate symptoms. This article aims to serve as a useful reference for prescribers of PSMA-targeted radiopharmaceuticals, while also commenting on areas of missing data and opportunities for future research.


Subject(s)
Antigens, Surface , Glutamate Carboxypeptidase II , Radiopharmaceuticals , Humans , Radiopharmaceuticals/therapeutic use , Male , Glutamate Carboxypeptidase II/antagonists & inhibitors , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Lutetium/therapeutic use , Radioisotopes/adverse effects , Radioisotopes/administration & dosage , Salivary Glands/radiation effects , Salivary Glands/drug effects , Dipeptides/therapeutic use , Heterocyclic Compounds, 1-Ring/therapeutic use
10.
Nucl Med Biol ; 134-135: 108917, 2024.
Article in English | MEDLINE | ID: mdl-38718557

ABSTRACT

BACKGROUND: Osteosarcoma (OS) is a prevalent primary bone cancer affecting both humans and canines. This study describes initial insights into the interaction of the human monoclonal antibody IF3 to an insulin-like growth factor 2 receptor (IGF2R) radiolabeled with either alpha-emitting Actinium-225 (225Ac) or beta-emitting Lutetium-177 (177Lu) radionuclides with the OS cells and tumor microenvironment (TME) in experimental human and canine OS. BASIC PROCEDURES: SCID mice bearing canine Gracie or human OS-33 OS tumors were treated with 177Lu- or 225Ac-labeled IF3 antibody, sacrificed at 24, 72 or 168 h post-treatment and their tumors were analyzed by immunohistochemistry (IHC) for the presence of OS cells, various elements of TME as well as for the double DNA strand breaks with γH2AX and caspase 3 assays. MAIN FINDINGS: IHC revealed a reduction in IGF2R-positive OS cells and OS stem cell populations post therapy with 225Ac- and 177Lu-labeled IF3 antibody. Notably, radiolabeled IF3 antibody effectively diminished pro-tumorigenic M2 macrophages, highlighting its therapeutic promise. The study also unveiled varied responses of natural killer (NK) cells and M1 macrophages, shedding light on the intricate TME interplay. Time-dependent increase in γ-H2AX staining in canine Gracie and human OS-33 tumors treated with [177Lu]Lu-IF3 and [225Ac]Ac-IF3 was observed at 24 and 72 h post-RIT. PRINCIPAL CONCLUSIONS: These findings suggest that radiolabeled antibodies offer a hopeful avenue for personalized OS treatment, emphasizing the importance of understanding their impact on the TME and potential synergies with immunotherapy.


Subject(s)
Actinium , Lutetium , Osteosarcoma , Radioisotopes , Tumor Microenvironment , Animals , Dogs , Humans , Osteosarcoma/metabolism , Osteosarcoma/pathology , Osteosarcoma/diagnostic imaging , Mice , Cell Line, Tumor , Antibodies, Monoclonal , Isotope Labeling , Bone Neoplasms/metabolism , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/pathology , Bone Neoplasms/immunology
11.
J Med Chem ; 67(10): 8247-8260, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38716576

ABSTRACT

Prostate-specific membrane antigen (PSMA)-targeted radio ligand therapeutics (RLTs), such as [177Lu]Lu-PSMA-617 (Pluvicto), have been shown to accumulate in salivary glands and kidneys, potentially leading to undesired side effects. As unwanted accumulation in normal organs may derive from the cross-reactivity of PSMA ligands to glutamate carboxypeptidase III (GCPIII), it may be convenient to block this interaction with GCPIII-selective ligands. Parallel screening of a DNA-encoded chemical library (DEL) against GCPIII and PSMA allowed the identification of GCPIII binders. Structure-activity relationship (SAR) studies resulted in the identification of nanomolar GCPIII ligands with up to 1000-fold selectivity over PSMA. We studied the ability of GCPIII ligands to counteract the binding of [177Lu]Lu-PSMA-617 to human salivary glands by autoradiography and could demonstrate a partial radioprotection.


Subject(s)
Dipeptides , Heterocyclic Compounds, 1-Ring , Lutetium , Humans , Antigens, Surface , Autoradiography , Dipeptides/chemistry , Dipeptides/metabolism , Glutamate Carboxypeptidase II , Heterocyclic Compounds, 1-Ring/chemistry , Heterocyclic Compounds, 1-Ring/metabolism , Ligands , Lutetium/chemistry , Lutetium/metabolism , Prostate-Specific Antigen , Radioisotopes/chemistry , Radioisotopes/metabolism , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/metabolism , Radiopharmaceuticals/pharmacokinetics , Salivary Glands/metabolism , Structure-Activity Relationship , Tissue Distribution
12.
Sci Rep ; 14(1): 10787, 2024 05 11.
Article in English | MEDLINE | ID: mdl-38734765

ABSTRACT

Radioligand therapy with [177Lu]Lu-PSMA-617 can be used to prolong life and reduce tumor burden in terminally ill castration resistant prostate cancer patients. Still, accumulation in healthy tissue limits the activity that can be administered. Therefore, fractionated therapy is used to lower toxicity. However, there might be a need to reduce toxicity even further with e.g. radioprotectors. The aim of this study was to (i). establish a preclinical mouse model with fractionated high activity therapy of three consecutive doses of 200 MBq [177Lu]Lu-PSMA-617 in which we aimed to (ii). achieve measurable hematotoxicity and nephrotoxicity and to (iii). analyze the potential protective effect of co-injecting recombinant α1-microglobulin (rA1M), a human antioxidant previously shown to have radioprotective effects. In both groups, three cycles resulted in increased albuminuria for each cycle, with large individual variation. Another marker of kidney injury, serum blood urea nitrogen (BUN), was only significantly increased compared to control animals after the third cycle. The number of white and red blood cells decreased significantly and did not reach the levels of control animals during the experiment. rA1M did reduce absorbed dose to kidney but did not show significant protection here, but future studies are warranted due to the recent clinical studies showing a significant renoprotective effect in patients.


Subject(s)
Alpha-Globulins , Dipeptides , Heterocyclic Compounds, 1-Ring , Lutetium , Animals , Alpha-Globulins/metabolism , Mice , Male , Humans , Dipeptides/pharmacology , Kidney/pathology , Kidney/radiation effects , Kidney/drug effects , Kidney/metabolism , Radiopharmaceuticals , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Prostatic Neoplasms, Castration-Resistant/pathology , Blood Urea Nitrogen , Prostate-Specific Antigen
13.
Mol Pharm ; 21(6): 2960-2969, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38680059

ABSTRACT

Very late antigen-4 (VLA-4) is a transmembrane integrin protein that is highly expressed in aggressive forms of metastatic melanoma. A small-molecule peptidomimetic, LLP2A, was found to have a low pM affinity binding to VLA-4. Because LLP2A itself does not inhibit cancer cell proliferation and survival, it is an ideal candidate for the imaging and delivery of therapeutic payloads. An analog of [177Lu]Lu-labeled-LLP2A was previously investigated as a therapeutic agent in melanoma tumor-bearing mice, resulting in only a modest improvement in tumor growth inhibition, likely due to rapid clearance of the agent from the tumor. To improve the pharmacokinetic profile, DOTAGA-PEG4-LLP2A with a 4-(p-iodophenyl)butyric acid (pIBA) albumin binding moiety was synthesized. We demonstrate the feasibility of this albumin binding strategy by comparing in vitro cell binding assays and in vivo biodistribution performance of [177Lu]Lu-DOTAGA-PEG4-LLP2A ([177Lu]Lu-1) to the albumin binding [177Lu]Lu-DOTAGA-pIBA-PEG4-LLP2A ([177Lu]Lu-2). In vitro cell binding assay results for [177Lu]Lu-1 and [177Lu]Lu-2 showed Kd values of 0.40 ± 0.07 and 1.75 ± 0.40 nM, with similar Bmax values of 200 ± 6 and 315 ± 15 fmol/mg, respectively. In vivo biodistribution data for both tracers exhibited specific uptake in the tumor, spleen, thymus, and bone due to endogenous expression of VLA-4. Compound [177Lu]Lu-2 exhibited a much longer blood circulation time compared to [177Lu]Lu-1. The tumor uptake for [177Lu]Lu-1 was highest at 1 h (∼15%ID/g) and that for [177Lu]Lu-2 was highest at 4 h (∼23%ID/g). Significant clearance of [177Lu]Lu-1 from the tumor occurs at 24 h (<5%ID/g) while[177Lu]Lu-2 is retained for greater than 96 h (∼10%ID/g). An efficacy study showed that melanoma tumor-bearing mice receiving compound [177Lu]Lu-2 given in two fractions (2 × 14.8 MBq, 14 days apart) had a greater median survival time than mice administered a single 29.6 MBq dose of compound [177Lu]Lu-1, while a single 29.6 MBq dose of [177Lu]Lu-2 imparted hematopoietic toxicity. The in vitro and in vivo data show addition of pIBA to [177Lu]Lu-DOTAGA-PEG4-LLP2A slows blood clearance for a higher tumor uptake, and there is potential of [177Lu]Lu-2 as a theranostic in fractionated administered doses.


Subject(s)
Lutetium , Radioisotopes , Animals , Mice , Tissue Distribution , Cell Line, Tumor , Melanoma/drug therapy , Melanoma/metabolism , Humans , Radiopharmaceuticals/pharmacokinetics , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , Female , Integrin alpha4beta1/metabolism , Integrin alpha4beta1/antagonists & inhibitors , Albumins , Peptides/chemistry , Peptides/pharmacokinetics , Theranostic Nanomedicine/methods , Mice, Inbred C57BL , Dipeptides , Phenylurea Compounds
14.
J Neuroendocrinol ; 36(6): e13393, 2024 06.
Article in English | MEDLINE | ID: mdl-38622851

ABSTRACT

Peptide receptor radionuclide therapy (PRRT) can be a very useful treatment for patients with neuroendocrine neoplasms and metastatic castration-resistant prostate cancer but it is routinely avoided in those with advanced kidney disease because it can adversely affect the renal function. Accordingly, no clear guidelines exist on the use of PRRT for patients on hemodialysis (HD). We performed a literature review to identify publications on HD patients who received PRRT with Lutetium-177 (Lu177) Dotatate and Y-90 and obtained information on Lu177 pharmacokinetics and early testing data from the manufacturer. We also perused the most recent North American Neuroendocrine Tumor Society (NANETS)/European Neuroendocrine Tumor Society (ENETS) recommendations. Seven relevant publications with a total of 15 patients were included. Patients received dose-adjusted fractions of PRRT with HD occurring usually within 24 h. There were no immediate or long-term serious adverse events attributed to the radioligand, although data was limited. Using available evidence and input from a multidisciplinary group, we have created an institutional workflow. Dose-adjusted PRRT can be offered to patients undergoing HD under careful, multidisciplinary supervision.


Subject(s)
Kidney Failure, Chronic , Lutetium , Neuroendocrine Tumors , Radiopharmaceuticals , Humans , Radiopharmaceuticals/therapeutic use , Radiopharmaceuticals/administration & dosage , Lutetium/therapeutic use , Neuroendocrine Tumors/radiotherapy , Kidney Failure, Chronic/therapy , Algorithms , Male , Octreotide/analogs & derivatives , Octreotide/therapeutic use , Radioisotopes/therapeutic use , Renal Dialysis/methods , Receptors, Peptide/metabolism , Organometallic Compounds
15.
J Nucl Med ; 65(6): 917-922, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38637143

ABSTRACT

Response Evaluation Criteria in Prostate-Specific Membrane Antigen Imaging (RECIP) 1.0 is an evidence-based framework to evaluate therapeutic efficacy in metastatic prostate cancer using prostate-specific membrane antigen (PSMA) PET/CT. This study aimed to evaluate the associations of interim PSMA PET/CT by RECIP 1.0 with short-term outcome after radiopharmaceutical treatment. Methods: This multicenter retrospective study included patients with metastatic castration-resistant prostate cancer who underwent [177Lu]Lu-PSMA radiopharmaceutical therapy at 3 academic centers and received PSMA PET/CT at baseline and at 12 wk. Pairs of PSMA PET/CT images were assessed by 5 readers for visual RECIP 1.0. The primary outcome was the association of RECIP with prostate-specific antigen progression-free survival (PSA-PFS) by Kaplan-Meier analysis. Results: In total, 124 of 287 screened patients met the inclusion criteria, with 0 (0%), 29 (23%), 54 (44%), and 41 (33%) of those 124 patients having complete response, partial response, stable disease, or progressive disease (PD) by visual RECIP 1.0, respectively. Patients with visual RECIP PD had a significantly shorter PSA-PFS than those with RECIP stable disease or with RECIP partial response (2.6 vs. 6.4 vs. 8.4 mo; P < 0.001). The median PSA-PFS among patients with RECIP PD versus those with non-RECIP PD was 2.6 versus 7.2 mo (hazard ratio, 13.0; 95% CI, 7.0-24.1; P < 0.001). Conclusion: PSMA PET/CT by RECIP 1.0 after 2 cycles of [177Lu]Lu-PSMA is prognostic for PSA-PFS. PSMA PET/CT by RECIP 1.0 may be used in earlier stages of prostate cancer to evaluate drug efficacy and to predict progression-free survival.


Subject(s)
Lutetium , Neoplasm Metastasis , Positron Emission Tomography Computed Tomography , Progression-Free Survival , Prostatic Neoplasms, Castration-Resistant , Radiopharmaceuticals , Humans , Male , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Prostatic Neoplasms, Castration-Resistant/diagnostic imaging , Prostatic Neoplasms, Castration-Resistant/pathology , Aged , Radiopharmaceuticals/therapeutic use , Retrospective Studies , Lutetium/therapeutic use , Middle Aged , Aged, 80 and over , Glutamate Carboxypeptidase II/metabolism , Prostate-Specific Antigen/blood , Antigens, Surface/metabolism , Treatment Outcome , Heterocyclic Compounds, 1-Ring/therapeutic use , Radioisotopes
16.
J Nucl Med ; 65(6): 980-987, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38637141

ABSTRACT

With the development of new radiopharmaceutical therapies, quantitative SPECT/CT has progressively emerged as a crucial tool for dosimetry. One major obstacle of SPECT is its poor resolution, which results in blurring of the activity distribution. Especially for small objects, this so-called partial-volume effect limits the accuracy of activity quantification. Numerous methods for partial-volume correction (PVC) have been proposed, but most methods have the disadvantage of assuming a spatially invariant resolution of the imaging system, which does not hold for SPECT. Furthermore, most methods require a segmentation based on anatomic information. Methods: We introduce DL-PVC, a methodology for PVC of 177Lu SPECT/CT imaging using deep learning (DL). Training was based on a dataset of 10,000 random activity distributions placed in extended cardiac-torso body phantoms. Realistic SPECT acquisitions were created using the SIMIND Monte Carlo simulation program. SPECT reconstructions without and with resolution modeling were performed using the CASToR and STIR reconstruction software, respectively. The pairs of ground-truth activity distributions and simulated SPECT images were used for training various U-Nets. Quantitative analysis of the performance of these U-Nets was based on metrics such as the structural similarity index measure or normalized root-mean-square error, but also on volume activity accuracy, a new metric that describes the fraction of voxels in which the determined activity concentration deviates from the true activity concentration by less than a certain margin. On the basis of this analysis, the optimal parameters for normalization, input size, and network architecture were identified. Results: Our simulation-based analysis revealed that DL-PVC (0.95/7.8%/35.8% for structural similarity index measure/normalized root-mean-square error/volume activity accuracy) outperforms SPECT without PVC (0.89/10.4%/12.1%) and after iterative Yang PVC (0.94/8.6%/15.1%). Additionally, we validated DL-PVC on 177Lu SPECT/CT measurements of 3-dimensionally printed phantoms of different geometries. Although DL-PVC showed activity recovery similar to that of the iterative Yang method, no segmentation was required. In addition, DL-PVC was able to correct other image artifacts such as Gibbs ringing, making it clearly superior at the voxel level. Conclusion: In this work, we demonstrate the added value of DL-PVC for quantitative 177Lu SPECT/CT. Our analysis validates the functionality of DL-PVC and paves the way for future deployment on clinical image data.


Subject(s)
Deep Learning , Image Processing, Computer-Assisted , Lutetium , Phantoms, Imaging , Single Photon Emission Computed Tomography Computed Tomography , Single Photon Emission Computed Tomography Computed Tomography/methods , Image Processing, Computer-Assisted/methods , Radioisotopes , Humans , Monte Carlo Method
17.
J Nucl Med ; 65(6): 904-908, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38637137

ABSTRACT

177Lu-PSMA therapy is an effective treatment in patients with metastatic castration-resistant prostate cancer. SUVmean is a valuable screening biomarker to assess the suitability for 177Lu-PSMA therapy but requires quantitative software. This study aims to develop a simple, clinically applicable prostate-specific membrane antigen PET/CT score that encompasses the elements of SUVmean without requiring additional quantification. Methods: Datasets from ethics-approved trials of patients with metastatic castration-resistant prostate cancer after androgen receptor signaling inhibition and taxane chemotherapy (or unfit for taxane), who were treated with 177Lu-PSMA-617 and 177Lu-PSMA I&T with a pretreatment screening with 68Ga-PSMA-11 PET/CT, and clinical outcome data, including a prostate-specific antigen (PSA) 50% response rate (PSA50), PSA progression-free survival (PSA-PFS), and overall survival (OS), were included. The screening 68Ga-PSMA-11 PET/CT of all participants was analyzed both semiquantitatively and visually. Semiquantitative analysis was used to derive the SUVmean Visual analysis of the 68Ga-PSMA-11 PET/CT images involved a binary visual heterogeneity assessment (homogeneous or heterogeneous), allocating a tumor SUVmax range (<15, 15-29, 30-49, 50-79, or ≥80). A 4-category score incorporating both heterogeneity and intensity of tumors (HIT) was then developed as a combination of heterogeneity and intensity (SUVmax range). The SUVmax was less than 15 for score 1, 15-79 with heterogeneous intensity for score 2, 15-79 with homogeneous intensity for score 3, and 80 or greater for score 4. This score was evaluated according to clinical outcomes (PSA50, PSA-PFS, and OS) and compared with SUVmean Results: Data from 139 participants were analyzed. In total, 75 (54%) patients achieved a PSA50 with a median PSA-PFS of 5.5 mo (95% CI, 4.1-6.0 mo) and an OS of 13.5 mo (95% CI, 11.1-17.9 mo). SUVmean was associated with PSA50 and survival outcomes when analyzed as a continuous variable or as quartiles. The PSA50 for HIT scores 1-4 was 0%, 39%, 65%, and 76%, respectively. The HIT score was strongly related to PSA-PFS and OS (log-rank test, P < 0.001 and P = 0.002). The median PSA-PFS for HIT scores 1-4 was 1.0, 4.1, 6.0, and 8.5, respectively, and the median OS was 7.6, 12.0, 18.5, and 16.9 mo, respectively. Cohen κ between readers for the HIT score was 0.71. Conclusion: A prostate-specific membrane antigen PET/CT score incorporating HIT derived from tools on a standard PET workstation is comparable with quantitative SUVmean as a prognostic tool following 177Lu-PSMA therapy.


Subject(s)
Lutetium , Positron Emission Tomography Computed Tomography , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Lutetium/therapeutic use , Treatment Outcome , Aged , Prostatic Neoplasms, Castration-Resistant/diagnostic imaging , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Middle Aged , Heterocyclic Compounds, 1-Ring/therapeutic use , Dipeptides/therapeutic use , Prostate-Specific Antigen , Edetic Acid/analogs & derivatives , Gallium Radioisotopes , Image Processing, Computer-Assisted , Gallium Isotopes
18.
Eur J Nucl Med Mol Imaging ; 51(8): 2332-2337, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38563883

ABSTRACT

PURPOSE: Pluvicto™ ([177Lu]Lu-PSMA-617), a radioligand therapeutic targeting prostate-specific membrane antigen (PSMA), has been recently approved for the treatment of metastatic castration-resistant prostate cancer (mCRPR). The drug suffers from salivary gland and kidney uptake that prevents its dose escalation to potentially curative doses. In this work, we sought to potentiate the in vivo anti-cancer activity of Pluvicto™ by combining it with L19-IL2, a clinical-stage investigational medicinal product based on tumor-targeted interleukin-2. METHODS: We established a new PSMA-expressing model (HT-1080.hPSMA) and validated it using a fluoresceine analogue of PSMA-617 (compound 1). The HT-1080.hPSMA model was used to study the saturation and tumor retention of Pluvicto™ (compound 2) and to run combination therapy studies with L19-IL2. To complement our understanding of the mechanism of action of this novel combination, we conducted proteomics experiments on tumor samples after therapy with Pluvicto™ alone or in combination with the immunocytokine. RESULTS: High, selective, and long-lived tumor uptake was observed for Pluvicto™ (2) in the novel HT-1080.hPSMA model. Therapy studies in HT-1080.hPSMA tumor-bearing mice revealed that the combination of Pluvicto™ (2) plus L19-IL2 mediated curative and durable responses in all animals. Potent in vivo anti-cancer activity was observed solely for the combination modality, at doses that were well tolerated by treated animals. Proteomics studies indicated that L19-IL2 boosts the activation of the immune system in animals pre-treated with Pluvicto™. CONCLUSION: The therapeutic efficacy of Pluvicto™ at low radioactive doses can be effectively enhanced by the combination with L19-IL2. Our findings warrant further clinical exploration of this novel combination modality.


Subject(s)
Interleukin-2 , Animals , Mice , Humans , Cell Line, Tumor , Male , Heterocyclic Compounds, 1-Ring/chemistry , Heterocyclic Compounds, 1-Ring/therapeutic use , Glutamate Carboxypeptidase II/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacokinetics , Dipeptides/therapeutic use , Dipeptides/pharmacology , Dipeptides/pharmacokinetics , Lutetium/therapeutic use , Tissue Distribution , Antigens, Surface , Prostate-Specific Antigen
19.
Lancet Oncol ; 25(5): 563-571, 2024 May.
Article in English | MEDLINE | ID: mdl-38621400

ABSTRACT

BACKGROUND: Enzalutamide and lutetium-177 [177Lu]Lu-prostate-specific membrane antigen (PSMA)-617 both improve overall survival in patients with metastatic castration-resistant prostate cancer. Androgen and PSMA receptors have a close intracellular relationship, with data suggesting complementary benefit if targeted concurrently. In this study, we assessed the activity and safety of enzalutamide plus adaptive-dosed [177Lu]Lu-PSMA-617 versus enzalutamide alone as first-line treatment for metastatic castration-resistant prostate cancer. METHODS: ENZA-p was an open-label, randomised, controlled phase 2 trial done at 15 hospitals in Australia. Participants were men aged 18 years or older with metastatic castration-resistant prostate cancer not previously treated with docetaxel or androgen receptor pathway inhibitors for metastatic castration-resistant prostate cancer, gallium-68 [68Ga]Ga-PSMA-PET-CT (PSMA-PET-CT) positive disease, Eastern Cooperative Oncology Group performance status of 0-2, and at least two risk factors for early progression on enzalutamide. Participants were randomly assigned (1:1) by a centralised, web-based system using minimisation with a random component to stratify for study site, disease burden, use of early docetaxel, and previous treatment with abiraterone acetate. Patients were either given oral enzalutamide 160 mg daily alone or with adaptive-dosed (two or four doses) intravenous 7·5 GBq [177Lu]Lu-PSMA-617 every 6-8 weeks dependent on an interim PSMA-PET-CT (week 12). The primary endpoint was prostate-specific antigen (PSA) progression-free survival, defined as the interval from the date of randomisation to the date of first evidence of PSA progression, commencement of non-protocol anticancer therapy, or death. The analysis was done in the intention-to-treat population, using stratified Cox proportional hazards regression. This trial is registered with ClinicalTrials.gov, NCT04419402, and participant follow-up is ongoing. FINDINGS: 162 participants were randomly assigned between Aug 17, 2020, and July 26, 2022. 83 men were assigned to the enzalutamide plus [177Lu]Lu-PSMA-617 group, and 79 were assigned to the enzalutamide group. Median follow-up in this interim analysis was 20 months (IQR 18-21), with 32 (39%) of 83 patients in the enzalutamide plus [177Lu]Lu-PSMA-617 group and 16 (20%) of 79 patients in the enzalutamide group remaining on treatment at the data cutoff date. Median age was 71 years (IQR 64-76). Median PSA progression-free survival was 13·0 months (95% CI 11·0-17·0) in the enzalutamide plus [177Lu]Lu-PSMA-617 group and 7·8 months (95% CI 4·3-11·0) in the enzalutamide group (hazard ratio 0·43, 95% CI 0·29-0·63, p<0·0001). The most common adverse events (all grades) were fatigue (61 [75%] of 81 patients), nausea (38 [47%]), and dry mouth (32 [40%]) in the enzalutamide plus [177Lu]Lu-PSMA-617 group and fatigue (55 [70%] of 79), nausea (21 [27%]), and constipation (18 [23%]) in the enzalutamide group. Grade 3-5 adverse events occurred in 32 (40%) of 81 patients in the enzalutamide plus [177Lu]Lu-PSMA-617 group and 32 (41%) of 79 patients in the enzalutamide group. Grade 3 events that occurred only in the enzalutamide plus [177Lu]Lu-PSMA-617 group included anaemia (three [4%] of 81 participants) and decreased platelet count (one [1%] participant). No grade 4 or 5 events were attributed to treatment on central review in either group. INTERPRETATION: The addition of [177Lu]Lu-PSMA-617 to enzalutamide improved PSA progression-free survival providing evidence of enhanced anticancer activity in patients with metastatic castration-resistant prostate cancer with risk factors for early progression on enzalutamide and warrants further evaluation of the combination more broadly in metastatic prostate cancer. FUNDING: Prostate Cancer Research Alliance (Movember and Australian Federal Government), St Vincent's Clinic Foundation, GenesisCare, Roy Morgan Research, and Endocyte (a Novartis company).


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Benzamides , Dipeptides , Heterocyclic Compounds, 1-Ring , Lutetium , Nitriles , Phenylthiohydantoin , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/mortality , Phenylthiohydantoin/administration & dosage , Phenylthiohydantoin/therapeutic use , Phenylthiohydantoin/analogs & derivatives , Aged , Dipeptides/therapeutic use , Dipeptides/administration & dosage , Dipeptides/adverse effects , Heterocyclic Compounds, 1-Ring/therapeutic use , Heterocyclic Compounds, 1-Ring/administration & dosage , Heterocyclic Compounds, 1-Ring/adverse effects , Middle Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Prostate-Specific Antigen/blood , Progression-Free Survival , Radioisotopes/therapeutic use , Aged, 80 and over , Radiopharmaceuticals
20.
Theranostics ; 14(6): 2560-2572, 2024.
Article in English | MEDLINE | ID: mdl-38646643

ABSTRACT

Management of prostate cancer (PC) might be improved by combining external beam radiotherapy (EBRT) and prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT) with lutetium-177 (177Lu)-labeled PSMA inhibitors. We hypothesized a higher efficacy of the combination due to augmentation of the radiation dose to the tumor and interactions of EBRT with PSMA expression potentially increasing radiopharmaceutical uptake. Therefore, this study analyzed the influence of radiation on PSMA expression levels in vitro. The results were translated to evaluate the efficacy of the combination of photon EBRT and [177Lu]Lu-PSMA-617 in a murine PC xenograft model. Finally, a clinical case report on a combined elective field EBRT with RLT dose escalation illustrates a proof-of-concept. Methods: PSMA gene and protein expression were assessed in human PSMA-overexpressing LNCaP cells after irradiation using reverse transcription quantitative polymerase chain reaction (RT-qPCR), flow cytometry and On-Cell Western assays. In the in vivo therapy study, LNCaP tumor-bearing BALB/c nu/nu mice were irradiated once with 2 Gy X-ray EBRT and injected with 40 MBq [177Lu]Lu-PSMA-617 after 4 h or received single or no treatment (n = 10 each). Tumor-absorbed doses by [177Lu]Lu-PSMA-617 were calculated according to the Medical Internal Radiation Dosimetry (MIRD) formalism after deriving time-activity curves using a gamma probe. An exemplified patient case is demonstrated where fractionated EBRT (54 Gy to prostate; 45 Gy to pelvic lymphatics) and three cycles of [177Lu]Lu-PSMA-617 (3.4-6.0 GBq per cycle) were sequentially combined under concurrent androgen deprivation for treating locally advanced PC. Results: At 4 h following irradiation with 2-8 Gy, LNCaP cells displayed a PSMA protein upregulation by around 18% relative to non-irradiated cells, and a stronger upregulation on mRNA level (up to 2.6-fold). This effect was reversed by 24 h when PSMA protein levels were downregulated by up to 22%. Mice treated with the combination therapy showed significantly improved outcomes regarding tumor control and median survival (p < 0.0001) as compared to single or no treatment. Relative to monotherapy with PSMA-RLT or EBRT, the tumor doubling time was prolonged 1.7- or 2.7-fold and the median survival was extended by 24% or 60% with the combination, respectively. Additionally, tumors treated with EBRT exhibited a 14% higher uptake of the radiopharmaceutical as evident from the calculated tumor-absorbed dose, albeit with high variability in the data. Concerning the patient case, the tri-modality treatment was well tolerated and the patient responded with a long-lasting complete biochemical remission for five years following end of PSMA-RLT. The patient then developed a biochemical relapse with oligo-recurrent disease on follow-up imaging. Conclusion: The present preclinical and clinical data demonstrate that the combination of EBRT with dose escalation by PSMA-RLT improves tumor control and potentially prolongs survival. This may pave the way for further clinical investigations of this approach to explore the curative potential of the combination therapy.


Subject(s)
Dipeptides , Heterocyclic Compounds, 1-Ring , Lutetium , Prostate-Specific Antigen , Prostatic Neoplasms , Radioisotopes , Radiopharmaceuticals , Animals , Male , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/metabolism , Humans , Lutetium/therapeutic use , Lutetium/pharmacology , Heterocyclic Compounds, 1-Ring/therapeutic use , Heterocyclic Compounds, 1-Ring/pharmacology , Dipeptides/pharmacology , Dipeptides/therapeutic use , Cell Line, Tumor , Mice , Radiopharmaceuticals/therapeutic use , Radiopharmaceuticals/pharmacology , Radiopharmaceuticals/pharmacokinetics , Radioisotopes/therapeutic use , Radioisotopes/pharmacology , Mice, Inbred BALB C , Mice, Nude , Glutamate Carboxypeptidase II/metabolism , Glutamate Carboxypeptidase II/genetics , Xenograft Model Antitumor Assays , Antigens, Surface/metabolism , Antigens, Surface/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...