Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.074
Filter
1.
Food Res Int ; 188: 114502, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823845

ABSTRACT

Lycium barbarum L. berries have a remarkable chemical composition and extensive biological activities, being a valuable component of health and nutraceutical practices. Nevertheless, a deep insight on the intestinal permeation of the pro-healthy bioactive compounds is urgently needed to predict the real effects on human body. This study attempted, for the first time, to optimize the Ultrasound-Assisted Extraction (UAE) of goji berries using a Response Surface Methodology approach and establish the intestinal permeation of the principal pro-healthy compounds. The optimal extraction conditions were a solid:liquid ratio of 8.75 % for 56.21 min, using an intensity of 59.05 W/m2. The optimal extract displayed a remarkable antioxidant capacity, with LC/DAD-ESI-MS analysis unveiled a diverse phytochemical profile, encompassing different compounds (e.g. glu-lycibarbarspermidine F, 2-glu-kukoamine, rutin, 3,5-dicaffeoylquinic acid). The intestinal co-culture model demonstrated that glu-lycibarbarspermidine F (isomer 2) (73.70 %), 3,5-dicaffeoylquinic acid (52.66 %), and isorhamnetin-3-O-rutinoside (49.31 %) traversed the intestinal cell layer, exerting beneficial health-promoting effects.


Subject(s)
Antioxidants , Fruit , Lycium , Plant Extracts , Lycium/chemistry , Fruit/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Humans , Permeability , Ultrasonic Waves , Phytochemicals/isolation & purification , Intestinal Mucosa/metabolism , Caco-2 Cells , Intestinal Absorption , Rutin/isolation & purification , Ultrasonics/methods , Intestinal Barrier Function
2.
BMC Genomics ; 25(1): 569, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844874

ABSTRACT

BACKGROUND: Lycium is an economically and ecologically important genus of shrubs, consisting of approximately 70 species distributed worldwide, 15 of which are located in China. Despite the economic and ecological importance of Lycium, its phylogeny, interspecific relationships, and evolutionary history remain relatively unknown. In this study, we constructed a phylogeny and estimated divergence time based on the chloroplast genomes (CPGs) of 15 species, including subspecies, of the genus Lycium from China. RESULTS: We sequenced and annotated 15 CPGs in this study. Comparative analysis of these genomes from these Lycium species revealed a typical quadripartite structure, with a total sequence length ranging from 154,890 to 155,677 base pairs (bp). The CPGs was highly conserved and moderately differentiated. Through annotation, we identified a total of 128-132 genes. Analysis of the boundaries of inverted repeat (IR) regions showed consistent positioning: the junctions of the IRb/LSC region were located in rps19 in all Lycium species, IRb/SSC between the ycf1 and ndhF genes, and SSC/IRa within the ycf1 gene. Sequence variation in the SSC region exceeded that in the IR region. We did not detect major expansions or contractions in the IR region or rearrangements or insertions in the CPGs of the 15 Lycium species. Comparative analyses revealed five hotspot regions in the CPG: trnR(UCU), atpF-atpH, ycf3-trnS(GGA), trnS(GGA), and trnL-UAG, which could potentially serve as molecular markers. In addition, phylogenetic tree construction based on the CPG indicated that the 15 Lycium species formed a monophyletic group and were divided into two typical subbranches and three minor branches. Molecular dating suggested that Lycium diverged from its sister genus approximately 17.7 million years ago (Mya) and species diversification within the Lycium species of China primarily occurred during the recent Pliocene epoch. CONCLUSION: The divergence time estimation presented in this study will facilitate future research on Lycium, aid in species differentiation, and facilitate diverse investigations into this economically and ecologically important genus.


Subject(s)
Evolution, Molecular , Genome, Chloroplast , Lycium , Phylogeny , Lycium/genetics , Lycium/classification , China , Genetic Variation
4.
PLoS One ; 19(5): e0302742, 2024.
Article in English | MEDLINE | ID: mdl-38768144

ABSTRACT

Zeaxanthin dipalmitate (ZD) is a chemical extracted from wolfberry that protects degenerated photoreceptors in mouse retina. However, the pure ZD is expensive and hard to produce. In this study, we developed a method to enrich ZD from wolfberry on a production line and examined whether it may also protect the degenerated mouse retina. The ZD-enriched wolfberry extract (ZDE) was extracted from wolfberry by organic solvent method, and the concentration of ZD was identified by HPLC. The adult C57BL/6 mice were treated with ZDE or solvent by daily gavage for 2 weeks, at the end of the first week the animals were intraperitoneally injected with N-methyl-N-nitrosourea to induce photoreceptor degeneration. Then optomotor, electroretinogram, and immunostaining were used to test the visual behavior, retinal light responses, and structure. The final ZDE product contained ~30mg/g ZD, which was over 9 times higher than that from the dry fruit of wolfberry. Feeding degenerated mice with ZDE significantly improved the survival of photoreceptors, enhanced the retinal light responses and the visual acuity. Therefore, our ZDE product successfully alleviated retinal morphological and functional degeneration in mouse retina, which may provide a basis for further animal studies for possible applying ZDE as a supplement to treat degenerated photoreceptor in the clinic.


Subject(s)
Disease Models, Animal , Lycium , Mice, Inbred C57BL , Photoreceptor Cells, Vertebrate , Plant Extracts , Retinal Degeneration , Zeaxanthins , Animals , Lycium/chemistry , Retinal Degeneration/drug therapy , Retinal Degeneration/pathology , Mice , Plant Extracts/pharmacology , Plant Extracts/chemistry , Zeaxanthins/pharmacology , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/pathology , Electroretinography , Retina/drug effects , Retina/pathology , Retina/metabolism , Vision, Ocular/drug effects , Male , Xanthophylls/pharmacology
5.
BMC Plant Biol ; 24(1): 441, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38778301

ABSTRACT

BACKGROUND: Goji (Lycium barbarum L.) is a perennial deciduous shrub widely distributed in arid and semiarid regions of Northwest China. It is highly valued for its medicinal and functional properties. Most goji varieties are naturally self-incompatible, posing challenges in breeding and cultivation. Self-incompatibility is a complex genetic trait, with ongoing debates regarding the number of self-incompatible loci. To date, no genetic mappings has been conducted for S loci or other loci related to self-incompatibility in goji. RESULTS: We used genome resequencing to create a high-resolution map for detecting de novo single-nucleotide polymorphisms (SNP) in goji. We focused on 229 F1 individuals from self-compatible '13-19' and self-incompatible 'new 9' varieties. Subsequently, we conducted a quantitative trait locus (QTL) analysis on traits associated with self-compatibility in goji berries. The genetic map consisted of 249,327 SNPs distributed across 12 linkage groups (LGs), spanning a total distance of 1243.74 cM, with an average interval of 0.002 cM. Phenotypic data related to self-incompatibility, such as average fruit weight, fruit rate, compatibility index, and comparable compatibility index after self-pollination and geitonogamy, were collected for the years 2021-2022, as well as for an extra year representing the mean data from 2021 to 2022 (2021/22). A total of 43 significant QTL, corresponding to multiple traits were identified, accounting for more than 11% of the observed phenotypic variation. Notably, a specific QTL on chromosome 2 consistently appeared across different years, irrespective of the relationship between self-pollination and geitonogamy. Within the localization interval, 1180 genes were annotated, including Lba02g01102 (annotated as an S-RNase gene), which showed pistil-specific expression. Cloning of S-RNase genes revealed that the parents had two different S-RNase alleles, namely S1S11 and S2S8. S-genotype identification of the F1 population indicated segregation of the four S-alleles from the parents in the offspring, with the type of S-RNase gene significantly associated with self-compatibility. CONCLUSIONS: In summary, our study provides valuable insights into the genetic mechanism underlying self-compatibility in goji berries. This highlights the importance of further positional cloning investigations and emphasizes the importance of integration of marker-assisted selection in goji breeding programs.


Subject(s)
Chromosome Mapping , Fruit , Lycium , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Lycium/genetics , Lycium/physiology , Fruit/genetics , Fruit/physiology , Self-Incompatibility in Flowering Plants/genetics , Phenotype , China
6.
Sci Rep ; 14(1): 10856, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740857

ABSTRACT

Bitter gourd, being perishable, requires timely harvesting. Delayed harvesting can result in a substantial reduction in fruit quality. while premature harvesting leads to underdeveloped fruit and decreased yields, the continuous flowering pattern in bitter gourd underscores the significance of accurately assessing fruit growth and ensuring timely harvesting for subsequent fruit setting and development. The current reliance on the experience of production personnel represents a substantial inefficiency. We present an improved real-time instance segmentation model based on YOLOv5-seg. The utilization of dynamic snake convolution enables the extraction of morphological features from the curved and elongated structure of bitter gourd. Diverse branch blocks enhance feature space diversity without inflating model size and inference time, contributing to improved recognition of expansion stages during bitter gourd growth. Additionally, the introduction of Focal-EIOU loss accurately locates the boundary box and mask, addressing sample imbalances in the L2 stage. Experimental results showcase remarkable accuracy rates of 99.3%, 93.8%, and 98.3% for L1, L2, and L3 stages using mAP@0.5. In comparison, our model outperforms other case segmentation models, excelling in both detection accuracy and inference speed. The improved YOLOv5-seg model demonstrates strong performance in fine-grained recognition of bitter gourd during the expansion stage. It efficiently segments bitter gourd in real-time under varying lighting and occlusion conditions, providing crucial maturity information. This model offers reliable insights for agricultural workers, facilitating precise harvesting decisions.


Subject(s)
Fruit , Fruit/growth & development , Lycium/growth & development , Algorithms
7.
Food Chem ; 453: 139640, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38762945

ABSTRACT

Gas chromatography with mass spectrometry (GC/MS) and fractionation steps were used to determine the sterol patterns of red goji berries in detail. Twenty-five sterols were detected in fresh berries of two species (Lycium barbarum and L. chinense) from bushes grown in the botanical garden of the University of Hohenheim, and 20 sterols were identified. The rarely occurring campesta-5,24(25)-dienol, ß-sitosterol, Δ5-avenasterol, campesterol, and cycloartenol represented >60 % of the total sterol content. Maturity and drying of fresh red goji berries caused small changes but did not affect the characteristic sterol pattern. This was confirmed by analyzing various commercial dried red goji berry samples from different sources. Separated flesh and seed samples revealed pronounced differences in the sterol pattern. A new method of merging GC/MS chromatograms showed that ∼75 % of the sterols were present in seeds and ∼25 % in flesh. The unique sterol profile may be exploited to authenticate red goji berries.


Subject(s)
Fruit , Gas Chromatography-Mass Spectrometry , Lycium , Sterols , Fruit/chemistry , Sterols/analysis , Lycium/chemistry , Phytosterols/analysis , Plant Extracts/chemistry
8.
Food Chem ; 453: 139659, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38776792

ABSTRACT

There is a lack of research on how Tibetan kefir grains fermentation alters the physicochemical properties and biological activity of Lycium barbarum pulp polysaccharides, despite some reports that fermentation can affect the structure and activity of plant polysaccharides. This study demonstrated that, through fermentation, the molecular weight of polysaccharides decreased from 25.33 to 15.11 kg/mol while the contents of total sugar and uronic acid increased by 19.11% and 40.38%, respectively. Furthermore, after fermentation, the polysaccharides exhibited an uneven and rough surface along with a reduced number of branched chains and triple helix structures. Tibetan kefir grains fermentation enhanced the antioxidant activity of polysaccharides, which may be attributed to an increase in arabinose, galactose, and uronic acid content and a decrease in polysaccharide molecular weight. This research offers an alternative viewpoint on the potential application of Tibetan kefir grains-fermented Lycium barbarum pulp polysaccharides in functional foods.


Subject(s)
Antioxidants , Fermentation , Kefir , Lycium , Polysaccharides , Lycium/chemistry , Lycium/metabolism , Antioxidants/chemistry , Antioxidants/metabolism , Antioxidants/pharmacology , Kefir/microbiology , Kefir/analysis , Polysaccharides/chemistry , Polysaccharides/metabolism , Polysaccharides/pharmacology , Molecular Weight , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/metabolism , Drugs, Chinese Herbal
9.
Nat Commun ; 15(1): 4588, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816433

ABSTRACT

Lycibarbarspermidines are unusual phenolamide glycosides characterized by a dicaffeoylspermidine core with multiple glycosyl substitutions, and serve as a major class of bioactive ingredients in the wolfberry. So far, little is known about the enzymatic basis of the glycosylation of phenolamides including dicaffeoylspermidine. Here, we identify five lycibarbarspermidine glycosyltransferases, LbUGT1-5, which are the first phenolamide-type glycosyltransferases and catalyze regioselective glycosylation of dicaffeoylspermidines to form structurally diverse lycibarbarspermidines in wolfberry. Notably, LbUGT3 acts as a distinctive enzyme that catalyzes a tandem sugar transfer to the ortho-dihydroxy group on the caffeoyl moiety to form the unusual ortho-diglucosylated product, while LbUGT1 accurately discriminates caffeoyl and dihydrocaffeoyl groups to catalyze a site-selective sugar transfer. Crystal structure analysis of the complexes of LbUGT1 and LbUGT3 with UDP, combined with molecular dynamics simulations, revealed the structural basis of the difference in glycosylation selectivity between LbUGT1 and LbUGT3. Site-directed mutagenesis illuminates a conserved tyrosine residue (Y389 in LbUGT1 and Y390 in LbUGT3) in PSPG box that plays a crucial role in regulating the regioselectivity of LbUGT1 and LbUGT3. Our study thus sheds light on the enzymatic underpinnings of the chemical diversity of lycibarbarspermidines in wolfberry, and expands the repertoire of glycosyltransferases in nature.


Subject(s)
Glycosyltransferases , Lycium , Glycosyltransferases/metabolism , Glycosyltransferases/chemistry , Glycosyltransferases/genetics , Glycosylation , Lycium/enzymology , Lycium/metabolism , Lycium/chemistry , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/chemistry , Glycosides/metabolism , Glycosides/chemistry , Crystallography, X-Ray , Piperidines/metabolism , Piperidines/chemistry , Substrate Specificity
10.
Molecules ; 29(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38792130

ABSTRACT

Lycium ruthenicum Murray possesses significant applications in both food and medicine, including antioxidative, anti-tumor, anti-fatigue, anti-inflammatory, and various other effects. Consequently, there has been a surge in research endeavors dedicated to exploring its potential benefits, necessitating the organization and synthesis of these findings. This article systematically reviews the extraction and content determination methods of active substances such as polysaccharides, anthocyanins, flavonoids, and polyphenols in LRM in the past five years, as well as some active ingredient composition determination methods, biological activities, and product development. This review is divided into three main parts: extraction and determination methods, their bioactivity, and product development. Building upon prior research, we also delve into the economic and medicinal value of Lycium ruthenicum Murray, thereby contributing significantly to its further exploration and development. It is anticipated that this comprehensive review will serve as a valuable resource for advancing research on Lycium ruthenicum Murray.


Subject(s)
Lycium , Plant Extracts , Lycium/chemistry , Plant Extracts/chemistry , Anthocyanins/chemistry , Humans , Flavonoids/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Polyphenols/chemistry , Phytochemicals/chemistry , Phytochemicals/pharmacology , Polysaccharides/chemistry
11.
Sci Rep ; 14(1): 10586, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719951

ABSTRACT

Carotenoids play essential roles in plant growth and development and provide plants with a tolerance to a series of abiotic stresses. In this study, the function and biological significance of lycopene ß-cyclase, lycopene ε-cyclase, and ß-carotene hydroxylase, which are responsible for the modification of the tetraterpene skeleton procedure, were isolated from Lycium chinense and analyzed. The overexpression of lycopene ß-cyclase, lycopene ε-cyclase, and ß-carotene hydroxylase promoted the accumulation of total carotenoids and photosynthesis enhancement, reactive oxygen species scavenging activity, and proline content of tobacco seedlings after exposure to the salt stress. Furthermore, the expression of the carotenoid biosynthesis genes and stress-related genes (ascorbate peroxidase, catalase, peroxidase, superoxide dismutase, and pyrroline-5-carboxylate reductase) were detected and showed increased gene expression level, which were strongly associated with the carotenoid content and reactive oxygen species scavenging activity. After exposure to salt stress, the endogenous abscisic acid content was significantly increased and much higher than those in control plants. This research contributes to the development of new breeding aimed at obtaining stronger salt tolerance plants with increased total carotenoids and vitamin A content.


Subject(s)
Carotenoids , Gene Expression Regulation, Plant , Lycium , Nicotiana , Plant Proteins , Salt Tolerance , Carotenoids/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Salt Tolerance/genetics , Lycium/genetics , Lycium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Reactive Oxygen Species/metabolism , Intramolecular Lyases/genetics , Intramolecular Lyases/metabolism , Photosynthesis/genetics , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Abscisic Acid/metabolism
12.
J Agric Food Chem ; 72(22): 12752-12761, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38779924

ABSTRACT

This study investigated the transformation of polyphenols, including free and bound polyphenols during the fermentation of wolfberry juice by Lactobacillus plantarum NCU137. Results indicated that fermentation significantly increased the free polyphenols content and released bound polyphenols, enhancing the antioxidant activity. Analysis showed that there were 19 free polyphenols, mainly scopoletin, pyrogallol, and dihydroferulic acid, and 16 bound polyphenols, especially p-coumaric acid, feruloyl hexoside, and caffeic acid. A significant correlation was observed between the generation and degradation of polyphenols, and specific bound polyphenols peaked during the 24-48 h fermentation. Furthermore, reduced surface roughness and galacturonic acid content in wolfberry residue, along with increased pectinase activity, suggested substantial pectin degradation in the cell wall, which may be associated with the release of polyphenols, due to pectin serving as carriers for bound polyphenols. The fermentation also increased polyphenol oxidase and peroxidase activity, contributing to polyphenol breakdown. These findings provide insights for improving wolfberry juice production.


Subject(s)
Antioxidants , Fermentation , Fruit and Vegetable Juices , Fruit , Lactobacillus plantarum , Lycium , Polyphenols , Lactobacillus plantarum/metabolism , Lactobacillus plantarum/chemistry , Polyphenols/metabolism , Polyphenols/chemistry , Antioxidants/metabolism , Antioxidants/chemistry , Fruit and Vegetable Juices/analysis , Fruit/chemistry , Fruit/metabolism , Fruit/microbiology , Lycium/chemistry , Lycium/metabolism , Pectins/metabolism , Pectins/chemistry
13.
Food Res Int ; 184: 114270, 2024 May.
Article in English | MEDLINE | ID: mdl-38609246

ABSTRACT

This work set out to investigate how the physicochemical markers, volatiles, and metabolomic characteristics of mixed fermented the fermentation of Lycium barbarum and Polygonatum cyrtonema compound wine (LPCW) from S. cerevisine RW and D. hansenii AS2.45 changed over the course of fermentation. HS-SPME-GC-MS combined with non-targeted metabolomics was used to follow up and monitor the fermentation process of LPCW. In total, 43 volatile chemical substances, mostly alcohols, esters, acids, carbonyl compounds, etc., were discovered in LPCW. After 30 days of fermentation, phenylethyl alcohol had increased to 3045.83 g/mL, giving off a rose-like fresh scent. The biosynthesis of valine, leucine, and isoleucine as well as the metabolism of alanine, aspartic acid, and glutamic acid were the major routes that led to the identification of 1385 non-volatile components in total. This study offers a theoretical foundation for industrial development and advances our knowledge of the fundamental mechanism underlying flavor generation during LPCW fermentation.


Subject(s)
Lycium , Polygonatum , Wine , Fermentation , Gas Chromatography-Mass Spectrometry , Solid Phase Microextraction
14.
Int J Biol Macromol ; 267(Pt 1): 131316, 2024 May.
Article in English | MEDLINE | ID: mdl-38574908

ABSTRACT

Lycium barbarum polysaccharide (LBP) is beneficial for elderly people, but its use is limited in geriatric foods due to the lack of comprehensive information on its preparation strategy and physical property. In this study, the low-ester rhamnogalacturonan-I (RG-I) type pectic polysaccharide-protein complexes with varying physicochemical properties, structural characteristics, proliferative activities on Bacteroides, and immune-enhancing activities on RAW 264.7 cells, were obtained by moderate-temperature acid extraction within adjustment of enzymatic and physical pretreatments. LBP prepared by moderate-temperature acid extraction, namely S1-A, showed the strongest immune-enhancing activity via increasing the phagocytosis capacity and NO release of RAW 264.7 cells by 23 % and 76 %, respectively. S1-A exhibited relatively high viscosity and calcium ion response characteristic with the application potential for thickened liquid foods for the elderly with dysphagia. LBP prepared by composite cellulase and pectinase pretreatment combined with moderate-temperature acid extraction, namely S1-M1, showed the strongest Bacteroides proliferative activity that was equivalent to 0.60-0.97 times of that of inulin. S1-M1 exhibited extremely low viscosity and strong tolerance to food nutrients with high processing applicability for fluid foods. This study provided crucial data for the preparation and application of LBP targeting gut microbiota disorders and immunosenescence for the development of geriatric foods.


Subject(s)
Bacteroides , Cell Proliferation , Mice , Animals , RAW 264.7 Cells , Bacteroides/drug effects , Cell Proliferation/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Phagocytosis/drug effects , Viscosity , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Lycium/chemistry , Humans
15.
Fish Shellfish Immunol ; 149: 109573, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636742

ABSTRACT

This research elucidates the potential of Lycium barbarum residue (LBR), a by-product rich in bioactive substances, as a dietary supplement in aquaculture, especially for herbivorous fish like grass carp. In a detailed 120-day feeding trial, the impacts of varying LBR levels on juvenile grass carp were assessed, focusing on growth performance, survival rate, biochemical markers, and liver health. The study identified a 6% inclusion rate of LBR as optimal for enhancing survival and growth while mitigating hepatic lipid accumulation. Composition analysis of this diet revealed high concentrations of polysaccharides and flavonoids. Notably, the intake of LBR was found to enhance the antioxidant and immune-related enzymatic activities in the liver. Furthermore, it contributed to a reduction in hepatic fat deposition by decreasing the levels of triglycerides (TG) and total cholesterol (T-CHO) both in the liver and serum. Transcriptomic analysis of the liver highlighted LBR's substantial influence on lipid metabolism pathways, including the PPAR signaling pathway, primary bile acid biosynthesis, cholesterol metabolism, bile secretion, fat digestion and absorption, fatty acid degradation and fatty acid biosynthesis. Further, the expression level of genes pinpointed significant downregulation of fasn and dgat2, alongside upregulation of genes like pparda, cpt1b, cpt1ab and abca1b, in response to LBR supplementation. Overall, the findings present LBR as a promising enhancer of growth and survival in grass carp, with significant benefits in promoting fat metabolism and liver health, offering valuable insights for aquacultural nutrition strategies.


Subject(s)
Animal Feed , Carps , Diet , Dietary Supplements , Liver , Animals , Carps/growth & development , Carps/immunology , Animal Feed/analysis , Liver/metabolism , Dietary Supplements/analysis , Diet/veterinary , Lipid Metabolism/drug effects , Lycium/chemistry
16.
J Ethnopharmacol ; 331: 118220, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38657878

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Goji berry is a general term for various plant species in the genus Lycium. Goji has long been historically used in traditional Chinese medicines. Goji is a representative tonic medicine that has the effects of nourishing the liver and kidney and benefiting the essence and eyesight. It has been widely used in the treatment of various diseases, including tinnitus, impotence, spermatorrhea and blood deficiency, since ancient times. AIM OF THE REVIEW: This study aims to comprehensively summarize the quality evaluation methods of the main compounds in goji, as well as the current research status of the phenolamides in goji and their pharmacological effects, to explore the feasibility of using phenolamides as quality control markers and thus improve the quality and efficacy in goji. MATERIALS AND METHODS: Relevant literature from PubMed, Web of Science, Science Direct, CNKI and other databases was comprehensively collected, screened and summarized. RESULTS: According to the collected literature, the quality evaluation markers of goji in the Pharmacopoeia of the People's Republic of China are Lycium barbarum polysaccharide (LBP) and betaine. As a result of its structure complexity, only the total level of LBP can be determined, while betaine is not prominent in the pharmacological action of goji and lacks species distinctiveness. Neither of them can well explain the quality of goji. KuA and KuB are commonly used as quality evaluation markers of the Lycii cortex because of their high levels and suitable pharmacological activity. Goji is rich in polyphenols, carotenoids and alkaloids. Many studies have used the above compounds to establish quality evaluation methods but the results have not been satisfactory. Phenolamides have often been neglected in previous studies because of their low single compound levels and high separation difficulty. However, in recent years, the favorable pharmacological activities of phenolamides have been gradually recognized, and studies on goji phenolamides are greatly increasing. In addition, phenolamides have higher species distinctiveness than other compounds and can be combined with other compounds to better evaluate the quality of goji to improve its average quality. CONCLUSIONS: The phenolamides in the goji are rich and play a key role in antioxidation, anti-inflammation, neuroprotection and immunomodulation. As a result of their characteristics, it is suitable to evaluate the quality by quantitative analysis of multi-components by single-marker and fingerprint. This method can be combined with other techniques to improve the quality evaluation system of goji, which lays a foundation for their effectiveness and provides a reference for new quality evaluation methods of similar herbal medicines.


Subject(s)
Drugs, Chinese Herbal , Lycium , Lycium/chemistry , Humans , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/standards , Drugs, Chinese Herbal/chemistry , Quality Control , Medicine, Chinese Traditional
17.
J Agric Food Chem ; 72(12): 6781-6786, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38470138

ABSTRACT

This Comment critically addresses the article by Gao et al. (Gao, K., et al. J. Agric. Food Chem. 2015, 63, 1067-1075), providing the structural elucidation of three phenolamide dimers (neolignanamides) from the fruits of Lycium barbarum. A more recent article published by Chen et al. (Chen, H., et al. J. Agric. Food Chem. 2023, 71, 11080-11093) incorporates these structures into further research on the bioactivity of these compounds. Although the analytical techniques used by Gao et al. are adequate, in our opinion, the nuclear magnetic resonance (NMR) spectroscopic data have not been interpreted correctly, resulting in incorrect structures for three neolignanamides from the fruits of L. barbarum. In this Comment, an alternative interpretation of the NMR spectroscopic data and the corresponding structures are proposed. The proposed structures feature linkage types that are much more common for neolignanamides than the linkage types in the originally reported structures of these compounds.


Subject(s)
Antioxidants , Lycium , Antioxidants/chemistry , Lycium/chemistry , Amides , Fruit/chemistry , Phenols/chemistry
18.
Ecotoxicol Environ Saf ; 274: 116232, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38493701

ABSTRACT

Fine particulate matter (PM2.5) exposure is strongly associated with vascular endothelial senescence, a process implicated in cardiovascular diseases. While there is existing knowledge on the impact of Lycium barbarum polysaccharide (LBP) on vascular endothelial damage, the protective mechanism of LBP against PM2.5-induced vascular endothelial senescence remains unclear. In this study, we investigated the impact of PM2.5 exposure on vascular endothelial senescence and explored the intervention effects of LBP in human umbilical vein endothelial cells (HUVECs). We found that PM2.5 exposure dose-dependently reduced cell viability and proliferation in HUVECs while increasing the production of reactive oxygen species (ROS), malondialdehyde (MDA), and hydrogen peroxide (H2O2). Additionally, PM2.5 exposure inhibited the activity of superoxide dismutase (SOD). Notably, PM2.5 exposure induced autophagy impairments and cellular senescence. However, LBP mitigated PM2.5-induced cell damage. Further studies demonstrated that correcting autophagy impairment in HUVECs reduced the expression of the senescence markers P16 and P21 induced by PM2.5. This suggests the regulatory role of autophagy in cellular senescence and the potential of LBP in improving HUVECs senescence. These findings provide novel insights into the mechanisms underlying PM2.5-induced cardiovascular toxicity and highlight the potential of LBP as a therapeutic agent for improving vascular endothelial health.


Subject(s)
Drugs, Chinese Herbal , Hydrogen Peroxide , Lycium , Humans , Human Umbilical Vein Endothelial Cells , Hydrogen Peroxide/metabolism , Particulate Matter/metabolism , Cellular Senescence
19.
Int Immunopharmacol ; 130: 111762, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38428146

ABSTRACT

Drug-induced liver injury (DILI) is a common and severe adverse drug reaction that can result in acute liver failure. Previously, we have shown that Lycium barbarum L. (wolfberry) ameliorated liver damage in acetaminophen (APAP)-induced DILI. Nevertheless, the mechanism needs further clarification. Herein, we utilized APAP-induced DILI mice to investigate how wolfberry impacts the gut-liver axis to mitigate liver damage. We showed that the abundance of Akkermansia muciniphila (A. muciniphila) was decreased, and intestinal microbiota was disrupted, while the expression levels of YAP1 and FXR-mediated CYP7A1 were reduced in the liver of DILI mice. Furthermore, wolfberry increased the abundance of A. muciniphila and the number of goblet cells in the intestines, while decreasing AST, ALT, and total bile acids (TBA) levels in the serum. Interestingly, A. muciniphila promoted YAP1 and FXR expression in hepatocytes, leading to the inhibition of CYP7A1 expression and a decrease in TBA content. Notably, wolfberry did not exert the beneficial effects mentioned above after the removal of intestinal bacteria by antibiotics (ATB)-containing water. Additionally, Yap1 knockout downregulated FXR expression and enhanced CYP7A1 expression in the liver of hepatocyte-specific Yap1 knockout mice. Therefore, wolfberry stimulated YAP1/FXR activation and reduced CYP7A1 expression by promoting the balance of intestinal microbiota, thereby suppressing the overproduction of bile acids.


Subject(s)
Acetaminophen , Akkermansia , Bile Acids and Salts , Chemical and Drug Induced Liver Injury , Gastrointestinal Microbiome , Lycium , RNA-Binding Proteins , YAP-Signaling Proteins , Animals , Mice , Acetaminophen/adverse effects , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Bile Acids and Salts/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/microbiology , Liver , Lycium/chemistry , YAP-Signaling Proteins/metabolism , RNA-Binding Proteins/metabolism , Mice, Knockout
20.
Int J Biol Macromol ; 264(Pt 1): 130483, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430999

ABSTRACT

To investigate the efficacy of sodium alginate-konjac glucomannan (SA-KGM) films with anthocyanins (LRA) and tea polyphenols (TP) in meat, beef and grass carp were selected as representative meat products for preservation and freshness monitoring experiments at 4 °C. Concurrently, storage experiments of the films were conducted in this controlled environment. The results of the storage experiment showed that the films delayed meat spoilage by 2-4 days, nearly doubling the preservation time compared to the blank control. Additionally, the film exhibited significant capability to monitor the spoilage process of beef and grass carp. It was revealed by curve fitting analysis that there was a significant correlation between the color change of the film and the spoilage index of the meat. Throughout the storage experiment with the film, it was observed that moisture significantly influenced the microstructure and bonding situation of the films, thereby impacting their mechanical and barrier properties. However, the films were still able to maintain satisfactory physicochemical properties in general. The above findings were crucial in guiding the promotion of the film within the food preservation industry.


Subject(s)
Alginates , Lycium , Mannans , Animals , Cattle , Alginates/chemistry , Anthocyanins/chemistry , Polyphenols/chemistry , Tea/chemistry , Food Packaging
SELECTION OF CITATIONS
SEARCH DETAIL
...