Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 222(3): 1256-1270, 2019 05.
Article in English | MEDLINE | ID: mdl-30623444

ABSTRACT

Photosynthesis in bryophytes and lycophytes has received less attention than terrestrial plant groups. In particular, few studies have addressed the nonstomatal diffusion conductance to CO2 gnsd of these plant groups. Their lower photosynthetic rate per leaf mass area at any given nitrogen concentration compared with vascular plants suggested a stronger limitation by CO2 diffusion. We hypothesized that bryophyte and lycophyte photosynthesis is largely limited by low gnsd . Here, we studied CO2 diffusion inside the photosynthetic tissues and its relationships with photosynthesis and anatomical parameters in bryophyte and lycophyte species in Antarctica, Australia, Estonia, Hawaii and Spain. On average, lycophytes and, specially, bryophytes had the lowest photosynthetic rates and nonstomatal diffusion conductance reported for terrestrial plants. These low values are related to their very thick cell walls and their low exposure of chloroplasts to cell perimeter. We conclude that the reason why bryophytes lie at the lower end of the leaf economics spectrum is their strong nonstomatal diffusion conductance limitation to photosynthesis, which is driven by their specific anatomical characteristics.


Subject(s)
Bryophyta/anatomy & histology , Bryophyta/physiology , Lycopodiaceae/anatomy & histology , Lycopodiaceae/physiology , Photosynthesis , Plant Stomata/anatomy & histology , Plant Stomata/physiology , Biomass , Diffusion , Geography , Phylogeny
2.
Ann Bot ; 123(1): 145-152, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30107388

ABSTRACT

Background and Aims: Structures that simultaneously perform many functional roles are likely to show a variety of morphological solutions to these demands, and thus probably exhibit high morphological disparity. In contrast, specialization for a few simple functions should result in a more limited suite of morphologies. We explore this idea using lycopsid reproductive structures, which, throughout their history, have performed a limited set of functional roles compared with the reproductive structures of other plant groups such as seed plants. Methods: We scored living and fossil lycopsid taxa for 18 discrete character measurements and several continuous traits, including sporangium size, supporting axis diameter, and strobilus length and width. We used the discrete characters to construct a multivariate morphospace for lycopsid reproductive morphology through time, and the continuous characters to test whether fossil and extant lycopsids show similar patterns of tissue allocation within reproductive structures. Results: Lycopsids occupy similar areas of reproductive morphospace and show similar patterns of tissue allocation over most of their history, alternating between diffuse fertile zones with leaf-like sporophylls and compact strobili with specialized sporophylls that allow sporangia to be closely packed while also protected during their development. Growth habit also plays an important role in lycopsid reproductive evolution, broadly influencing the size and shape of reproductive structures. Conclusions: Lycopsid reproductive structures are primarily specialized for densely packaging sporangia, and are consistent with the idea that performing limited functional roles is associated with reduced morphological disparity. Morphologies similar to lycopsid strobili are also found in other groups with simple, wind-dispersed propagules, suggesting that the same processes occur across plant lineages.


Subject(s)
Biological Evolution , Fossils/anatomy & histology , Sporangia/anatomy & histology , Tracheophyta/anatomy & histology , Lycopodiaceae/anatomy & histology , Plant Structures/anatomy & histology , Selaginellaceae/anatomy & histology
3.
PLoS One ; 13(7): e0198287, 2018.
Article in English | MEDLINE | ID: mdl-29995908

ABSTRACT

Lycopsids are a minor component of current terrestrial herbaceous floras. However, lycopsid fossil diversity shows a great diversity and disparity including heterosporous woody plants, e.g. the giant isoetaleans that populated the extensive Pennsylvanian wetlands. The earliest known isoetaleans come from late Devonian localities from China. Here, we describe Lilingostrobus chaloneri gen. et sp. nov., a new isoetalean lycopsid from the Upper Devonian (Famennian) Xikuangshan Formation of China (Hunan Province, South China), which adds to the already impressive diversity of the Devonian lycopsids from China. Lilingostrobus shows an unusual combination of characters. This new plant is pseudoherbaceous, with a possible tufted habit, and consists of narrow axes with rare isotomies. The stem includes small quantities of secondary xylem. Each fertile axis bears one terminal strobilus comprising sporophylls ending in a very long upturned lamina. Microspores and putative megaspores have been found, but whether the plant has mono- or bisporangiate strobili is unknown. Importantly, our cladistic analysis identifies Lilingostrobus as a direct precursor of Isoetales, which provides new insights into the early evolution of lycopsids.


Subject(s)
Lycopodiaceae/anatomy & histology , Phylogeny , Plant Stems/anatomy & histology , Xylem/anatomy & histology , Biological Evolution , China , Extinction, Biological , Fossils/history , History, Ancient , Lycopodiaceae/classification , Lycopodiaceae/physiology , Plant Stems/classification , Plant Stems/physiology , Wetlands , Xylem/physiology , Xylem/ultrastructure
4.
Mol Phylogenet Evol ; 125: 1-13, 2018 08.
Article in English | MEDLINE | ID: mdl-29559245

ABSTRACT

The Neotropical clade of the lycophyte genus Phlegmariurus is comprised of an estimated 150 described species and exhibits exceptional morphological and ecological diversity. Because of their simple morphology, frequent convergent evolution, and the recentness of the group's diversification, the delimitation of species and species groups has remained challenging. Here, we present a robustly support phylogeny of Neotropical Phlegmariurus based on six chloroplast markers and ca. 70% of known species, and use ancestral character state reconstruction to investigate morphological evolution in the clade, and define natural species groups. The Neotropical species of Phlegmariurus form a clade that also includes a small number of Afro-Madagascan species. A morphologically and ecologically variable group of species from southeastern Brazil form a monophyletic group and represent a parallel radiation to principally Andean lineages. Species groups in Neotropical Phlegmariurus that were previously recognized based on morphology are not monophyletic. We find support for 11 morphologically cohesive and well-supported species groups. Morphological homoplasy is common in Phlegmariurus and complicates infrageneric classification of the Neotropical taxa. Our results provide a useful framework for identifying species groups and understanding patterns of morphological evolution in Neotropical Phlegmariurus. The radiation of the Brazilian species remains poorly understood and requires further study.


Subject(s)
Lycopodiaceae/anatomy & histology , Lycopodiaceae/classification , Phylogeny , Tropical Climate , Biodiversity , Brazil , Likelihood Functions , Plant Leaves/anatomy & histology , Plant Stems/anatomy & histology , Species Specificity
5.
New Phytol ; 215(2): 538-544, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27901273

ABSTRACT

Contents 538 I. 538 II. 539 III. 541 IV. 542 543 References 543 SUMMARY: The evolution of rooting structures was a crucial event in Earth's history, increasing the ability of plants to extract water, mine for nutrients and anchor above-ground shoot systems. Fossil evidence indicates that roots evolved at least twice among vascular plants, in the euphyllophytes and independently in the lycophytes. Here, we review the anatomy and evolution of lycopsid rooting structures. Highlighting recent discoveries made with fossils we suggest that the evolution of lycopsid rooting structures displays two contrasting patterns - conservatism and disparity. The structures termed roots have remained structurally similar despite hundreds of millions of years of evolution - an example of remarkable conservatism. By contrast, and over the same time period, the organs that give rise to roots have diversified, resulting in the evolution of numerous novel and disparate organs.


Subject(s)
Biological Evolution , Lycopodiaceae/physiology , Plant Roots/anatomy & histology , Plant Roots/physiology , Fossils , Lycopodiaceae/anatomy & histology
6.
PLoS One ; 10(3): e0122167, 2015.
Article in English | MEDLINE | ID: mdl-25816297

ABSTRACT

Late Devonian Minostrobus chaohuensis is one of the earliest monosporangiate-strobilate isoetaleans. Based on new material of this plant, the vegetative axis and microsporangiate strobilus are studied in detail, and the whole plant knowledge is summarized. The vegetative axis is isotomously branched. The stem is up to 55 mm in diameter with helically arranged leaf cushions. Stems and thick branches bear long fusiform leaf cushions and interareas with vertical linear ornamentations. A ligule pit, oblanceolate leaf scar, and vascular bundle scar appear on the leaf cushion. Distal axes have persistent lanceolate leaves and rhombic leaf bases. The microsporangiate strobilus is cylindrical in shape, possesses sporophyll with alate pedicel and long triangular lamina, uniseriate sporangial wall, subarchesporial pad inside the sporangium, and microspore with cingulum. Based on comparisons with other isoetaleans, the usage of the terms "leaf cushion" and "leaf base" is discussed, and Minostrobus chaohuensis is considered as a tree-like lycopsid. It suggests that arborescent isoetaleans with monosporangiate strobili had appeared and diversified in the Late Devonian. The multi-dichotomous branching system of Minostrobus provides new data on the evolution of growth architecture in rhizomorphic lycopsids.


Subject(s)
Fossils/anatomy & histology , Lycopodiaceae/anatomy & histology , Sporangia/anatomy & histology , Biological Evolution , Lycopodiaceae/growth & development
7.
PLoS One ; 9(6): e99552, 2014.
Article in English | MEDLINE | ID: mdl-24932509

ABSTRACT

Introgressive hybridization is an important evolutionary process frequently contributing to diversification and speciation of angiosperms. Its extent in other groups of land plants has only rarely been studied, however. We therefore examined the levels of introgression in the genus Diphasiastrum, a taxonomically challenging group of Lycopodiophytes, using flow cytometry and numerical and geometric morphometric analyses. Patterns of morphological and cytological variation were evaluated in an extensive dataset of 561 individuals from 57 populations of six taxa from Central Europe, the region with the largest known taxonomic complexity. In addition, genome size values of 63 individuals from Northern Europe were acquired for comparative purposes. Within Central European populations, we detected a continuous pattern in both morphological variation and genome size (strongly correlated together) suggesting extensive levels of interspecific gene flow within this region, including several large hybrid swarm populations. The secondary character of habitats of Central European hybrid swarm populations suggests that man-made landscape changes might have enhanced unnatural contact of species, resulting in extensive hybridization within this area. On the contrary, a distinct pattern of genome size variation among individuals from other parts of Europe indicates that pure populations prevail outside Central Europe. All in all, introgressive hybridization among Diphasiastrum species in Central Europe represents a unique case of extensive interspecific gene flow among spore producing vascular plants that cause serious complications of taxa delimitation.


Subject(s)
Genome Size , Genome, Plant , Hybridization, Genetic , Lycopodiaceae/physiology , Biological Evolution , Crosses, Genetic , DNA, Plant/genetics , Diploidy , Ecosystem , Europe , Genetic Markers , Genetic Variation , Lycopodiaceae/anatomy & histology , Lycopodiaceae/classification , Lycopodiaceae/genetics , Plant Leaves/anatomy & histology , Plant Stems/anatomy & histology , Species Specificity , Spores
8.
Ann Bot ; 108(5): 867-76, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21835817

ABSTRACT

BACKGROUND AND AIMS: Interspecific Diphasiastrum hybrids have been assumed to be homoploid and to produce well-formed spores serving sexual reproduction. If this were the case, forms intermediate between hybrids and parents or hybrid swarms should be expected. The purpose of this study was: (1) to check whether homoploidy consistently applies to the three hybrids throughout their Central European range; (2) to examine whether their genome sizes confirm their parentage as assumed by morphology; and (3) to perform a screening for detection of ploidy levels other than diploid and variation in DNA content due to backcrossing. METHODS: Flow cytometry was used first to measure the relative DNA values [with 4',6-diamidino-2-phenylindole (DAPI) staining] and ploidy level as a general screening, and secondly to determine the absolute DNA 2C values [with propidium iodide (PI) staining] in a number of selected samples with the main focus on the hybrids. KEY RESULTS: A considerable variation of DNA 2C values (5·26-7·52 pg) was detected between the three European Diphasiastrum species. The values of the diploid hybrids are highly constant without significant variation between regions. They are also intermediate between their assumed parents and agree closely with those calculated from their putative parents. This confirms their hybrid origin, assumed parentage and homoploid status. Considerably higher DNA amounts (9·48-10·30 pg) were obtained for three populations, suggesting that these represent triploid hybrids, an interpretation that is strongly supported by their morphology. CONCLUSIONS: Diploid hybrids have retained their genetic and morphological identites throughout their Central European range, and thus no indications for diploid backcrossing were found. The triploid hybrids have probably originated from backcrossing between a diploid gametophyte of a hybrid (derived from a diplospore) and a haploid gametophyte of a diploid parental species. By repeated crossing events, reticulate evolution patterns arise that are similar to those known for a number of ferns.


Subject(s)
Diploidy , Lycopodiaceae/genetics , Triploidy , Biological Evolution , Chimera , Chromosomes, Plant , DNA, Plant/analysis , DNA, Plant/genetics , Europe , Flow Cytometry , Genetic Variation , Geography , Hybridization, Genetic , Lycopodiaceae/anatomy & histology , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...