Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.820
Filter
1.
Respir Res ; 25(1): 233, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840238

ABSTRACT

BACKGROUND: There is inconclusive evidence to suggest that the expression of programmed cell death ligand 1 (PD-L1) is a putative predictor of response to EGFR-TKI therapy in advanced EGFR-mutant non-small cell lung cancer (NSCLC). We evaluated the heterogeneity in PD-L1 expression in the primary lung site and metastatic lymph nodes to analyze the association between PD-L1 expression and response for patients treated with EGFR-TKI. METHODS: This study reviewed 184 advanced NSCLC patients with EGFR mutations who received first-generation EGFR-TKI as first-line treatment from 2020 to 2021 at Shanghai Chest Hospital. The patients were divided into the primary lung site group (n = 100) and the metastatic lymph nodes group (n = 84) according to the biopsy site. The patients in each group were divided into TPS < 1%, TPS 1-49%, and TPS ≥ 50% groups according to PD-L1 expression. RESULTS: The median PFS was 7 (95% CI: 5.7-8.3) months, and the median OS was 26 (95% CI: 23.5-28.5) months for all patients. No correlation existed between PFS or OS and PD-L1 expression. The median PFS in the primary lung site group was 11 months (95% CI: 9.6-12.4) in the TPS < 1% group, 8 months (95% CI: 6.6-9.4) in TPS 1-49% group, and 4 months (95% CI: 3.2-4.8) in TPS ≥ 50% group, with statistically significant differences (p = 0.000). The median OS of the TPS < 1% group and TPS ≥ 50% group showed a statistically significant difference (p = 0.008) in the primary lung site group. In contrast, PD-L1 expression in the lymph nodes of EGFR-mutant patients was unrelated to PFS or OS after EGFR-TKI therapy. CONCLUSION: PD-L1 expression from the primary lung site might predict clinical benefit from EGFR-TKI, whereas PD-L1 from metastatic lymph nodes did not. TRIAL REGISTRATION: This retrospective study was approved by the Ethics Committee of Shanghai Chest Hospital (ID: IS23060) and performed following the Helsinki Declaration of 1964 (revised 2008).


Subject(s)
B7-H1 Antigen , Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Lung Neoplasms , Lymphatic Metastasis , Protein Kinase Inhibitors , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , B7-H1 Antigen/biosynthesis , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Female , Male , Middle Aged , ErbB Receptors/biosynthesis , ErbB Receptors/genetics , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , Aged , Protein Kinase Inhibitors/therapeutic use , Retrospective Studies , Lymph Nodes/pathology , Lymph Nodes/drug effects , Lymph Nodes/metabolism , Adult , Aged, 80 and over , Treatment Outcome , Predictive Value of Tests , Mutation , Biomarkers, Tumor/genetics , Biomarkers, Tumor/biosynthesis , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/analysis
2.
Front Immunol ; 15: 1391949, 2024.
Article in English | MEDLINE | ID: mdl-38765015

ABSTRACT

Dimethyl fumarate (DMF, Tecfidera) is an oral drug utilized to treat relapsing-remitting multiple sclerosis (MS). DMF treatment reduces disease activity in MS. Gastrointestinal discomfort is a common adverse effect of the treatment with DMF. This study aimed to investigate the effect of DMF administration in the gut draining lymph nodes cells of C57BL6/J female mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. We have demonstrated that the treatment with DMF (7.5 mg/kg) significantly reduces the severity of EAE. This reduction of the severity is accompanied by the increase of both proinflammatory and anti-inflammatory mechanisms at the beginning of the treatment. As the treatment progressed, we observed an increasing number of regulatory Foxp3 negative CD4 T cells (Tr1), and anti-inflammatory cytokines such as IL-27, as well as the reduction of PGE2 level in the mesenteric lymph nodes of mice with EAE. We provide evidence that DMF induces a gradual anti-inflammatory response in the gut draining lymph nodes, which might contribute to the reduction of both intestinal discomfort and the inflammatory response of EAE. These findings indicate that the gut is the first microenvironment of action of DMF, which may contribute to its effects of reducing disease severity in MS patients.


Subject(s)
Dimethyl Fumarate , Encephalomyelitis, Autoimmune, Experimental , Lymph Nodes , Mice, Inbred C57BL , T-Lymphocytes, Regulatory , Animals , Dimethyl Fumarate/pharmacology , Dimethyl Fumarate/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/immunology , Lymph Nodes/immunology , Lymph Nodes/drug effects , Mice , Female , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Mesentery , Cytokines/metabolism , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use , Disease Models, Animal
3.
Int J Pharm ; 656: 124074, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38565406

ABSTRACT

Tacrolimus (FK506) is an effective therapeutic for transplant rejection in clinical practice, primarily inhibiting rejection by suppressing the activation and proliferation of allogeneic T cells in the lymph nodes (LNs). However, conventional administration methods face challenges in directly delivering free FK506 to the LNs. In this study, we introduce a novel LN-targeted delivery system based on mesoporous silica nanoparticles (MSNs-FK506-MECA79). These particles were designed to selectively target high endothelial venules in LNs; this was achieved through surface modification with MECA79 antibodies. Their mean size and zeta potential were 201.18 ± 5.98 nm and - 16.12 ± 0.36 mV, respectively. Our findings showed that MSNs-FK506-MECA79 could accumulate in LNs and increase the local concentration of FK506 from 28.02 ± 7.71 ng/g to 123.81 ± 76.76 ng/g compared with the free FK506 treatment group. Subsequently, the therapeutic efficacy of MSNs-FK506-MECA79 was evaluated in a skin transplantation model. The treatment with MSNs-FK506-MECA79 could lead to a decrease in the infiltration of T cells in the grafts, a reduction in the grade of rejection, and a significant prolongation of survival. Consequently, this study presents a promising strategy for the active LN-targeted delivery of FK506 and improving the immunotherapeutic effects on transplant rejection.


Subject(s)
Graft Rejection , Immunosuppressive Agents , Lymph Nodes , Nanoparticles , Silicon Dioxide , Tacrolimus , Tacrolimus/administration & dosage , Tacrolimus/chemistry , Silicon Dioxide/chemistry , Graft Rejection/prevention & control , Graft Rejection/immunology , Animals , Lymph Nodes/drug effects , Lymph Nodes/immunology , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/chemistry , Immunosuppressive Agents/pharmacology , Porosity , Mice, Inbred BALB C , Skin Transplantation/methods , Male , Mice , Mice, Inbred C57BL , Drug Delivery Systems/methods , Drug Carriers/chemistry
4.
ACS Nano ; 18(17): 11070-11083, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38639726

ABSTRACT

Effective antitumor immunotherapy depends on evoking a cascade of cancer-immune cycles with lymph nodes (LNs) as the initial sites for activating antitumor immunity, making drug administration through the lymphatic system highly attractive. Here, we describe a nanomedicine with dual responsiveness to pH and enzyme for a programmed activation of antitumor immune through the lymphatic system. The proposed nanomedicine can release the STING agonist diABZI-C2-NH2 in the LNs' acidic environment to activate dendritic cells (DCs) and T cells. Then, the remaining nanomedicine hitchhikes on the activated T cells (PD-1+ T cells) through binding to PD-1, resulting in an effective delivery into tumor tissues owing to the tumor-homing capacity of PD-1+ T cells. The enzyme matrix metalloproteinase-2 (MMP-2) being enriched in tumor tissue triggers the release of PD-1 antibody (aPD-1) which exerts immune checkpoint blockade (ICB) therapy. Eventually, the nanomedicine delivers a DNA methylation inhibitor GSK-3484862 (GSK) into tumor cells, and then the latter combines with granzyme B (GZMB) to trigger tumor cell pyroptosis. Consequently, the pyroptotic tumor cells induce robust immunogenic cell death (ICD) enhancing the DCs maturation and initiating the cascading antitumor immune response. Study on a 4T1 breast tumor mouse model demonstrates the prominent antitumor therapeutic outcome of this nanomedicine through creating a positive feedback loop of cancer-immunity cycles including immune activation in LNs, T cell-mediated drug delivery, ICB therapy, and tumor cell pyroptosis-featured ICD.


Subject(s)
Nanomedicine , Animals , Mice , Humans , Immunotherapy , Female , Lymph Nodes/immunology , Lymph Nodes/drug effects , Dendritic Cells/immunology , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor
5.
Acta Biomater ; 180: 423-435, 2024 May.
Article in English | MEDLINE | ID: mdl-38641183

ABSTRACT

Communication between tumors and lymph nodes carries substantial significance for antitumor immunotherapy. Remodeling the immune microenvironment of tumor-draining lymph nodes (TdLN) plays a key role in enhancing the anti-tumor ability of immunotherapy. In this study, we constructed a biomimetic artificial lymph node structure composed of F127 hydrogel loading effector memory T (TEM) cells and PD-1 inhibitors (aPD-1). The biomimetic lymph nodes facilitate the delivery of TEM cells and aPD-1 to the TdLN and the tumor immune microenvironment, thus realizing effective and sustained anti-tumor immunotherapy. Exploiting their unique gel-forming and degradation properties, the cold tumors were speedily transformed into hot tumors via TEM cell supplementation. Meanwhile, the efficacy of aPD-1 was markedly elevated compared with conventional drug delivery methods. Our finding suggested that the development of F127@TEM@aPD-1 holds promising potential as a future novel clinical drug delivery technique. STATEMENT OF SIGNIFICANCE: F127@TEM@aPD-1 show unique advantages in cancer treatment. When injected subcutaneously, F127@TEM@aPD-1 can continuously supplement TEM cells and aPD-1 to tumor draining lymph nodes (TdLN) and the tumor microenvironment, not only improving the efficacy of ICB therapy through slow release, but also exhibiting dual regulatory effects on the tumor and TdLN.


Subject(s)
Delayed-Action Preparations , Hydrogels , Lymph Nodes , Memory T Cells , Programmed Cell Death 1 Receptor , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Lymph Nodes/drug effects , Lymph Nodes/pathology , Lymph Nodes/immunology , Mice , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Memory T Cells/drug effects , Memory T Cells/immunology , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacology , Delayed-Action Preparations/pharmacokinetics , Tumor Microenvironment/drug effects , Cell Line, Tumor , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy/methods , Female , Mice, Inbred C57BL , Humans
6.
Cell Rep ; 43(5): 114153, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38687643

ABSTRACT

Gut-draining mesenteric and celiac lymph nodes (mLNs and celLNs) critically contribute to peripheral tolerance toward food and microbial antigens by supporting the de novo induction of regulatory T cells (Tregs). These tolerogenic properties of mLNs and celLNs are stably imprinted within stromal cells (SCs) by microbial signals and vitamin A (VA), respectively. Here, we report that a single, transient gastrointestinal infection in the neonatal, but not adult, period durably abrogates the efficient Treg-inducing capacity of celLNs by altering the subset composition and gene expression profile of celLNSCs. These cells carry information about the early-life pathogen encounter until adulthood and durably instruct migratory dendritic cells entering the celLN with reduced tolerogenic properties. Mechanistically, transiently reduced VA levels cause long-lasting celLN functional impairment, which can be rescued by early-life treatment with VA. Together, our data highlight the therapeutic potential of VA to prevent sequelae post gastrointestinal infections in infants.


Subject(s)
Lymph Nodes , T-Lymphocytes, Regulatory , Vitamin A , Animals , Lymph Nodes/immunology , Lymph Nodes/pathology , Lymph Nodes/drug effects , Vitamin A/pharmacology , Vitamin A/therapeutic use , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Mice , Animals, Newborn , Immune Tolerance/drug effects , Dendritic Cells/immunology , Mice, Inbred C57BL , Female
7.
J Occup Health ; 66(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38626325

ABSTRACT

OBJECTIVES: We aimed to analyze the subchronic toxicity and tissue distribution of indium after the intratracheal administration of indium-tin oxide nanoparticles (ITO NPs) to the lungs of rats. METHODS: Male Wistar rats were administered a single intratracheal dose of 10 or 20 mg In/kg body weight (BW) of ITO NPs. The control rats received only an intratracheal dose of distilled water. A subset of rats was periodically euthanized throughout the study from 1 to 20 weeks after administration. Indium concentrations in the serum, lungs, mediastinal lymph nodes, kidneys, liver, and spleen as well as pathological changes in the lungs and kidneys were determined. Additionally, the distribution of ionic indium and indium NPs in the kidneys was analyzed using laser ablation-inductively coupled plasma mass spectrometry. RESULTS: Indium concentrations in the lungs of the 2 ITO NP groups gradually decreased over the 20-week observation period. Conversely, the indium concentrations in the mediastinal lymph nodes of the 2 ITO groups increased and were several hundred times higher than those in the kidneys, spleen, and liver. Pulmonary and renal toxicities were observed histopathologically in both the ITO groups. Both indium NPs and ionic indium were detected in the kidneys, and their distributions were similar to the strong indium signals detected at the sites of inflammatory cell infiltration and tubular epithelial cells. CONCLUSIONS: Our results demonstrate that intratracheal administration of 10 or 20 mg In/kg BW of ITO NPs in male rats produces pulmonary and renal toxicities.


Subject(s)
Indium , Kidney , Lung , Rats, Wistar , Tin Compounds , Animals , Male , Tin Compounds/toxicity , Tin Compounds/administration & dosage , Lung/drug effects , Lung/pathology , Rats , Kidney/drug effects , Kidney/pathology , Indium/toxicity , Indium/administration & dosage , Indium/pharmacokinetics , Tissue Distribution , Toxicity Tests, Subchronic , Metal Nanoparticles/toxicity , Metal Nanoparticles/administration & dosage , Nanoparticles/toxicity , Lymph Nodes/drug effects
8.
Int J Mol Sci ; 23(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35163272

ABSTRACT

Polypod-like structured nucleic acids (polypodnas), which are nanostructured DNAs, are useful for delivering cytosine-phosphate guanine oligodeoxynucleotides (CpG ODNs) to antigen-presenting cells (APCs) expressing Toll-like receptor 9 (TLR9) for immune stimulation. Lipid modification is another approach to deliver ODNs to lymph nodes, where TLR9-positive APCs are abundant, by binding to serum albumin. The combination of these two methods can be useful for delivering CpG ODNs to lymph nodes in vivo. In the present study, CpG1668, a phosphodiester-type CpG ODN, was modified with stearic acid (SA) to obtain SA-CpG1668. Tripodna, a polypodna with three pods, was selected as the nanostructured DNA. Tripodnas loaded with CpG1668 or SA-CpG1668 were obtained in high yields. SA-CpG1668/tripodna bound more efficiently to plasma proteins than CpG1668/tripodna and was more efficiently taken up by macrophage-like RAW264.7 cells than CpG1668/tripodna, whereas the levels of tumor necrosis factor-α released from the cells were comparable between the two. After subcutaneous injection into mice, SA-CpG1668/tripodna induced significantly higher interleukin (IL)-12 p40 production in the draining lymph nodes than SA-CpG1668 or CpG1668/tripodna, with reduced IL-6 levels in plasma. These results indicate that the combination of SA modification and nanostructurization is a useful approach for the targeted delivery of CpG ODNs to lymph nodes.


Subject(s)
Antigen-Presenting Cells/metabolism , Nanostructures/chemistry , Oligodeoxyribonucleotides/pharmacology , Adjuvants, Immunologic/pharmacology , Animals , Antigen-Presenting Cells/drug effects , DNA/immunology , Drug Delivery Systems/methods , Female , Immunization/methods , Lymph Nodes/drug effects , Lymph Nodes/immunology , Lymph Nodes/metabolism , Mice , Mice, Inbred C57BL , Nanostructures/therapeutic use , Nucleic Acid Conformation/drug effects , Oligodeoxyribonucleotides/administration & dosage , Oligodeoxyribonucleotides/metabolism , Proof of Concept Study , RAW 264.7 Cells , Stearic Acids/chemistry
9.
Indian J Pathol Microbiol ; 65(1): 49-54, 2022.
Article in English | MEDLINE | ID: mdl-35074965

ABSTRACT

INTRODUCTION: Colorectal cancer is one of the most common malignant tumors and has a relatively poor prognosis. Lymph node involvement is considered the most important prognostic factor. MATERIALS AND METHODS: During a retrospective cohort study, 132 patients with locally advanced rectal cancer who underwent neoadjuvant chemoradiotherapy followed by surgery for resectable rectal cancer from 2010 to 2015 in Sina hospital were reviewed. RESULTS: Multivariable analysis was performed and shown the clinical stage was not a representative factor for disease-free survival (P = 0.187), but Dworak Tumor Regression Grading were significantly associated with higher disease-free survival (P = 0.000) in stage II and stage III. The total number of retrieved lymph nodes and involved lymph nodes in the same clinical stage were statistically associated with higher mean disease-free survival in patients (P = 0.000 in both conditions). CONCLUSION: In the same clinical stage, increasing the Dworak Tumor Regression Grading reduced the risk of rectal cancer recurrence. Increasing total number of retrieved lymph nodes and involved lymph nodes, 2.14 times and 3.87 times increased the risk of recurrence, respectively.


Subject(s)
Adenocarcinoma/pathology , Lymph Nodes/pathology , Neoadjuvant Therapy/standards , Neoplasm Recurrence, Local , Rectal Neoplasms/pathology , Adenocarcinoma/classification , Adenocarcinoma/drug therapy , Adenocarcinoma/therapy , Adult , Aged , Aged, 80 and over , Disease-Free Survival , Drug Therapy/standards , Female , Humans , Lymph Nodes/drug effects , Lymphatic Metastasis/pathology , Male , Middle Aged , Neoadjuvant Therapy/methods , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Radiotherapy/standards , Rectal Neoplasms/classification , Rectal Neoplasms/drug therapy , Rectal Neoplasms/therapy , Rectum/pathology , Retrospective Studies
10.
Pharmacol Res ; 176: 106082, 2022 02.
Article in English | MEDLINE | ID: mdl-35032662

ABSTRACT

Patchouli Essential Oil (PEO) has been used as a scent for various healing purposes since the ancient Egyptian period. The primary source of the oil is Pogostemon cablin (PC), a medicinal plant for treating gastrointestinal symptoms. However, the pharmacological function has not been addressed. Here, we report the cancer prevention and gut microbiota (GM) modulating property of PEO and its derivatives patchouli alcohol (PA) and pogostone (PO) in the ApcMin /+ colorectal cancer mice model. We found that PEO, PA, and PO significantly reduced the tumor burden. At the same time, it strengthened the epithelial barrier, evidenced by substantially increasing the number of the goblet and Paneth cells and upregulation of tight junction and adhesion molecules. In addition, PEO, PA, and PO shifted M1 to M2 macrophage phenotypes and remodeled the inflammatory milieu of ApcMin /+ mice. We also found suppression of CD4+CD25+ and stimulation CD4+ CD8+ cells in the spleen, blood, mesenteric lymph nodes (MLNs), and Peyer's patches (PPs) of the treated mice. The composition of the gut microbiome of the drug-treated mice was distinct from the control mice. The drugs stimulated the short-chain fatty acids (SCFAs)-producers and the key SCFA-sensing receptors (GPR41, GPR43, and GPR109a). The activation of SCFAs/GPSs also triggered the alterations of PPAR-γ, PYY, and HSDCs signaling mediators in the treated mice. Our work showed that PEO and its derivatives exert potent anti-cancer effects by modulating gut microbiota and improving the intestinal microenvironment of the ApcMmin /+ mice.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Colorectal Neoplasms/drug therapy , Oils, Volatile/therapeutic use , Pogostemon , Animals , Antineoplastic Agents, Phytogenic/pharmacology , CD4-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/drug effects , Colorectal Neoplasms/immunology , Colorectal Neoplasms/microbiology , Disease Models, Animal , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/drug effects , Lymph Nodes/drug effects , Macrophages/drug effects , Male , Mice , Oils, Volatile/pharmacology , Peyer's Patches/drug effects , Spleen/drug effects
11.
Nat Commun ; 13(1): 110, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013252

ABSTRACT

Microbe-based cancer immunotherapy has recently emerged as a hot topic for cancer treatment. However, serious limitations remain including infection associated side-effect and unsatisfactory outcomes in clinic trials. Here, we fabricate different sizes of nano-formulations derived from yeast cell wall (YCW NPs) by differential centrifugation. The induction of anticancer immunity of our formulations appears to inversely correlate with their size due to the ability to accumulate in tumor-draining lymph node (TDLN). Moreover, we use a percolation model to explain their distribution behavior toward TDLN. The abundance and functional orientation of each effector component are significantly improved not only in the microenvironment in tumor but also in the TDLN following small size YCW NPs treatment. In combination with programmed death-ligand 1 (PD-L1) blockade, we demonstrate anticancer efficiency in melanoma-challenged mice. We delineate potential strategy to target immunosuppressive microenvironment by microbe-based nanoparticles and highlight the role of size effect in microbe-based immune therapeutics.


Subject(s)
Immunotherapy/methods , Lymph Nodes/drug effects , Melanoma, Experimental/therapy , Nanoparticles/administration & dosage , Saccharomyces cerevisiae/chemistry , Skin Neoplasms/therapy , Allografts , Animals , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Cell Line, Tumor , Cell Wall/chemistry , Dendritic Cells/drug effects , Dendritic Cells/immunology , Female , Gene Expression Regulation, Neoplastic , Injections, Intralesional , Lymph Nodes/immunology , Lymph Nodes/pathology , Macrophage Activation/drug effects , Melanoma, Experimental/genetics , Melanoma, Experimental/mortality , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Nanoparticles/chemistry , Particle Size , RAW 264.7 Cells/drug effects , RAW 264.7 Cells/immunology , Skin Neoplasms/genetics , Skin Neoplasms/mortality , Skin Neoplasms/pathology , Survival Analysis , Syk Kinase/antagonists & inhibitors , Syk Kinase/genetics , Syk Kinase/immunology , Toll-Like Receptor 2/antagonists & inhibitors , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/immunology , Tumor Burden/drug effects , Tumor Microenvironment/drug effects
12.
Anticancer Res ; 42(1): 195-203, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34969725

ABSTRACT

BACKGROUND: Histopathological tumor regression grade is applied not to lymph nodes but primary tumors modified by preoperative treatments. This study focused on patients whose pathological examination at the time of surgery showed no residual tumor after chemo(radio)therapy in the primary lesion (ypT0) or lymph nodes (ypN0). PATIENTS AND METHODS: A total of 87 patients with clinical stage II/III thoracic esophageal cancer underwent esophagectomy following preoperative treatments to evaluate significances between pathological response and clinical outcomes; 51 patients with clinically definitive lymph node metastasis (cN+) were analyzed as a subgroup. RESULTS: ypT0 rates were 20.7% and 23.5%, and ypN0 rates were 47.1% and 27.5% in the whole cohort and in the cN+ subgroup, respectively. Disease-free survival, from surgery to relapse or death, was significantly influenced by ypN status (p=0.035) but not by ypT status in the 51 patients with definitive cN+ disease. Preoperative chemoradiation was an independent favorable factor for achievement of ypN0 in the 51 patients (odds ratio=0.09; p=0.007). CONCLUSION: ypN status was a predictive factor for DFS in patients treated with docetaxel plus low-dose 5-fluorouracil and cisplatin combined chemotherapy, superior to ypT status, especially in patients with definitive cN+ disease.


Subject(s)
Esophageal Neoplasms/surgery , Esophageal Squamous Cell Carcinoma/surgery , Esophagectomy , Lymph Nodes/surgery , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols , Chemoradiotherapy, Adjuvant/adverse effects , Cisplatin/administration & dosage , Cisplatin/adverse effects , Disease-Free Survival , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Esophageal Neoplasms/radiotherapy , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/radiotherapy , Female , Fluorouracil/administration & dosage , Fluorouracil/adverse effects , Humans , Lymph Nodes/drug effects , Lymph Nodes/pathology , Lymph Nodes/radiation effects , Lymphatic Metastasis , Male , Middle Aged , Neoadjuvant Therapy/adverse effects , Neoplasm Grading , Preoperative Care/adverse effects
13.
Biochem Biophys Res Commun ; 586: 100-106, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34837833

ABSTRACT

Lipopolysaccharide (LPS) is the principal component of the outer membrane of gram-negative bacteria. The prior oral administration of LPS attenuates inflammatory responses, such as intestinal injury and atopic dermatitis, in mouse models; however, the underlying mechanism remains unclear. Here, we examined the effect of topical LPS application on allergic contact dermatitis and its mechanism of action using a murine contact hypersensitivity (CHS) model. Prolonged LPS application to the skin significantly suppressed 2,4-dinitrofluorobenzene (DNFB)-induced CHS. LPS application to the skin also reduced the phagocytosis of fluorescein isothiocyanate (FITC)-dextran by Langerhans and dendritic cells. Cutaneous cell migration into the skin-draining lymph nodes (LNs) induced by FITC painting was reduced by LPS application. During the CHS response, DNFB application induced T-cell proliferation and inflammatory cytokine production in skin-draining LNs, whereas prolonged LPS application inhibited DNFB-induced T-cell growth and interferon gamma production, indicating suppression of DNFB-induced sensitization. These results suggest that prolonged LPS application suppressed DNFB-induced sensitization and subsequently CHS response. Our findings imply that topical application of LPS may prevent allergic dermatitis such as CHS.


Subject(s)
Dermatitis, Contact/drug therapy , Immunologic Factors/pharmacology , Lipopolysaccharides/pharmacology , Lymphocytes/drug effects , Skin/drug effects , Administration, Cutaneous , Animals , Cell Line , Cell Movement/drug effects , Dendritic Cells/cytology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dermatitis, Contact/etiology , Dermatitis, Contact/immunology , Dermatitis, Contact/pathology , Dextrans/metabolism , Dinitrofluorobenzene/administration & dosage , Ear , Fluorescein-5-isothiocyanate/analogs & derivatives , Fluorescein-5-isothiocyanate/metabolism , Keratinocytes/cytology , Keratinocytes/drug effects , Keratinocytes/immunology , Langerhans Cells/cytology , Langerhans Cells/drug effects , Langerhans Cells/immunology , Lymph Nodes/cytology , Lymph Nodes/drug effects , Lymph Nodes/immunology , Lymphocyte Activation/drug effects , Lymphocytes/cytology , Lymphocytes/immunology , Mice , Mice, Inbred C57BL , Phagocytosis/drug effects , Primary Cell Culture , Skin/immunology , Skin/pathology
14.
Cells ; 10(12)2021 11 25.
Article in English | MEDLINE | ID: mdl-34943813

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a serious lung condition characterized by severe hypoxemia leading to limitations of oxygen needed for lung function. In this study, we investigated the effect of anandamide (AEA), an endogenous cannabinoid, on Staphylococcal enterotoxin B (SEB)-mediated ARDS in female mice. Single-cell RNA sequencing data showed that the lung epithelial cells from AEA-treated mice showed increased levels of antimicrobial peptides (AMPs) and tight junction proteins. MiSeq sequencing data on 16S RNA and LEfSe analysis demonstrated that SEB caused significant alterations in the microbiota, with increases in pathogenic bacteria in both the lungs and the gut, while treatment with AEA reversed this effect and induced beneficial bacteria. AEA treatment suppressed inflammation both in the lungs as well as gut-associated mesenteric lymph nodes (MLNs). AEA triggered several bacterial species that produced increased levels of short-chain fatty acids (SCFAs), including butyrate. Furthermore, administration of butyrate alone could attenuate SEB-mediated ARDS. Taken together, our data indicate that AEA treatment attenuates SEB-mediated ARDS by suppressing inflammation and preventing dysbiosis, both in the lungs and the gut, through the induction of AMPs, tight junction proteins, and SCFAs that stabilize the gut-lung microbial axis driving immune homeostasis.


Subject(s)
Arachidonic Acids/therapeutic use , Endocannabinoids/therapeutic use , Gastrointestinal Microbiome , Gastrointestinal Tract/pathology , Lung/pathology , Polyunsaturated Alkamides/therapeutic use , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/microbiology , Animals , Antimicrobial Peptides/metabolism , Arachidonic Acids/pharmacology , Butyrates/metabolism , Cecum/pathology , Cell Separation , Colon/drug effects , Colon/pathology , Discriminant Analysis , Dysbiosis/complications , Dysbiosis/microbiology , Endocannabinoids/pharmacology , Enterotoxins , Female , Gastrointestinal Tract/drug effects , Lymph Nodes/drug effects , Lymph Nodes/pathology , Lymphocyte Activation/drug effects , Mice, Inbred C57BL , Pneumonia/drug therapy , Pneumonia/microbiology , Polyunsaturated Alkamides/pharmacology , Respiratory Distress Syndrome/complications , T-Lymphocytes/drug effects
15.
Biomolecules ; 11(12)2021 11 25.
Article in English | MEDLINE | ID: mdl-34944410

ABSTRACT

Ethyl pyruvate (EP) has profound anti-inflammatory and immunomodulatory properties. Here, its effects were determined on experimental autoimmune myocarditis (EAM) induced in mice by heart-specific myosin-alpha heavy chain peptide immunization. EP was applied intraperitoneally, daily, starting with the immunization. Severity of EAM was determined by histological assessment of immune cell infiltrates into the heart. Cells were phenotypically characterized by flow cytometry. Concentration of cytokines in cell culture supernatants and sera was determined by ELISA. EP reduced the infiltration of immune cells into the heart and lessened heart inflammation. Smaller number of total immune cells, as well as of CD11b+ and CD11c+ cells were isolated from the hearts of EP-treated mice. A reduced number of antigen-presenting cells, detected by anti-CD11c, MHC class II and CD86 antibodies, as well as of T helper (Th)1 and Th17 cells, detected by anti-CD4, IFN-γ and IL-17 antibodies, was determined in mediastinal lymph nodes draining the heart, in parallel. In the spleen, only the number of CD11c+ cells were reduced, but not of the other examined populations, thus implying limited systemic effect of EP. Reduced production of IFN-γ and IL-17 by myosin-alpha heavy chain peptide-restimulated cells of the lymph nodes draining the site of immunization was observed in EP-treated mice. Our results clearly imply that EP restrains autoimmunity in EAM. Therapeutic application of EP in the treatment of myocarditis in humans should be addressed in the forthcoming studies.


Subject(s)
Autoimmune Diseases/drug therapy , Cytokines/metabolism , Myocarditis/immunology , Pyruvates/administration & dosage , Animals , Antigen Presentation , Cells, Cultured , Culture Media/chemistry , Disease Models, Animal , Lymph Nodes/drug effects , Lymph Nodes/immunology , Male , Mice , Myocarditis/drug therapy , Phenotype , Pyruvates/pharmacology , Th1 Cells/immunology , Th17 Cells/immunology
16.
Cancer Treat Rev ; 101: 102297, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34656018

ABSTRACT

Introduction of sentinel lymph node biopsy, initially in clinically node-negative and subsequently in patients presenting with involved axilla and downstaged by primary systemic therapy, allowed for significant decrease in morbidity compared to axillary lymph node dissection. Concurrently, regional nodal irradiation was demonstrated to improve outcomes in most node-positive patients. Additionally, over the last decades, introduction of more effective systemic therapies has resulted in improvements not only at distant sites, but also in locoregional control, creating space for de-escalation of locoregional treatments. We discuss the data on de-escalation in axillary surgery and irradiation, both in patients undergoing upfront surgery and primary systemic therapy, with special emphasis on the feasibility of omission of nodal irradiation in patients undergoing primary systemic therapy. In view of the accumulating evidence, omission of axillary irradiation may be considered in clinically node-positive patients converting after primary systemic therapy to pathologically negative nodes on sentinel lymph node biopsy (preferably also with in-breast pCR), presenting with lower initial nodal stage, older age and were treated with breast-conserving surgery followed by whole breast irradiation. Omission of regional nodal irradiation in patients with aggressive tumor phenotypes achieving a pCR is under investigation. In patients undergoing preoperative endocrine therapy the adoption of axillary management strategies utilized in case of upfront surgery seems more suitable than those used in post chemotherapy-based primary systemic therapy setting.


Subject(s)
Breast Neoplasms , Lymph Nodes , Antineoplastic Protocols , Axilla , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Combined Modality Therapy , Humans , Lymph Node Excision/methods , Lymph Nodes/drug effects , Lymph Nodes/pathology , Lymph Nodes/radiation effects , Lymph Nodes/surgery , Lymphatic Irradiation/methods , Neoplasm Staging , Sentinel Lymph Node Biopsy
17.
J Pharm Pharm Sci ; 24: 533-547, 2021.
Article in English | MEDLINE | ID: mdl-34694988

ABSTRACT

The uniqueness of structure and physiology of the lymphatic system make it challenging to delineate all its contributions in the maintenance of our health. However, in the past two decades, the understanding of the importance of the function of this system has evolved and more appreciation has been drawn to the distinctive role it plays in health and disease. The lymphatic system has been linked to the pathophysiology of numerous ailments including cancer, various metabolic diseases, inflammatory conditions, and infections. Moreover, it has also been revealed that lymphatic targeted formulations can enhance the delivery of drugs through the lymphatic system to the bloodstream, bypassing the hepatic first-pass metabolism if taken orally, thus increasing the bioavailability, and improving the pharmacokinetic and toxicological profiles in general. Engineering lymphotropic preparations requires the understanding of many factors, the most important one being that of the physiological environment which they will encounter. Therefore, in this review, we detail the basic structure of the lymphatic system, then highlight the therapeutic and the pharmacokinetic benefits of drug delivery into the lymphatic system. The criteria for drugs and formulations used for lymphotropic delivery are also detailed with a contemporary overview of various studies undertaken in this field.


Subject(s)
Lymphatic System/physiopathology , Biological Availability , Drug Delivery Systems , Humans , Lymph Nodes/drug effects , Lymph Nodes/physiopathology , Lymphatic System/drug effects , Pharmacokinetics
18.
Front Immunol ; 12: 730706, 2021.
Article in English | MEDLINE | ID: mdl-34630408

ABSTRACT

The opioid receptors play important roles in the regulation of sense and emotions. Although it is recently revealed that opioid receptors are also expressed in various cells, but not restricted in the central nervous system, the effects of opioids on peripheral immune cells are largely unknown. In the current study, we evaluated the effect of opioids on immune system by using selective agonists for δ opioid receptor. Systemic administration of KNT-127 or intraperitoneal injection of YNT-2715 (a KNT-127-related compound that cannot pass through the blood-brain barrier) significantly alleviated the pathology of dextran sodium sulfate-induced colitis. In KNT-127-treated mice, the levels of an inflammatory cytokine IL-6 in the serum, and macrophages in the mesenteric lymph nodes (MLNs) were decreased in the progression stage, and those of regulatory T cells (Tregs) in the MLN were increased in the recovery stage. In vitro experiments revealed that KNT-127 inhibited the release of IL-6 and another inflammatory cytokine TNF-α from macrophages and accelerated the development of Tregs. Our study suggests that δ opioid agonists act directly on immune cells to improve the pathology of the colitis and can be candidates of immunomodulatory drugs.


Subject(s)
Analgesics, Opioid/pharmacology , Anti-Inflammatory Agents/pharmacology , Colitis/prevention & control , Colon/drug effects , Morphinans/pharmacology , Receptors, Opioid, delta/agonists , Animals , Colitis/chemically induced , Colitis/immunology , Colitis/metabolism , Colon/immunology , Colon/metabolism , Dextran Sulfate , Disease Models, Animal , Female , Interleukin-6/metabolism , Lymph Nodes/drug effects , Lymph Nodes/immunology , Lymph Nodes/metabolism , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice, Inbred C57BL , Receptors, Opioid, delta/metabolism , Signal Transduction , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Tumor Necrosis Factor-alpha/metabolism
19.
Anticancer Res ; 41(10): 5025-5031, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34593451

ABSTRACT

BACKGROUND/AIM: This study investigated the cardiophrenic lymph node (CPLN) status before and after neoadjuvant chemotherapy (NACT), as its presence seems to have a rather prognostic significance in patients with advanced ovarian cancer. PATIENTS AND METHODS: The baseline computed tomography scans of 66 patients with advanced ovarian cancer primary treated with NACT between March 2015 and June 2020 were reviewed. A CPLN enlargement was defined as ≥5 mm. RESULTS: 44% (n=29) of the patients had enlarged CPLNs; 10.7% (n=3) showed a complete response, 71.4% (n=20) a partial response, and 17.9% (n=5) a stable disease after NACT. There was no significant difference between the response to NACT measured according to the status of CPLN compared to other biomarkers in the CPLN group. CONCLUSION: Patients with CPLN enlargement have a tendency to an impaired prognosis. The response of CPLN to NACT was comparable to the response of established biomarkers, adding a monitoring function to the CPLN.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Chemotherapy, Adjuvant/mortality , Lymph Nodes/pathology , Neoadjuvant Therapy/mortality , Ovarian Neoplasms/pathology , Aged , Diaphragm , Female , Follow-Up Studies , Humans , Lymph Nodes/drug effects , Middle Aged , Ovarian Neoplasms/drug therapy , Prognosis , Retrospective Studies , Survival Rate
20.
Sci Rep ; 11(1): 19458, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34593911

ABSTRACT

Efficacious therapeutics for Ebola virus disease are in great demand. Ebola virus infections mediated by mucosal exposure, and aerosolization in particular, present a novel challenge due to nontypical massive early infection of respiratory lymphoid tissues. We performed a randomized and blinded study to compare outcomes from vehicle-treated and remdesivir-treated rhesus monkeys in a lethal model of infection resulting from aerosolized Ebola virus exposure. Remdesivir treatment initiated 4 days after exposure was associated with a significant survival benefit, significant reduction in serum viral titer, and improvements in clinical pathology biomarker levels and lung histology compared to vehicle treatment. These observations indicate that remdesivir may have value in countering aerosol-induced Ebola virus disease.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Ebolavirus/drug effects , Hemorrhagic Fever, Ebola/drug therapy , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/pharmacology , Administration, Intravenous , Aerosols , Alanine/administration & dosage , Alanine/pharmacology , Animals , Antiviral Agents/administration & dosage , Disease Models, Animal , Female , Hemorrhagic Fever, Ebola/blood , Kaplan-Meier Estimate , Liver/drug effects , Liver/virology , Lung/pathology , Lung/virology , Lymph Nodes/drug effects , Lymph Nodes/pathology , Lymph Nodes/virology , Macaca mulatta , Male , Random Allocation , Systemic Inflammatory Response Syndrome/drug therapy , Systemic Inflammatory Response Syndrome/virology , Viral Load/drug effects , Viremia/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...