Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.180
Filter
1.
Bull Exp Biol Med ; 176(5): 636-639, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38727953

ABSTRACT

Immunohistochemical detection of the LYVE-1 marker in healthy human full-thickness skin (the epidermis and the dermis) was carried out. LYVE-1 expression was found in the endothelium of lymphatic capillaries located in the papillary dermis, in the endothelium of larger lymphatic vessels of the reticular dermis, and in fibroblasts, which indicates their joint participation in hyaluronan metabolism. LYVE-1+ staining detected for the first time in cells of the stratum basale, the stratum spinosum, and the stratum granulosum of healthy human epidermis indicates their participation in hyaluronan metabolism and allows us to consider the spaces between epidermis cells as prelimphatics.


Subject(s)
Epidermis , Hyaluronic Acid , Lymphatic Vessels , Skin , Vesicular Transport Proteins , Humans , Hyaluronic Acid/metabolism , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Skin/metabolism , Lymphatic Vessels/metabolism , Epidermis/metabolism , Ligands , Fibroblasts/metabolism , Dermis/metabolism , Lymphatic System/metabolism , Adult , Female , Male , Immunohistochemistry
2.
Development ; 151(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38722096

ABSTRACT

During embryonic development, lymphatic endothelial cell (LEC) precursors are distinguished from blood endothelial cells by the expression of Prospero-related homeobox 1 (Prox1), which is essential for lymphatic vasculature formation in mouse and zebrafish. Prox1 expression initiation precedes LEC sprouting and migration, serving as the marker of specified LECs. Despite its crucial role in lymphatic development, Prox1 upstream regulation in LECs remains to be uncovered. SOX18 and COUP-TFII are thought to regulate Prox1 in mice by binding its promoter region. However, the specific regulation of Prox1 expression in LECs remains to be studied in detail. Here, we used evolutionary conservation and chromatin accessibility to identify enhancers located in the proximity of zebrafish prox1a active in developing LECs. We confirmed the functional role of the identified sequences through CRISPR/Cas9 mutagenesis of a lymphatic valve enhancer. The deletion of this region results in impaired valve morphology and function. Overall, our results reveal an intricate control of prox1a expression through a collection of enhancers. Ray-finned fish-specific distal enhancers drive pan-lymphatic expression, whereas vertebrate-conserved proximal enhancers refine expression in functionally distinct subsets of lymphatic endothelium.


Subject(s)
Endothelial Cells , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Homeodomain Proteins , Lymphatic Vessels , Tumor Suppressor Proteins , Zebrafish Proteins , Zebrafish , Animals , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Zebrafish/genetics , Zebrafish/embryology , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Enhancer Elements, Genetic/genetics , Lymphatic Vessels/metabolism , Lymphatic Vessels/embryology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Endothelial Cells/metabolism , Lymphangiogenesis/genetics , CRISPR-Cas Systems/genetics , Promoter Regions, Genetic/genetics , Mice
3.
Development ; 151(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38742432

ABSTRACT

Development of the vascular system is regulated by multiple signaling pathways mediated by receptor tyrosine kinases. Among them, angiopoietin (Ang)/Tie signaling regulates lymphatic and blood vessel development in mammals. Of the two Tie receptors, Tie2 is well known as a key mediator of Ang/Tie signaling, but, unexpectedly, recent studies have revealed that the Tie2 locus has been lost in many vertebrate species, whereas the Tie1 gene is more commonly present. However, Tie1-driven signaling pathways, including ligands and cellular functions, are not well understood. Here, we performed comprehensive mutant analyses of angiopoietins and Tie receptors in zebrafish and found that only angpt1 and tie1 mutants show defects in trunk lymphatic vessel development. Among zebrafish angiopoietins, only Angpt1 binds to Tie1 as a ligand. We indirectly monitored Ang1/Tie1 signaling and detected Tie1 activation in sprouting endothelial cells, where Tie1 inhibits nuclear import of EGFP-Foxo1a. Angpt1/Tie1 signaling functions in endothelial cell migration and proliferation, and in lymphatic specification during early lymphangiogenesis, at least in part by modulating Vegfc/Vegfr3 signaling. Thus, we show that Angpt1/Tie1 signaling constitutes an essential signaling pathway for lymphatic development in zebrafish.


Subject(s)
Angiopoietin-1 , Lymphangiogenesis , Lymphatic Vessels , Receptor, TIE-1 , Signal Transduction , Zebrafish Proteins , Zebrafish , Animals , Zebrafish/embryology , Zebrafish/metabolism , Zebrafish/genetics , Lymphatic Vessels/metabolism , Lymphatic Vessels/embryology , Angiopoietin-1/metabolism , Angiopoietin-1/genetics , Receptor, TIE-1/metabolism , Receptor, TIE-1/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Lymphangiogenesis/genetics , Cell Movement , Endothelial Cells/metabolism , Protein Binding , Cell Proliferation , Vascular Endothelial Growth Factor Receptor-3/metabolism , Vascular Endothelial Growth Factor Receptor-3/genetics , Mutation/genetics , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor C/genetics , Gene Expression Regulation, Developmental
4.
PLoS One ; 19(5): e0302926, 2024.
Article in English | MEDLINE | ID: mdl-38718095

ABSTRACT

Zinc Finger MIZ-Type Containing 1 (Zmiz1), also known as ZIMP10 or RAI17, is a transcription cofactor and member of the Protein Inhibitor of Activated STAT (PIAS) family of proteins. Zmiz1 is critical for a variety of biological processes including vascular development. However, its role in the lymphatic vasculature is unknown. In this study, we utilized human dermal lymphatic endothelial cells (HDLECs) and an inducible, lymphatic endothelial cell (LEC)-specific Zmiz1 knockout mouse model to investigate the role of Zmiz1 in LECs. Transcriptional profiling of ZMIZ1-deficient HDLECs revealed downregulation of genes crucial for lymphatic vessel development. Additionally, our findings demonstrated that loss of Zmiz1 results in reduced expression of proliferation and migration genes in HDLECs and reduced proliferation and migration in vitro. We also presented evidence that Zmiz1 regulates Prox1 expression in vitro and in vivo by modulating chromatin accessibility at Prox1 regulatory regions. Furthermore, we observed that loss of Zmiz1 in mesenteric lymphatic vessels significantly reduced valve density. Collectively, our results highlight a novel role of Zmiz1 in LECs and as a transcriptional regulator of Prox1, shedding light on a previously unknown regulatory factor in lymphatic vascular biology.


Subject(s)
Cell Proliferation , Endothelial Cells , Homeodomain Proteins , Lymphatic Vessels , Transcription Factors , Tumor Suppressor Proteins , Animals , Humans , Mice , Cell Movement/genetics , Endothelial Cells/metabolism , Gene Expression Regulation , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Lymphangiogenesis/genetics , Lymphatic Vessels/metabolism , Lymphatic Vessels/cytology , Mice, Knockout , Transcription Factors/metabolism , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
5.
Cell Rep ; 43(5): 114217, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38728141

ABSTRACT

While brain swelling, associated with fluid accumulation, is a known feature of pediatric cerebral malaria (CM), how fluid and macromolecules are drained from the brain during recovery from CM is unknown. Using the experimental CM (ECM) model, we show that fluid accumulation in the brain during CM is driven by vasogenic edema and not by perivascular cerebrospinal fluid (CSF) influx. We identify that fluid and molecules are removed from the brain extremely quickly in mice with ECM to the deep cervical lymph nodes (dcLNs), predominantly through basal routes and across the cribriform plate and the nasal lymphatics. In agreement, we demonstrate that ligation of the afferent lymphatic vessels draining to the dcLNs significantly impairs fluid drainage from the brain and lowers anti-malarial drug recovery from the ECM syndrome. Collectively, our results provide insight into the pathways that coordinate recovery from CM.


Subject(s)
Brain Edema , Malaria, Cerebral , Animals , Malaria, Cerebral/pathology , Mice , Disease Models, Animal , Lymphatic Vessels/metabolism , Mice, Inbred C57BL , Brain/pathology , Brain/parasitology , Brain/metabolism , Lymph Nodes/pathology , Plasmodium berghei , Female , Male
6.
Cell Commun Signal ; 22(1): 201, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566083

ABSTRACT

Lung cancer is a deeply malignant tumor with high incidence and mortality. Despite the rapid development of diagnosis and treatment technology, abundant patients with lung cancer are still inevitably faced with recurrence and metastasis, contributing to death. Lymphatic metastasis is the first step of distant metastasis and an important prognostic indicator of non-small cell lung cancer. Tumor-induced lymphangiogenesis is involved in the construction of the tumor microenvironment, except promoting malignant proliferation and metastasis of tumor cells, it also plays a crucial role in individual response to treatment, especially immunotherapy. Thus, this article reviews the current research status of lymphatic metastasis in non-small cell lung cancer, in order to provide some insights for the basic research and clinical and translational application in this field.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Lymphatic Vessels , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Lymphatic Metastasis/pathology , Lymphangiogenesis/physiology , Lymphatic Vessels/metabolism , Lymphatic Vessels/pathology , Tumor Microenvironment
7.
Adv Drug Deliv Rev ; 209: 115304, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599495

ABSTRACT

The lymphatic system has garnered significant attention in drug delivery research due to the advantages it offers, such as enhancing systemic exposure and enabling lymph node targeting for nanomedicines via the lymphatic delivery route. The journey of drug carriers involves transport from the administration site to the lymphatic vessels, traversing the lymph before entering the bloodstream or targeting specific lymph nodes. However, the anatomical and physiological barriers of the lymphatic system play a pivotal role in influencing the behavior and efficiency of carriers. To expedite research and subsequent clinical translation, this review begins by introducing the composition and classification of the lymphatic system. Subsequently, we explore the routes and mechanisms through which nanoparticles enter lymphatic vessels and lymph nodes. The review further delves into the interactions between nanomedicine and body fluids at the administration site or within lymphatic vessels. Finally, we provide a comprehensive overview of recent advancements in lymphatic delivery systems, addressing the challenges and opportunities inherent in current systems for delivering macromolecules and vaccines.


Subject(s)
Drug Delivery Systems , Lymphatic System , Nanoparticles , Humans , Nanoparticles/administration & dosage , Lymphatic System/metabolism , Animals , Lymphatic Vessels/metabolism , Lymphatic Vessels/physiology , Drug Carriers/chemistry , Nanomedicine , Lymph Nodes/metabolism
8.
Arterioscler Thromb Vasc Biol ; 44(6): 1181-1190, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38634279

ABSTRACT

Cardiovascular diseases remain the largest cause of death worldwide with recent evidence increasingly attributing the development and progression of these diseases to an exacerbated inflammatory response. As a result, significant research is now focused on modifying the immune environment to prevent the disease progression. This in turn has highlighted the lymphatic system in the pathophysiology of cardiovascular diseases owing, in part, to its established function in immune cell surveillance and trafficking. In this review, we highlight the role of the cardiac lymphatic system and its potential as an immunomodulatory therapeutic target in selected cardiovascular diseases.


Subject(s)
Lymphatic Vessels , Humans , Animals , Lymphatic Vessels/physiopathology , Lymphatic Vessels/immunology , Lymphatic Vessels/metabolism , Heart Diseases/physiopathology , Heart Diseases/immunology , Heart Diseases/pathology , Heart Diseases/metabolism , Heart Diseases/therapy , Signal Transduction , Lymphangiogenesis , Lymphatic System/physiopathology , Lymphatic System/immunology
9.
Cell Rep ; 43(4): 114049, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38573853

ABSTRACT

Heterotopic ossification (HO) is a challenging condition that occurs after musculoskeletal injury and is characterized by the formation of bone in non-skeletal tissues. While the effect of HO on blood vessels is well established, little is known about its impact on lymphatic vessels. Here, we use a mouse model of traumatic HO to investigate the relationship between HO and lymphatic vessels. We show that injury triggers lymphangiogenesis at the injury site, which is associated with elevated vascular endothelial growth factor C (VEGF-C) levels. Through single-cell transcriptomic analyses, we identify mesenchymal progenitor cells and tenocytes as sources of Vegfc. We demonstrate by lineage tracing that Vegfc-expressing cells undergo osteochondral differentiation and contribute to the formation of HO. Last, we show that Vegfc haploinsufficiency results in a nearly 50% reduction in lymphangiogenesis and HO formation. These findings shed light on the complex mechanisms underlying HO formation and its impact on lymphatic vessels.


Subject(s)
Lymphangiogenesis , Mesenchymal Stem Cells , Ossification, Heterotopic , Vascular Endothelial Growth Factor C , Animals , Ossification, Heterotopic/metabolism , Ossification, Heterotopic/pathology , Ossification, Heterotopic/genetics , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor C/genetics , Mice , Mesenchymal Stem Cells/metabolism , Lymphatic Vessels/metabolism , Lymphatic Vessels/pathology , Cell Differentiation , Tenocytes/metabolism , Osteogenesis , Haploinsufficiency , Mice, Inbred C57BL , Disease Models, Animal , Male
10.
Proc Natl Acad Sci U S A ; 121(18): e2317760121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38652741

ABSTRACT

The complex interplay between malignant cells and the cellular and molecular components of the tumor stroma is a key aspect of cancer growth and development. These tumor-host interactions are often affected by soluble bioactive molecules such as proteoglycans. Decorin, an archetypical small leucine-rich proteoglycan primarily expressed by stromal cells, affects cancer growth in its soluble form by interacting with several receptor tyrosine kinases (RTK). Overall, decorin leads to a context-dependent and protracted cessation of oncogenic RTK activity by attenuating their ability to drive a prosurvival program and to sustain a proangiogenic network. Through an unbiased transcriptomic analysis using deep RNAseq, we identified that decorin down-regulated a cluster of tumor-associated genes involved in lymphatic vessel (LV) development when systemically delivered to mice harboring breast carcinoma allografts. We found that Lyve1 and Podoplanin, two established markers of LVs, were markedly suppressed at both the mRNA and protein levels, and this suppression correlated with a significant reduction in tumor LVs. We further identified that soluble decorin, but not its homologous proteoglycan biglycan, inhibited LV sprouting in an ex vivo 3D model of lymphangiogenesis. Mechanistically, we found that decorin interacted with vascular endothelial growth factor receptor 3 (VEGFR3), the main lymphatic RTK, and its activity was required for the decorin-mediated block of lymphangiogenesis. Finally, we identified that Lyve1 was in part degraded via decorin-evoked autophagy in a nutrient- and energy-independent manner. These findings implicate decorin as a biological factor with antilymphangiogenic activity and provide a potential therapeutic agent for curtailing breast cancer growth and metastasis.


Subject(s)
Decorin , Lymphangiogenesis , Decorin/metabolism , Decorin/genetics , Animals , Mice , Humans , Female , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Lymphatic Vessels/metabolism , Lymphatic Vessels/pathology , Cell Line, Tumor , Disease Progression , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Gene Expression Regulation, Neoplastic
11.
J Ethnopharmacol ; 328: 118015, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38499261

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese medicine (TCM) formula Banxia Xiexin decoction (BXD) has definite therapeutic effect in treating stress-induced gastric ulceration (SIGU) and many other gastrointestinal diseases, but its effect on gastric lymphatic pumping (GLP) remains unclear. AIM OF THE STUDY: Elucidating the role of GLP in SIGU and BXD treatment, and exploring the molecular mechanisms of GLP regulation. MATERIALS AND METHODS: In vivo GLP imaging were performed on SIGU rat model, and the lymphatic dynamic parameters were evaluated. Gastric antrum tissues and serum were collected for macroscopic, histopathological and ulcerative parameters analysis. Gastric lymphatic vessel (GLV) tissues were collected for RNA-Seq assays. Differentially expressed genes (DEGs) were screened from RNA-Seq result and submitted for transcriptomic analysis. Key DEGs and their derivative proteins were measured by qRT-PCR and WB. RESULTS: GLP was significantly suppressed in SIGU rats. BXD could recover GLP, ameliorate stomach lymphostasis, and alleviate the ulcerative damage. Transcriptome analysis of GLV showed the top up-DEGs were concentrated in smooth muscle contraction signaling pathway, while the top the down-DEGs were concentrated in energy metabolism pathways especially fatty acid degradation pathway, which indicated BXD can promote lymphatic smooth muscle contraction, regulate energy metabolism, and reduce fatty acid degradation. The most possible target of these mechanisms was the lymphatic smooth muscle cells (LSMCs) which drove the GLP. This speculation was further validated by the qRT-PCR and WB assessments for the level of key genes and proteins. CONCLUSIONS: By activating the smooth muscle contraction signaling pathway, restoring energy supply, modulating energy metabolism program and reducing fatty acid degradation, BXD effectively recovered GLP, mitigated the accumulation of inflammatory cytokines and metabolic wastes in the stomach, which importantly contributes to its efficacy in treating SIGU.


Subject(s)
Drugs, Chinese Herbal , Lymphatic Vessels , Stomach Ulcer , Rats , Animals , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Energy Metabolism , Lymphatic Vessels/metabolism , Fatty Acids/therapeutic use
12.
Nat Neurosci ; 27(5): 913-926, 2024 May.
Article in English | MEDLINE | ID: mdl-38528202

ABSTRACT

Piezo1 regulates multiple aspects of the vascular system by converting mechanical signals generated by fluid flow into biological processes. Here, we find that Piezo1 is necessary for the proper development and function of meningeal lymphatic vessels and that activating Piezo1 through transgenic overexpression or treatment with the chemical agonist Yoda1 is sufficient to increase cerebrospinal fluid (CSF) outflow by improving lymphatic absorption and transport. The abnormal accumulation of CSF, which often leads to hydrocephalus and ventriculomegaly, currently lacks effective treatments. We discovered that meningeal lymphatics in mouse models of Down syndrome were incompletely developed and abnormally formed. Selective overexpression of Piezo1 in lymphatics or systemic administration of Yoda1 in mice with hydrocephalus or Down syndrome resulted in a notable decrease in pathological CSF accumulation, ventricular enlargement and other associated disease symptoms. Together, our study highlights the importance of Piezo1-mediated lymphatic mechanotransduction in maintaining brain fluid drainage and identifies Piezo1 as a promising therapeutic target for treating excessive CSF accumulation and ventricular enlargement.


Subject(s)
Ion Channels , Lymphatic Vessels , Meninges , Mice, Transgenic , Animals , Lymphatic Vessels/metabolism , Ion Channels/metabolism , Ion Channels/genetics , Mice , Meninges/metabolism , Cerebrospinal Fluid/metabolism , Hydrocephalus/genetics , Mechanotransduction, Cellular/physiology , Mice, Inbred C57BL , Female , Male , Pyrazines , Thiadiazoles
13.
Dev Cell ; 59(9): 1159-1174.e5, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38537630

ABSTRACT

Inside the finger-like intestinal projections called villi, strands of smooth muscle cells contract to propel absorbed dietary fats through the adjacent lymphatic capillary, the lacteal, sending fats into the systemic blood circulation for energy production. Despite this vital function, mechanisms of formation, assembly alongside lacteals, and maintenance of villus smooth muscle are unknown. By combining single-cell RNA sequencing and quantitative lineage tracing of the mouse intestine, we identified a local hierarchy of subepithelial fibroblast progenitors that differentiate into mature smooth muscle fibers via intermediate contractile myofibroblasts. This continuum persists as the major mechanism for villus musculature renewal throughout adult life. The NOTCH3-DLL4 signaling axis governs the assembly of smooth muscle fibers alongside their adjacent lacteals and is required for fat absorption. Our studies identify the ontogeny and maintenance of a poorly defined class of intestinal smooth muscle, with implications for accelerated repair and recovery of digestive function following injury.


Subject(s)
Cell Differentiation , Myofibroblasts , Animals , Myofibroblasts/metabolism , Myofibroblasts/cytology , Mice , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/cytology , Signal Transduction , Lymphatic Vessels/metabolism , Lymphatic Vessels/cytology , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Intestines/cytology , Muscle, Smooth/metabolism , Muscle, Smooth/cytology , Stem Cells/cytology , Stem Cells/metabolism , Receptor, Notch3/metabolism , Receptor, Notch3/genetics , Mice, Inbred C57BL
14.
Vaccine ; 42(10): 2519-2529, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38494411

ABSTRACT

Subunit vaccines are an important platform for controlling current and emerging infectious diseases. The lymph nodes are the primary site generating the humoral response and delivery of antigens to these sites is critical to effective immunization. Indeed, the duration of antigen exposure within the lymph node is correlated with the antibody response. While current licensed vaccines are typically given through the intramuscular route, injecting vaccines subcutaneously allows for direct access to lymphatic vessels and therefore can enhance the transfer of antigen to the lymph nodes. However, protein subunit antigen uptake into the lymph nodes is inefficient, and subunit vaccines require adjuvants to stimulate the initial immune response. Therefore, formulation strategies have been developed to enhance the exposure of subunit proteins and adjuvants to the lymph nodes by increasing lymphatic uptake or prolonging the retention at the injection site. Given that lymph node exposure is a crucial consideration in vaccine design, in depth analyses of the pharmacokinetics of antigens and adjuvants should be the focus of future preclinical and clinical studies. This review will provide an overview of formulation strategies for targeting the lymphatics and prolonging antigen exposure and will discuss pharmacokinetic evaluations which can be applied toward vaccine development.


Subject(s)
Lymphatic Vessels , Lymphatic Vessels/metabolism , Antigens , Vaccines, Subunit , Vaccination , Lymph Nodes , Adjuvants, Immunologic/metabolism , Vaccine Development
15.
Cell Mol Life Sci ; 81(1): 131, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38472405

ABSTRACT

The discoveries that cerebrospinal fluid participates in metabolic perivascular exchange with the brain and further drains solutes to meningeal lymphatic vessels have sparked a tremendous interest in translating these seminal findings from animals to humans. A potential two-way coupling between the brain extra-vascular compartment and the peripheral immune system has implications that exceed those concerning neurodegenerative diseases, but also imply that the central nervous system has pushed its immunological borders toward the periphery, where cross-talk mediated by cerebrospinal fluid may play a role in a range of neoplastic and immunological diseases. Due to its non-invasive approach, magnetic resonance imaging has typically been the preferred methodology in attempts to image the glymphatic system and meningeal lymphatics in humans. Even if flourishing, the research field is still in its cradle, and interpretations of imaging findings that topographically associate with reports from animals have yet seemed to downplay the presence of previously described anatomical constituents, particularly in the dura. In this brief review, we illuminate these challenges and assess the evidence for a glymphatic-lymphatic coupling. Finally, we provide a new perspective on how human brain and meningeal clearance function may possibly be measured in future.


Subject(s)
Lymphatic Vessels , Animals , Humans , Lymphatic Vessels/metabolism , Central Nervous System , Brain/physiology , Meninges/physiology , Magnetic Resonance Imaging
16.
J Am Soc Nephrol ; 35(5): 549-565, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38506705

ABSTRACT

SIGNIFICANCE STATEMENT: The renal lymphatic vasculature and the lymphatic endothelial cells that make up this network play important immunomodulatory roles during inflammation. How lymphatics respond to AKI may affect AKI outcomes. The authors used single-cell RNA sequencing to characterize mouse renal lymphatic endothelial cells in quiescent and cisplatin-injured kidneys. Lymphatic endothelial cell gene expression changes were confirmed in ischemia-reperfusion injury and in cultured lymphatic endothelial cells, validating renal lymphatic endothelial cells single-cell RNA sequencing data. This study is the first to describe renal lymphatic endothelial cell heterogeneity and uncovers molecular pathways demonstrating lymphatic endothelial cells regulate the local immune response to AKI. These findings provide insights into previously unidentified molecular pathways for lymphatic endothelial cells and roles that may serve as potential therapeutic targets in limiting the progression of AKI. BACKGROUND: The inflammatory response to AKI likely dictates future kidney health. Lymphatic vessels are responsible for maintaining tissue homeostasis through transport and immunomodulatory roles. Owing to the relative sparsity of lymphatic endothelial cells in the kidney, past sequencing efforts have not characterized these cells and their response to AKI. METHODS: Here, we characterized murine renal lymphatic endothelial cell subpopulations by single-cell RNA sequencing and investigated their changes in cisplatin AKI 72 hours postinjury. Data were processed using the Seurat package. We validated our findings by quantitative PCR in lymphatic endothelial cells isolated from both cisplatin-injured and ischemia-reperfusion injury, by immunofluorescence, and confirmation in in vitro human lymphatic endothelial cells. RESULTS: We have identified renal lymphatic endothelial cells and their lymphatic vascular roles that have yet to be characterized in previous studies. We report unique gene changes mapped across control and cisplatin-injured conditions. After AKI, renal lymphatic endothelial cells alter genes involved in endothelial cell apoptosis and vasculogenic processes as well as immunoregulatory signaling and metabolism. Differences between injury models were also identified with renal lymphatic endothelial cells further demonstrating changed gene expression between cisplatin and ischemia-reperfusion injury models, indicating the renal lymphatic endothelial cell response is both specific to where they lie in the lymphatic vasculature and the kidney injury type. CONCLUSIONS: In this study, we uncover lymphatic vessel structural features of captured populations and injury-induced genetic changes. We further determine that lymphatic endothelial cell gene expression is altered between injury models. How lymphatic endothelial cells respond to AKI may therefore be key in regulating future kidney disease progression.


Subject(s)
Acute Kidney Injury , Cisplatin , Endothelial Cells , Reperfusion Injury , Sequence Analysis, RNA , Single-Cell Analysis , Acute Kidney Injury/metabolism , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Animals , Mice , Endothelial Cells/metabolism , Kidney/pathology , Kidney/metabolism , Male , Mice, Inbred C57BL , Lymphatic Vessels/metabolism , Lymphatic Vessels/pathology
17.
Brain Res ; 1833: 148868, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38519008

ABSTRACT

Meningeal lymphatic vessels (MLVs) have crucial roles in removing metabolic waste and toxic proteins from the brain and transporting them to the periphery. Aged mice show impaired meningeal lymphatic function. Nevertheless, as the disease progresses, and significant pathological changes manifest in the brain, treating the condition becomes increasingly challenging. Therefore, investigating the alterations in the structure and function of MLVs in the early stages of aging is critical for preventing age-related central nervous system degenerative diseases. We detected the structure and function of MLVs in young, middle-aged, and aged mice. Middle-aged mice, compared with young and aged mice, showed enhanced meningeal lymphatic function along with MLV expansion and performed better in the Y maze test. Moreover, age-related changes in meningeal lymphatic function were closely associated with vascular endothelial growth factor-C (VEGF-C) expression in the brain cortex. Our data suggested that the cerebral cortex may serve as a target for VEGF-C supplementation to ameliorate meningeal lymphatic dysfunction, thus providing a new strategy for preventing age-related central nervous system diseases.


Subject(s)
Aging , Lymphatic Vessels , Meninges , Vascular Endothelial Growth Factor C , Animals , Male , Mice , Aging/physiology , Aging/metabolism , Cerebral Cortex/metabolism , Lymphatic Vessels/metabolism , Meninges/metabolism , Mice, Inbred C57BL , Vascular Endothelial Growth Factor C/metabolism
18.
BMC Biol ; 22(1): 51, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38414014

ABSTRACT

BACKGROUND: Lymphangiogenesis, the formation of lymphatic vessels, is tightly linked to the development of the venous vasculature, both at the cellular and molecular levels. Here, we identify a novel role for Sorbs1, the founding member of the SoHo family of cytoskeleton adaptor proteins, in vascular and lymphatic development in the zebrafish. RESULTS: We show that Sorbs1 is required for secondary sprouting and emergence of several vascular structures specifically derived from the axial vein. Most notably, formation of the precursor parachordal lymphatic structures is affected in sorbs1 mutant embryos, severely impacting the establishment of the trunk lymphatic vessel network. Interestingly, we show that Sorbs1 interacts with the BMP pathway and could function outside of Vegfc signaling. Mechanistically, Sorbs1 controls FAK/Src signaling and subsequently impacts on the cytoskeleton processes regulated by Rac1 and RhoA GTPases. Inactivation of Sorbs1 altered cell-extracellular matrix (ECM) contacts rearrangement and cytoskeleton dynamics, leading to specific defects in endothelial cell migratory and adhesive properties. CONCLUSIONS: Overall, using in vitro and in vivo assays, we identify Sorbs1 as an important regulator of venous and lymphatic angiogenesis independently of the Vegfc signaling axis. These results provide a better understanding of the complexity found within context-specific vascular and lymphatic development.


Subject(s)
Lymphatic Vessels , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Lymphatic Vessels/metabolism , Lymphangiogenesis/physiology , Adaptor Proteins, Signal Transducing/metabolism , Cytoskeleton/metabolism
19.
Int J Mol Med ; 53(4)2024 04.
Article in English | MEDLINE | ID: mdl-38391009

ABSTRACT

Heart disease remains a global health challenge, contributing notably to morbidity and mortality. The lymphatic vasculature, an integral component of the cardiovascular system, plays a crucial role in regulating essential physiological processes, including fluid balance, transportation of extravasated proteins and immune cell trafficking, all of which are important for heart function. Through thorough scientometric analysis and extensive research, the present review identified lymphangiogenesis as a hotspot in cardiovascular disease research, and the mechanisms underlying impaired cardiac lymphangiogenesis and inadequate lymph drainage in various cardiovascular diseases are discussed. Furthermore, the way used to improve lymphangiogenesis to effectively regulate a variety of heart diseases and associated signaling pathways was investigated. Notably, the current review also highlights the impact of Traditional Chinese Medicine (TCM) on lymphangiogenesis, aiming to establish a clinical basis for the potential of TCM to improve cardiovascular diseases by promoting lymphangiogenesis.


Subject(s)
Cardiovascular Diseases , Heart Diseases , Lymphatic Vessels , Humans , Lymphangiogenesis/physiology , Cardiovascular Diseases/metabolism , Lymphatic Vessels/metabolism , Heart Diseases/metabolism , Heart
20.
J Gene Med ; 26(2): e3665, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38375969

ABSTRACT

The lymphatic system, crucial for tissue fluid balance and immune surveillance, can be severely impacted by disorders that hinder its activities. Lymphatic malformations (LMs) are caused by fluid accumulation in tissues owing to defects in lymphatic channel formation, the obstruction of lymphatic vessels or injury to lymphatic tissues. Somatic mutations, varying in symptoms based on lesions' location and size, provide insights into their molecular pathogenesis by identifying LMs' genetic causes. In this review, we collected the most recent findings about the role of genetic and inflammatory biomarkers in LMs that control the formation of these malformations. A thorough evaluation of the literature from 2000 to the present was conducted using the PubMed and Google Scholar databases. Although it is obvious that the vascular endothelial growth factor receptor 3 mutation accounts for a significant proportion of LM patients, several mutations in other genes thought to be linked to LM have also been discovered. Also, inflammatory mediators like interleukin-6, interleukin-8, tumor necrosis factor-alpha and mammalian target of rapamycin are the most commonly associated biomarkers with LM. Understanding the mutations and genes expression responsible for the abnormalities in lymphatic endothelial cells could lead to novel therapeutic strategies based on molecular pathways.


Subject(s)
Lymphatic Abnormalities , Lymphatic Vessels , Humans , Endothelial Cells/metabolism , Endothelial Cells/pathology , Vascular Endothelial Growth Factor A/metabolism , Lymphatic Abnormalities/genetics , Lymphatic Abnormalities/diagnosis , Lymphatic Abnormalities/pathology , Lymphatic Vessels/abnormalities , Lymphatic Vessels/metabolism , Lymphatic Vessels/pathology , Biomarkers/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...